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THE GENERATION OF SURFACE WAVES
BY AN INTENSE CYCLONE
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Abstract

Assuming a travelling oscillating pressure source model, this paper sets out to investigate
the observation of surface gravity waves generated by a cyclone moving with constant
speed v. It is shown that when the source frequency is near the critical resonant value
g/4u, large amplitude waves may be generated. There is some agreement with observa-
tions of waves from cyclone Pam of February, 1974.

I. Introduction

In February 1974, the tropical cyclone Pam travelled parallel to the east coast of
Australia for about three days at a distance of about 650 km, at a speed of about
20 km/h and generated large amplitude waves of period of about 7 seconds.

Isobars observed at 11 a.m. on the 6th of February, are shown in Figure la,
and the estimated path of the storm centre is shown in Figure lb. Table 1 gives
data obtained by the Maritime Services Board of N.S.W. from a waverider buoy 2
km off-shore at Botany Bay (near Sydney). On the 6th of February between 5
a.m. and 3 p.m., an abrupt change was observed in the energy density and wave
height. Large waves were then recorded for about two days until the evening of
the 8th of February.

In order to seek an explanation of the observations, we model the cyclone by a
travelling oscillating point pressure source which generates surface waves as it
moves with constant speed. Although this assumption cannot describe the wave
generation mechanism in the storm region itself nor the overall effect of a
frequency spectrum, it will be shown to be useful in the study of waves at long
distances from the storm centre.

'School of Mathematics, University of New South Wales, Kensington, N.S.W. 2033.
© Copyright Australian Mathematical Society 1983

64

https://doi.org/10.1017/S033427000000391X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000391X


[2 ] Generation of waves by cyclone 65

The generation of surface gravity waves in two dimensions by travelling
oscillating pressure distributions has been discussed by Lighthill [6], among
others. For a fixed value of source frequency, the dispersion relation of such
waves is a curve in wavenumber space. Points of inflexion on such curves generate
caustic solutions which give rise to waves of relatively large amplitude. These
waves are observed in a direction from the source which is normal to the curve at
that point.

However, to explain the large waves generated by the cyclone, one should also
look for the possibility of resonance. It can be shown that the group velocity of
the waves matches the source speed when the product of the source speed and
frequency equals one quarter of the gravitational acceleration g. At this critical
point there is a build-up of energy around the source and large amplitudes may
ensue. For cyclone Pam, the observed wave amplitudes and periods are in accord
with those predicted by this mechanism.

Figure la. Isobars from cyclone Pam, observed at 11 a.m. on the 6th of February, 1974 (day 37).
Values shown are in millibars
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In order to formulate the problem, take Cartesian coordinates (*', y', z') with
the z'-axis pointing upwards such that the pressure source is at rest and the fluid
moves in the positive x '-direction with speed v relative to this frame. Define
non-dimensional coordinates by

(x,y,z) = (x',y',z')g/v2, t = t'g/v, (1)

where /' is the time, and let <t>(x, y, z, t) = <J>'O', y', z', t')/v where <J>' is the
velocity potential. If TJ(X, y, t) is the displacement of the free surface from
equilibrium, the linearized wave equations in deep water reduce to

dx2 dy2H + ^ + ^ = 0, [-00 < , , , < 00,-00 < r < 0 ] , (2)

am. (day 361

'8 p.m.
2 a.m. (day 37)

'5 a.m.
111 am.
'8 p.m.
2 a.m. (day 38)

15 a.m.

Figure Ib. Estimated positions of the centre of cyclone Pam relative to Sydney. Day 36 is the 5th of
February, 1974.
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(3)

(4)

where p is the constant density of the fluid. The applied pressure is assumed to
take the circular symmetric form

p(x, y, t) = Po8(x)8{y)e\p(-io0t), (5)

where p0 is constant, 8(x) is the Dirac delta-function and a0 = vuo/g where w0 is
the dimensional source frequency.

TABLE 1. Wave data from a waverider buoy located 2 km off-shore outside Botany Bay. Day 36
corresponds to the 5th of February, 1974. The cyclone is estimated to be due East of Sydney at 2.00
a.m. on day 38.

Day

36
36
37
37
37
37
37
38
38
38
38
38
38
38
38
39
39
39
39
39
39
39
39
40
40

Time of Day

14.53
20.56
2.56
8.52

15.03
18.00
21.10
0.06
3.05
6.04
9.00

11.57
15.03
18.00
21.10
0.06
3.05
6.04
9.00

11.57
15.03
18.00
21.10

3.00
9.00

Period (sec)

6.67
6.72
7.70
8.52
7.41
7.19
7.14
7.52
7.58
7.20
7.24
6.97
6.62
6.26
6.96
7.13
7.53
7.23
8.03
7.25
7.71
7.56
7.34
7.43
7.09

Energy

Density

(m2/sec)

0.169
0.184
0.221
0.297
0.766
0.855
1.285
1.410
1.587
1.410
1.388
1.027
0.876
0.700
0.797
0.816
0.962
0.836
1.018
0.739
0.798
0.769
0.509
0.568
0.444

RMS Wave
Height (m)

1.05
1.10
1.26
1.45
2.25
2.43
3.00
3.16
3.40
3.11
3.14
2.66
2.49
2.21
2.41
2.46
2.67
2.39
2.76
2.29
2.40
2.31
1.95
1.98
1.78

Maximum
Wave

Height (m)

2.94
2.90
2.75
3.91
5.01
5.23
7.08
7.02
7.17
8 15
6.54
6.37
5.83
5.05
5.29
5.91
7.56
5.59
5.85
5.31
5.46
4.89
4.14
4.57
3.90
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The model in (3) and (5) is not intended to suggest that a fluctuating pressure
source is the actual mechanism for the generation of the observed waves. The
waves are generated, of course, by the high rotary winds near the stormcentre, the
details of which are not our concern. What is important is that large wave
generation is confined to the storm region so that an observer located well outside
the storm will see waves emerging which are somehow generated within that
region. The wave properties that are investigated in this paper are largely
independent of the source mechanism, and we may as well, therefore, assume the
simplest possible source, which is a fluctuating pressure distribution. Note,
though, that the actual distribution of waves radiated from the storm is probably
not circularly symmetric and the theory in this paper would then need to be
amended to take asymmetry into account. Nevertheless, the assumed symmetric
model is a useful starting point for understanding the geometry of the propagat-
ing waves. An actual cyclone would, of course, also have a continuous frequency
distribution, but the single frequency model used here is useful in seeking those
frequencies for which the distant observer is likely to see large waves.

2. Asymptotic representation of i){x, y, t)

Define the double Fourier transform by

A(a,P)=±Qfj(x,y)e-«"*+^dxdy> (6)

and assume that <> and TJ have an implicit harmonic dependence of the form
exp(-iaor). Application of (6) to (2), (3) and (4) with (5) and use of Fourier's
inversion theorem yields the solution

where

G{a, fi, a0) = (a2 + /?2) ' / 2 - (a - a0)2. (8)

Note that G = 0 is the wavenumber curve, shown in Figure 2 for various values of
the source frequency a0. Also shown in Figure 2 is the critical point P at which
the wave group velocity matches the source speed v.

Crapper [4], following Lighthill [5], obtained asymptotic expansions of the wave
amplitude (7) for the special case a0 = 0, observed along particular directions
r = (x, y) — r(cos 0, sin 6), where r = (JC2 + ^ 2 ) l / 2 . The method consists of defi-
ning a new system of coordinates (a, 0) by rotating the original system (a, 0)
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through an angle 0, and then integrating asymptotically using residue theory and
the method of stationary phase.

It is easy to generalize the method to the case of arbitrary a0, and in fact, at
normal points of the wavenumber curve at which the curvature K is not zero, it
was found that

r —
2Wpg \ r

(m tiY .(
;— exp / amx

(3G/3a)m|K|1/2 V \ m

, i \
+ —IT sen K ,

(9)

as r -» oo. The sum is over all points (am, fim) on the curve G = 0 such that its
normal is parallel to the radius vector r,

a = a cos 6 + fisinO, /? = — asin# + /Jcos#, (10)

are the new coordinates in the rotated wavenumber plane,

and the curvature

K — I 2.yJna\jAjo — C/«C/oo — KJo\J
\ up Otp a pp p i

where the subscripts denote partial differentiation.

2^P

(12)

- 2 -

Figure 2. Wavenumber curves C = 0 in normalized a — fi plane for several values of the source
frequency a0. Point P, of coordinates (a, P, o0) = (-5,0, j) , is the critical resonant point.

The curves represent waves generated by a source travelling to the left wih speed v, and the arrows
are normal directions at the points of inflexion. (Adapted from Lighthill [7].)
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It should be pointed out that the solution which satisfies the radiation condi-
tion is that representing waves found in the direction pointing towards the curve
G(a, 0, aQ + 8) = 0, where S > 0. Note also that the result in (9) is not valid at
points of G where K = 0, corresponding to caustics, and near the critical point P.

Also relevant is the group velocity cg, which is determined by

cg/v=-vG/Ga,

whence it may be shown that, as is to be expected,

where k = (a, /?), cf. Courant and Hilbert [3].

3. Behaviour of G(a, ft, a0) near P

We first study the behaviour of the wavenumber curve near the critical point by
assuming that

(13)a0 = \ + e where | e | « 1.

—0-15

Figure 3. Wavenumber curve C = 0 near the critical point P for three values of e, (e = -10"3, e = 0.0
and E = 10"3). The arrows are the normals to the curve at the inflexion points, pointing in the
direction of increasing e. Also shown are the directions 0{ = tan"1 21 / 2 and 62 = w — tan"' 2 I / 2 ,
normal to C at the critical point.
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TABLE 2. Wavenumber curve G = 0 near the critical point P for e = 10~7. 6 is the angle of the normal
to the curve at the given point and K is the curvature.

9

60°
70°
90°
110°
120°
124°

a

-0.2504
-0.2502
-0.2500
-0.2498
-0.2495
-0.2489

P
0.0004 300.0
0.0003 1174.0
0.0002 2240.0
0.0002 1165.2
0.0004 270.0
0.0007 28.5

Figure 3 shows the curve (8) for three values of e, including e = 0, and Table 2
gives the curvature for various values of the angle 8 of the normal, for e = 10 ~7.
The table corresponds to the normals to arc y, of Figure 3. However, a similar
behaviour is also observed for e < 0, on arcs y2 and y3 of the same figure. Since
we are considering small values of e, a + | and /? are O(e") near the critical point,
where v > 0. It should be pointed out then, that since the asymptotic expansion
(9) is valid only if amx + flmy » 1, we must ensure that | e \'r > 1.

Expanding the wavenumber curve (8) in powers of e, yields

G = P2 - H2 + 2^ - I4 + (~i +H~ (>e + 4|3)e + O(e2), (14)
where

« = « + *, (15)

and retaining only terms of order e, it may be deduced that the approximation to
G for which | , ft are small is given by

whose constant value contours are hyperbolae in the £ — /? plane. A consequence
is that | , /I are O(el/2) as e -> 0.

4. Behaviour of -q(x, y, t) near P

Consider the hyperbola approximation (16) and assume that (£m, /?m) is a point
on Gt = 0 . Let 60 be the direction normal to G, at that point and suppose we
approach P by letting e -» 0 in such a way that 0o remains constant, that is, by
observing waves at a fixed direction from the source. This direction must be
parallel to the gradient of G, at (£„,, fim), which is given by

(vG,)m - (3G,/3£, 3G./3/J) = (Sm,2fim), (17)

and therefore

(18)
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which is the condition for (£m, /?m) to be the point of stationary phase corre-
sponding to the direction 80.

Using (16) and (18), the condition that G ,(£„,, /?m) = 0 yields

e = -ecos2 6Q/a2, (19)

where

a = (cos2 </0 - i sin2 90)
l/2. (20)

Note that since £m must be real, if e > 0, then | tan 0O |> 21/2, and if e < 0, then
| t an0 o |<2 1 / 2 .

Substitution of (11), (12), (13) and (19) into (9) gives the result

y l ! L )], (21)

for fixed r, as e -» 0, provided | e | 1 / 2r » 1.
Equation (21) is not valid when a = 0, that is, along the lines

0, = tan-^' /2 « 54.73°, 02 = m - tan"1 21/2 « 125.26°, (22)

which are the normals to G = 0 at P as shown in Figure 3. Hence, we assume that
tan 6Q = 21 / 2 and take the approximation

G2te,f}) = (s2-n2 + 2e-±E = o. (23)

In this case (vG2)m = (-|m + 6 ^ , 2j8m). The condition that vG2 is parallel to d0

becomes 20m/(-£m + 6 | 2 ) = 21/2, and the fact that G2(£m, fim) = 0 gives

Zm = ~W/3, (24)
to lowest order in e.

Substituting into (9) yields the result that in the directions 0,, 02,

i-(^ + t - ^sgn «)], (25)

for fixed r, as e -* 0 and provided | e |1 / 3r » 1.
The asymptotic results in (21) and (25) imply that, given r, the wave amplitude

increases as £ decreases. This fact is confirmed numerically in Tables 3 and 4
which give the amplitude | r\ \ from (9) in units of po/pg, computed using the
exact form of G given in (8). In both tables, the wave amplitude is calculated at a
distance

r = d/sin0, (26)

where d is the non-dimensional distance between the centre of the storm and a
point on a coastline which is parallel to the direction of propagation of the storm.
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TABLE 3. Normalized wave amplitude 103 X | TJ \/(po/pg), from equation (9) for c > 0. 8 is the angle
of the normal to the arc y, of the wavenumber curve in Figure 3. Note specially the large amplitudes
for 8 near 0, « 54.73°. Blank spaces correspond to values of 8 beyond the inflexion point where (9)
does not apply.

8
e

io-2

io-3

io-4

io-5

10"6

io-7

50°

0.46
0.74
1.11
1.29
1.30
1.31

55°

0.41
0.70
1.31
2.64
5.39

11.14

60°

0.38
0.64
1.15
2.06
3.80
6.80

70°

0.34
0.57
0.98
1.74
3.12
5.60

90°

0.23
0.52
0.92
1.50
2.92
5.13

100°

0.53
0.93
1.68
3.00
5.27

110°

0.58
1.00
1.90
3.10
5.40

120°

1.80
2.31
3.80
6.95

TABLE 4. Normalized wave amplitude 1 0 3 | I J \/(Po/pg) f° r e < 0. (a) Waves normal to arc y2 of
Figure 3. Note the large amplitudes which occur for 8 near 82 » 125.26°.

e
e

- io- 2

- io- 3

- io- 4

-10- 5

- io- 6

- io- 7

115°

0.08
0.23
0.31
0.32
0.33
0.34

120°

0.09
0.32
0.63
0.74
0.78
0.79

125°

0.10
0.37
0.98
2.28
5.06

10.53

130°

0.11
0.38
0.92
1.74
3.75
6.40

135°

0.10
0.36
0.80
1.50
2.88
5.17

140°

0.10
0.33
0.72
1.42
2.48
4.36

145°

0.09
0.30
0.65
1.22
2.18
3.91

150°

0.09
0.27
0.52
1.12
193
3.40

(b) Waves normal to arc Y3 of Figure 3. Blank spaces correspond to values of 0 beyond the inflexion
point.

8
E

-io-2

- IO- 3

-10 - 4

-10 - 5

-10" 6

-10- 7

15°

0.22
0.26
0.40
0.70
1.22
2.30

20°

0.27
0.33
0.47
0.86
1.51
2.70

25°

0.33
0.38
0.55
0.99
1.74
3.00

30°

0.44
0.46
0.65
1.12
1.95
3.48

35°

0.65
0.51
0.75
1.27
2.23
3.97

40°

0.64
0.87
1.46
2.54
4.45

45°

1.08
1.72
2.96
5.22

50°

2.29
3.77
6.59

5. The caustic solution

Equation (9) is not valid at points of inflexion of the wavenumber curve,
because K = 0. However, the method of stationary phase may be extended to
yield a more general asymptotic solution in terms of Airy functions which is valid
at the point of inflexion and near it (Lighthill [7, Chapter 4]). This is known as the
caustic solution and has the property that on one side of it, the waves decay
exponentially and on the other side, oscillatory waves are possible. In between,
the amplitude reaches a maximum value, determined by the Airy function Ai(f)
(see Figure 5).
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SYDNEY'

A

Due East

N
\

' 1

^CAUSTIC

\

\

A x.

Ax

STORM

CENTRE

Figure 4. The moving and stationary frames x — y and x, — yx respectively, d is the distance between
the centre of the storm and shore and f0 is the time taken by the caustic to reach the observer after the
storm was due East of Sydney.

In fact, it may be shown that

TJ ~ 4>(x, y, t)e\p[i(acx + pcy - aot + v/2)],

as r -» oo, where

(ac, fic) is an inflexion point ofG = 0,a,/l are given in (10) and where

X = xcosOc + ysindc, Y = -xsindc + ycos0c, (29)

are the new coordinates in the transformed (x, y) plane and 6C is the normal
direction at the inflexion point. As before, from the two possible directions, we
must take the one pointing in the direction of increasing a0 as shown by the
arrows of Figures 2 and 3.

It is important to note that both equations (9) and (27) represent waves as seen
from the moving frame which is travelling with the source. In order to compare
the theory with observations of waves generated by cyclone Pam, we must refer
the equations to coordinates (x,, yt) fixed with respect to the shore. Figure 4
depicts a typical situation when a caustic making an angle 6C reaches Sydney.
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TABLE 5. Maximum amplitude 103 X \j/ in units ofp0/pg, for several values of E, (a) £ > 0, (b) E < 0.
ac is the value of a at the inflexion point and 8C is the normal to G = 0 at such point. T'c denotes the
observed period and t'o the time computed from equation (30). Primes denote the corresponding
dimensional quantities as defined in (1).

(a) £ > 0.

£

io-2

io-3

io-"
io-5

10'6

io-7

10"8

0.0

-0.153
-0.196
-0.223
-0.237
-0.244
-0.247
-0.248
-0.250

Maximum wave
Amplitude

1.10
2.28
4.45
8.07

14.07
24.06
40.54

00

Direction of
caustic 8C

99.12°
114.10°
120.32°
123.02°
124.23°
124.79°
125.04°

62 « 125.26°

Wave period

re (Sec)

8.61
7.96
7.53
7.31
7.21
7.16
7.14
7.12

Time l'o

(Hrs)

-5.21
-14.53
-18.99
-21.10
-22.04
-22.56
-22.77
-23.00

(b) e < 0.

E

- io - 2

- io- 3

-io-"
- io- 5

- io- 6

- io- 7

- io- 8

0.0

-0.439
-0.323
-0.281
-0.264
-0.256
-0.253
-0.251
-0.250

Maximum wave
Amplitude

4.45
4.59
6.19
9.40

15.03
24.59
40.65

oo

Direction of
caustic 6C

36.97°
45.48°
50.20°
52.58°
53.72°
54.26°
54.52°

0, « 54.73°

Wave period

Tc (Sec)

5.25
6.22
6.70
6.93
7.03
7.08
7.10
7.12

Time t'o

(Hrs)

43.14
31.94
27.05
24.84
23.83
23.36
23.15
23.00

From the diagram, the time taken by the caustic to reach the observer after the
storm was due East of Sydney is

to = d/tan0c, (30)

where d is defined in (26).
The normalized wave frequency ar measured by the observer is given by the

Doppler relationship ar — a0 — ac, where ac is the value of a at the inflexion
point. The observed period then becomes

- ac)- (31)

Tables 5(a) and 5(b) give the maximum amplitude of the caustic solution (27),
which corresponds to the maximum of ^ in Figure 5, for various values of e. The
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Figure 5. The relative amplitude of the Airy envelope 103 X <// in (28) in units of po/pg as a function
of time, for three values of e. The abcissa refers to the time taken for the envelope to pass an observer
in Sydney, the origin being at the time l'o given for corresponding values of e in Table 5a.

fourth column gives the direction 6C of the normal to G at the inflexion point and
shows that the limiting values as e -» 0, are 0, and 62

 a s defined in (22).
The next column gives the wave period as computed from (31). The last column

shows the time taken by the caustic to reach the observer as calculated from
equation (30). The negative times in Table 5(a) mean that waves reach the
observer before the storm is due east of Sydney. We must point out that the
dimensional quantities, denoted by primes, correspond to a storm speed v = 20
km/h and a distance of 650 km from the shore.

In order to compare the relative magnitude of the waves generated by the
caustics as they approach the observer, we substitute x — t — tQ and y = d in
equation (29) and then plot the amplitude as a function of the time t. Figure 5
shows the function \p in units of po/pg for three values of e. Note that one of the
effects of varying e, is to change the angle 6C which in turn changes the value of /0

as seen in Table 5. For simplicity, however, the three curves are plotted with
respect to the same time origin.
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The fact that | TJ | -> oo when e decreases, as Table 5 shows, may be proved
analytically by means of an expansion similar to (21). Assuming that 6C is the
normal direction at a point of inflexion (£c, /?c) of G = 0, equations (18) and (19)
now become

ft = -Uc tan 0c, i2
c = -ecos2 6c/a

2. (32)

Using the result

d3a/dp = G=2 (3GsjG& - Ga Gm ) (33)

where (a, /?) are given in (10) and a = £ — \, yields

7}
ip0Ai(0) | e 1-1/6 jtan2flccosec3flc

1/3

exp[i(acx + ficy - o0t)],
* ( l + t a n 2 0 c ) ' / 2

(34)

as e -> 0, provided | e \x/1r » 1, where Ai(0) = 3"2/3r(2/3) « 0.355, and

a = (cos2ec-{un2ec)
X/2.

6. A uniform asymptotic expansion for -q(x, y, t)

The asymptotic expressions calculated in Section 4 assume that r » 1, and
prove to be not uniformly valid as e -» 0. In order to investigate more closely the
solution near the critical point, we need an expansion for TJ which is valid for
fixed r, as e -» 0 and it is assumed that r is large compared with the dimensions of
the storm centre. However, the exact wavenumber curve is too complicated to
allow such an expansion to be obtained. Hence, to the first order in e, we replace
G by G, given in (16). The curve G, = 0 is a hyperbola with asymptotes
ti *\ n%
s — ^P •

It is important to point out that this approximation takes into account the large
curvature of G near P and therefore it will be useful in the study of the effect the
large curvature has on the directions of the observed waves. Note that for small
| £ | the large curvature ensures that the small portion of the curve G = 0 near P
gives rise to arcs of wave directions, in the wedge illustrated in Figure 6a for
£ > 0, and Figure 6b for £ < 0.

The limitations of the approach in this section is that the hyperbolae G, = 0 do
not have inflexion points, so that the contributions from caustics cannot be
included. Moreover, the asymptotes of G, = 0 give rise to singularities which do
not have a counterpart in G = 0. Nevertheless, away from the asymptotes, a
useful uniform approximation is obtained as follows.
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Figure 6. Regions of the x — y plane where equation (35) represents non-decaying waves propagating
away from the source, for positive and negative e. The x — y frame is fixed with respect to the source,
which is travelling to the left.

It is shown in the Appendix that, with the approximation to G given in (16), the
surface displacement is given by

t( (35)

where a is given in (20),

A=i(\+ea2cos2 6 +\E), B = ae1/2cos$(l - icosd/r +e ), (36)

Ko(£) and K^) being the modified Bessel functions of the second kind.
It may be shown that (e.g. Abramowitz and Stegun [1, page 378]),

K,U)~(V2f)1/2exp(-n, |f|- oo, i= 1,2.
Hence, equation (35) results in non-decaying waves propagating away from the
source only if the argument of the Bessel functions is imaginary. If e > 0, this
occurs when | tan 6 \ > 21/2, if e < 0, when | tan 6 \ < 2 I / 2 . This relationship be-
tween e and tan 0 has already been found from an examination of equation (19).
However, from (35), we conclude that waves with wavenumber and frequency
near the critical point are observed from the source, in all directions within the
corresponding wedges shown in Figure 6.

Further, using the results

tfoa)~-ln?, *,(?)-r1 asf-O,
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we obtain, for fixed r and a ¥=0,

as e -» 0. This result is uniformly valid as e -> 0, and there are no restrictions on

the relative magnitudes of r and e. Note that (37) represents a weaker singularity

as e -> 0, than that predicted by (21).

Similarly, for fixed r and e =£ 0,

for | a | « 1. This result, however, is not valid in the neighbourhood of a — 0,

since, in this representation, the approximate curve has asymptotes, the presence

of which affect the approximation accuracy.

7. Discussion

Cyclone Pam travelled at an estimated speed v of 20 k m / h at an approximate

distance of 650 km from shore. The calculated source period of waves generated

at the critical point (a , /?, o0) = ( - i , 0 , £) is about 14 seconds and the corre-

sponding Doppler shifted period to an observer at rest is (c / . equation (31))

T' = 2irv/g(o0-a) = 7.12 sec. (39)

The computed periods of waves generated by the caustics near the critical point,
as given in Table 5, are also about 7 seconds. These values are very close to the
actual observed periods in Table 1.

Suppose, now, that the centre of the storm generates waves whose frequency
spectrum is concentrated near the critical value and consider the following two
cases, (a) waves near 0x, and (b) waves near 62.

Case (a)-Referring to Figure 3, for values of the frequency for which e > 0, we
expect to see waves whose directions are normal to arc y, of the wavenumber
curve G = 0. In particular, relatively large waves will be observed along a
direction 0 near 0,, as predicted in Table 3. We then add the contributions of the
large waves generated by the caustic with inflexion point lying on arcy3,
corresponding to e < 0. This caustic also points towards 0 «« 0x as shown in Table
5(b).
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Case (b)-Sections of the spectrum for which e < 0, give rise to waves normal to
arc y2 (waves ahead of the storm) and where large amplitudes occur for 0 near 62.
Waves generated by the caustic with inflexion point on arc y,, also point towards
a direction close to the value of 62 as given in Table 5a.

This shows that waves of relatively large amplitudes will be observed along
directions given by the lines 6X and d2. Moreover, if e is sufficiently small, then
equation (35) applies and very large waves are expected in all directions within
the wedges of Figure 6, (6(a) for e > 0 and 6(b) for e < 0). However, it should be
noted that waves within the wedge of Figure 6(a) travel a much shorter distance
to shore than the corresponding waves within the other wedge. Hence, we expect
the former waves to have larger amplitudes than the latter, by the time they reach
the observer.

To summarize, the theory predicts that once a steady state regime has been
established very large waves will first be observed when line 92 reaches the
observer. The position of the cyclone when this occurs is represented by point Bx

in Figure 7. Relatively large waves will then be observed for 45.5 hrs, correspond-
ing to waves within the wedge of Figure 6(a). Finally, when the storm is at point
B2, line 0, reaches the observer and after that, the amplitude starts to decrease.

Figure 7. Points /I, and A2 represent the estimated positions of the storm centre with respect to
Sydney on days 37 and 39. Point Ax shows when relatively large waves were first observed at
approximately 5 a.m. on day 37. After the cyclone reached A2 (6 p.m., day 39), the wave amplitude
began to decrease.

Points B, and B2 represent the position of the point source model. Line 62 reaches Sydney when the
source is at fl,, and line Bx reaches Sydney when it is at point B2. The cyclone is estimated to be due
East of Sydney at 2 a.m. on day 38.
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The observations of waves from cyclone Pam give the following results. From
Table 1, large waves were first observed between 5 a.m. and 3 p.m. on day 37,
and they would correspond to the arrival of line #,. Point A} in Figure 7 shows the
estimated position of the storm when this occurs, taken from the isobars in Figure
1 (estimated value of 0 « 130°). Relatively large waves were then observed for
about two days, until approximately 6 p.m. on day 39 (point A2, 6 « 60°, Figure
7)-

The arrival of the large waves predicted by the theory along the line 0, is not
evident from the data in Table 1. More refined measurements would be needed to
be able to observe the large waves along this particular direction. The wave
amplitude, however, starts to decrease after point A2, as we expect from the
discussion in the summary above.

There is therefore some agreement with observations and hence the oscillatory
point source used to represent the cyclone has proved useful and not too
unrealistic. However, the infinite amplitudes predicted by (37), show that the
linearized model breaks down at e = 0 and non-linear terms should be included
in the governing equations to obtain a more accurate description of the behaviour
at the critical point.

The amplitudes given in (25) and (38) on the other hand, show that the
linearized wave equations predict infinite amplitudes in the directions 0, and 02

unless some damping mechanism is included in the original equations. More
realistically, an initial value problem may be considered, with the pressure source
being switched-on at some finite value of time. This problem and the effect of a
continuous spectrum are the subject of current investigations, and these will have
a bearing on the interpretation of the results in this paper.

Now that microwave and radar observations of swell are possible for large
areas of ocean, the results in this paper suggest the swell patterns which would be
observed by satellite from a travelling cyclone. It would be interesting to see
whether the effects of circular asymmetry and Earth's rotation are sufficiently
significant to require recognition in the theory.

Appendix

Applying the Fourier transform (6) to (2), (3) and (4) with (5) and solving for
the velocity potential <j>, one obtains in place of (7),

where a0 = \ + e and G(a, /?, a0) is given in (8).
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Replacing G(a, ft, a0) by the hyperbola (16), the change of variables £ = a + \
yields

ipocxp{-i[jx + (e +

* ( x 7 ' ) ^
(A.2)

where G,(£, ft, e) — fi2 — \(£2 + e). The integral with respect to ft in (A.2) is now
evaluated using contour integration by deforming the path into a semicircle in the
upper half plane if y > 0 and in the lower half plane if y < 0. The integrand has
two poles at /? = ±/J0, where

fS0 = 2-^(e + e)l/2. (A3)

In order to satisfy the radiation condition, we replace e by e + ieu (e, > 0) and
then let e, tend to zero. For small e{ the approximate position of the poles in the
complex /?-plane is given by

Jordan's lemma and residue theory then yield

where

( A - 5 )

and

From a table of Fourier integrals (e.g. Campbell and Foster [2, page 111]) one
obtains

*, = 2K0(ae^2r). (A.7)

Differentiating (A.7) with respect to x and using the relation K'o($) = -AT,(O
gives

a£l/2r), (A.8)
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where

a = (cos20- ; | s in20)1 / 2 .

Finally, substitution of (A.4) into (3) gives (35).
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