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Abstract

Social network characteristics of people who inject drugs (PWID) have previously been
flagged as potential risk factors for HCV transmission such as increased injection frequency.
To understand the role of the injecting network on injection frequency, we investigated how
changes in an injecting network over time can modulate injecting risk behaviour. PWID were
sourced from the Networks 2 Study, a longitudinal cohort study of PWID recruited from illicit
drug street markets across Melbourne, Australia. Network-related correlates of injection fre-
quency and the change in frequency over time were analysed using adjusted Cox
Proportional Hazards and Generalised Estimating Equations modelling. Two-hundred and
eighteen PWID followed up for a mean (s.0.) of 2.8 (1.7) years were included in the analysis.
A greater number of injecting partners, network closeness centrality and eigenvector centrality
over time were associated with an increased rate of infection frequency. Every additional injec-
tion drug partner was associated with an increase in monthly injection frequency. Similarly,
increased network connectivity and centrality over time was also associated with an increase in
injection frequency. This study observed that baseline network measures of connectivity and
centrality may be associated with changes in injection frequency and, by extension, may pre-
dict subsequent HCV transmission risk. Longitudinal changes in network position were
observed to correlate with changes in injection frequency, with PWID who migrate from
the densely-connected network centre out to the less-connected periphery were associated
with a decreased rate of injection frequency.

Introduction

Behavioural and demographic correlates of injection frequency through injection drug net-
works have been well documented [1-18]. People who inject drugs (PWID) commonly func-
tion within a wider social network of other PWID [19]. The number of injecting partners and
how central a person is within such a network have previously been flagged as potential pre-
dictors of pathogen transmission [19, 20]. Increasing the size of the injection drug network
and density has been reported to correlate with an increased frequency of risky injecting beha-
viours that may in turn increase HCV exposure risk [21-25]. Previous longitudinal models of
HCV transmission in PWID have largely presumed a homogenous population, where any one
PWID is equally likely to have contact with all other PWID within an injection drug network
(i.e. the full mixing model assumption) [26]. However, recent studies have observed that inject-
ing networks are typically characterised by a high degree of heterogeneity [27-30]. This may
translate into a range of risk patterns sub-populations within a network, which in turn may
impact on the risk of HCV transmission through the network [18, 27].

Network sub-populations of PWID linked by drug use preferences within an injecting net-
work have previously been observed to correlate with HBV and HCV transmission [28].
Similarly drug-using PWID network sub-populations have previously been observed to correl-
ate with higher degrees of syringe-sharing, relative to other non-drug-using segments of the
network [30]. Furthermore, a PWID’s location within an injection drug network may predict
subsequent exposure to HCV [29]. Rolls et al. simulated HCV transmission over an empirical
social PWID network and observed that HCV incidence varied with the number of injecting
partners in a PWID’s immediate personal network [31]. Increasing network turnover has also
been observed to correlate with an increase in injection risk behaviours [32], whilst the influ-
ence of more active subsets of injectors within the network on facilitating the transition of
non-injecting heroin users to active injectors has previously been observed [32]. PWID cen-
trality within an injection drug network can further moderate risk behaviour [29, 33, 34].

Much of the existing research into the role of network structure on infection risk has
focused on HIV, whilst much of the evidence around network correlates of, specifically,
HCV infection risk has been based on single time-point and cross-sectional data. Whilst
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baseline network correlates of HCV transmission risk have previ-
ously been studied, this is the first study to investigate how longi-
tudinal changes in the structure of an injecting network over time
modulate injecting risk behaviour and HCV transmission risk.
The objective of this study was to examine baseline and time-
varying injection drug network characteristics as correlates of sus-
tained changes in injection frequency over time.

Materials and methods
Participants

Participants for this analysis were sourced from the Networks 2
(N2) Study, a longitudinal, observational cohort study of PWID
recruited from illicit drug street markets across Melbourne,
Australia [35, 36]. Participants were interviewed and blood sam-
ples taken approximately every 3 months. Interviews included
demography, injecting risk behaviours and their personal using
and sharing network. The N2 dataset consisted of 388 PWID,
contributing 1209 separate interviews between 12 July 2005 and
15 February 2010. From these 1209 interviews, there were 2456
reported ‘use with’ nominations. In order to contribute to the net-
work analysis, PWID in the network cohort were required to
nominate at least one fellow cohort member as an injecting part-
ner. Furthermore, only injecting partners who were also partici-
pants of the cohort were included. Non-participating PWID
who were nominated as injecting partners were excluded from
the analysis. Of the total 2456 interviews in the starting sample,
998 (40.6%) nominated a PWID who was either not a fellow net-
work member enrolled in the N2 study or who could not, from
the information provided by the interviewee, be identified as an
enrolled network member. Nominations where the nominee
PWID could not be satisfactorily identified as a N2 network
member were excluded. This resulted in a sample of 334 PWID
contributing 931 interviews between 12 July 2005 and 15
February 2010, containing 1456 injecting partner nominations.
The target assessment frequency across the larger N2 cohort
was approximately 3 months for primary participants and annu-
ally for secondary participants. Of these, 218 reported the min-
imum level of baseline network characteristic data to be
included in the analysis (Fig. 1). The mean (s.p.) number of inter-
views per network PWID was 2.79 (2.52) and the average number
of nominations per interview was 1.56. The median (IQR) num-
ber of days between interviews was 114 (91, 203).

A ‘use with’ event was defined as the nominator PWID iden-
tifying a fellow PWID (the nominee) using in the same room or
same place, in close proximity, at roughly the same time within
the 3 months prior to the interview date. This includes injecting
together but not necessarily sharing injecting equipment. Data on
syringe sharing within ‘use with’ pairs was collected. Study
recruitment employed a social networks approach, where previ-
ously enrolled PWID were requested to nominate up to a max-
imum of five of their most regular injecting partners. Recruited
PWID were then asked to introduce study field workers to
these partners to expand the sample explicitly along injecting rela-
tionship lines. Informed written consent was obtained for all
recruited PWID and participation was voluntary. Ethics approval
was obtained from the Victorian Department of Human Services
Research Ethics Committee (project 02/05). All participants were
offered both pre and post-test discussions for HCV, HBV and
HIV. The study conformed to the ethical guidelines of the 1975
Declaration of Helsinki.
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Inclusions

PWID from the N2 study were included in this analysis if they
contributed a minimum of two assessment points. Participants
were required to contribute a minimum baseline assessment
point of social networks data. Of the 388 PWID enrolled in the
N2 study, 252 (62.5%) recorded a minimum of two assessment
points. A total of 334 (86.1%) nominated at least one fellow net-
work PWID as an injecting partner over the observation period.
Of these, 218 (65.3%) recorded the required minimum baseline
social networks data (Fig. 1).

Social network

The social network is made up of a series of nodes (PWID) con-
nected to other nodes by edges. An edge is defined as an injecting
partner relationship within the recall period, as identified by a
PWID at the interview. These relationships were modelled as
undirected edges, in that either one or both members of a nomi-
nated injecting relationship may have nominated the other.

Outcomes

Baseline was defined as the first recorded interview date in the
study at which network structure data were also recorded for
each PWID. The outcomes of this study were (1) time to injection
frequency progression - first event and sustained progression; (2)
time to injection frequency reduction - first event and sustained
reduction and (3) change in injection frequency over time.
Injecting frequency progression and reduction events were
defined as an increase or decrease of at least one injection per
month from baseline frequency, respectively, adjusting for base-
line frequency. Sustained progression and reduction were defined
as an increase or decrease in injection frequency sustained for at
least 6 months at or above the previously recorded level. Change
in injection frequency was defined as the number of injections
recorded at a point in time minus the number of injections
recorded at the previous assessment point.

Network characteristics

A series of social network characteristics were explored as
potential correlates. The primary explanatory social network char-
acteristics flagged a priori as potentially correlates with risk pro-
gression and regression were degree, eccentricity, clustering
coefficient, closeness centrality, betweenness centrality and eigen-
vector centrality (refer Table 1 for definitions). Each of these net-
work characteristics was calculated for all individual PWID
eligible for the analysis and modelled as both baseline and time-
varying covariates.

Statistical analyses

Categorical variables were summarised using frequency and per-
centage. Continuous variables were summarised using mean
and standard deviation (s.0.) or median (IQR) as appropriate.
Network predictors of injecting frequency progression and reduc-
tion were investigated using Cox Proportional Hazards models.
As a sensitivity analysis, Generalised Estimating Equation regres-
sion modelling was used to model injection frequency as a con-
tinuous variable over time and the change from baseline in
injection frequency. Each network metric was modelled as a
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N2 cohort
n=388 PWID

PWID nominates at least one fellow
network member as an injecting

n=334 PWID

PWID reports minimum baseline
network characteristics

Final analysis set
n=218 PWID

Fig. 1. Summary of inclusions.

predictor of each outcome adjusting for age, sex, baseline injection
frequency, main drug used, OST and interview density. Interview
density was defined as the number of assessment points contrib-
uted by an individual PWID as a proportion of their total
follow-up duration. As PWID were able to contribute varying
numbers of assessment points to the analysis, adjusting all models
by interview density enabled control for systematic differences
in progression and reduction event ascertainment opportunity.
Hazard proportionality was assessed for Cox Proportional
Hazards models through analysis of scaled Schoenfeld
residuals. Hazard proportionality was satisfied for all models pre-
sented in this report. A Bayesian Information Criterion was used
to assist in model selection. The linearity of association between
candidate continuous explanatory variables and the various
outcome variables were tested by incorporating quadratic
transformations into the models. For each multivariate model,
interactions between pairs of candidate predictors were further
tested. All modelling was undertaken using R version 3.1.2
(R Foundation for Statistical Computing, Vienna, Austria).

Results
Participants

Two-hundred and eighteen PWID contributing 1385 assessment
points were eligible for analysis. Median age at baseline was 25.5
years and males accounted for 143 (65.6%) of the analysis sample
(Table 2). Most had evidence of current (56.0%) or past HCV
infection. Median (IQR) age of first injection was 18 years (15,
20) and the median (IQR) duration of injecting career at baseline
was 8 years (4.8, 11.6). Just over two-thirds were unemployed at
baseline and less than a third reported unstable living arrange-
ments. Approximately one-third reported receptive sharing of
needles in the 3 months prior to baseline, and the median
(IQR) number of times injected across the same period was 30
(12, 61) or approximately once every 3 days. Just over half the
sample reported receiving opiate substitution therapy (OST) in
the 3 months prior to baseline. Mean (s.p.) follow-up across the
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Table 1. Description of injection drug network characteristics

Network metric

Definition

Network feature
captured

Degree

In-degree + out-degree

Number of injecting
partners

Eccentricity

Largest geodesic
distance - the largest
number of steps in the
shortest possible walk
from one PWID to every
other PWID in the

How far each PWID is
from the furthest other
in the network

network
Clustering The ratio of actual edges The number of
coefficient between a PWID node injecting partners
and its neighbours to relative to the total
the total number of possible number of
potential edges injecting partners
Closeness Inverse of the sum of A measure of the
centrality distances to all other centrality of a PWID
PWID within the injection
drug network
Betweenness The number of shortest The number of times a
centrality paths from all nodes to PWID acts as a bridge

all other PWID that pass
through a particular
PWID node

along the shortest
path between two
other PWID

Eigenvector
centrality

How connected a PWID
is those parts of the
injecting network with

The extent to which
‘big fish’ connect with
other ‘big fish’

the greatest connectivity

sample was 2.8 years (1.7) and the median (IQR) number of
assessment points was 11.5 (6.5, 16.5).

Baseline network structure

Median (IQR) undirected number of injecting partners (degree)
at baseline was 3 (2-5) (Table 2). Median (IQR) largest geodesic
distance (eccentricity) was 2 (1-4) (Table 1). The mean (s.0.)
baseline ratio of observed to potential edges per PWID node
(clustering coefficient) was 0.17 (0.28).

Median (IQR) closeness centrality at baseline was 1.4 (1-2.3)
whilst mean (s.p.) eigenvector centrality was 0.10 (0.19).

Increased injection frequency

Across the observation period, 162 PWID increased their injec-
tion frequency at least once. Of these, in 75 (46.3%) this higher
rate of injection was sustained for at least 6 months. Reporting
at least one partner PWID at baseline was associated with 1.08
times the rate of increased injection frequency events (adjusted
hazard ratio (aHR) 1.08; 95% CI 1.02-1.18) adjusting for age,
sex, baseline injection frequency, main drug used, OST and inter-
view density (Table 3). Whilst every additional injecting partner at
baseline did not correlate when modelled as a continuous vari-
able, the same predictor was associated with a 10% reduction in
the rate of 6-month sustained injecting frequency (aHR 0.90;
95% CI 0.81-0.99).

PWID with fewer injecting partners at baseline tended to be
located out towards the network periphery and were associated
with a decreased rate of injection frequency (1+ eccentricity
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Table 2. Baseline characteristics

Baseline characteristic Level Total (n=218)
Gender - n (%) Female 75 (34)
Male 143 (65.6)
Age (years) - median (IQR) - 25.5 (22.2-29.5)
Ethnicity - n (%) Australian 146 (67)
Vietnamese 34 (16)
Other 38 (17)
Unemployed - n (%) - 149 (68)
Stable living arrangements - n (%) - 155 (71)
Age at first injection (years) - median (IQR) - 18 (15, 20)
Injecting career (years) - median (IQR) - 8 (4.8, 11.6)
Treatment ever (not limited to OST) - n (%) - 186 (85)
OST in past 3 months - n (%) - 113 (52)
Receptive sharing ever - n (%) - 149 (68)
Prison ever - n (%) - 77 (35)
Baseline HCV status - n (%) Ab +, PCR + (current infection) 115 (53)
Ab—, PCR + (seroconverting) 7(3)
Ab +. PCR— (past infection) 35 (16)
Ab—, PCR— (never infected) 61 (28)
HIV infected - n (%) - 2 (1)
HBV infection status - n (%) Acute infection 1(1)
Chronic infection 7 (3)
Prior infection 60 (28)
Vaccinated 74 (34)
Susceptible 51 (23)
Unclear 25 (12)
Follow-up duration (years) Mean (s.p.) 2.8 (2)

Baseline injection behaviour

Times injected in last month - median (IQR) - 30 (12-61)
Number of people used in the same room with in the past 3 months - median (IQR) - 4 (2,7)
Per cent of the time used alone in past 3 months - median (IQR) - 20 (0-50)
Receptive sharing in the past 3 months - n (%) - 68 (31.2)
Baseline network characteristics Summary measure
Degree Mean (s.p.) 3.4 (2.3)
Median (IQR) 3 (2-5)
Eccentricity Mean (s.p.) 2.9 (2.6)
Median (IQR) 2 (1-4)
Closeness centrality Mean (s.n.) 1.9 (1.4)
Median (IQR) 1.4 (1-2.3)
Betweenness centrality Mean (s.n.) 24.3 (58.9)
Median (IQR) 0 (0-9.7)
(Continued)
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Table 2. (Continued.)

Baseline characteristic Level Total (n=218)

Clustering coefficient Mean (s.pn.) 0.17 (0.28)
Median (IQR) 0 (0, 0.25)

Eigenvector centrality Mean (s.o.) 0.10 (0.19)
Median (IQR) 0.02 (0.01-0.08)

PWID, people who inject drugs; OST, opiate substitution therapy; IQR, interquartile range; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HBV, hepatitis B virus.

Table 3. Cox proportional hazards model: baseline and time-varying network metrics as predictors of injecting frequency progression

First progression event (events =162) Six-month sustained progression (events = 75)

Baseline network metric Level Adjusted HR (95% Cl) P-value® Adjusted HR (95% Cl) P-value?
Degrees Continuous 1.00 (0.94-1.07) 0.966 0.90 (0.81-0.99) 0.044

1+degrees 1.08 (1.02-1.18) 0.032 0.54 (0.22-1.33) 0.181
Eccentricity Continuous 0.95 (0.89-1.02) 0.130 1.02 (0.93-1.11) 0.666

1+ 0.49 (0.28, 0.85) 0.012 0.80 (0.36, 1.77) 0.588

2+ 0.64 (0.46, 0.89) 0.009 0.72 (0.45, 1.17) 0.184
Closeness centrality Continuous 0.88 (0.74-0.98) 0.039 1.04 (0.88-1.23) 0.670
Betweenness centrality Continuous 1.00 (1.00-1.01) 0.415 1.00 (0.99-1.00) 0.671
Clustering coefficient Continuous 0.83 (0.46-1.47) 0.514 0.47 (0.17-1.29) 0.144
Eigenvector centrality Continuous 0.59 (0.28-1.26) 0.172 0.36 (0.09-1.41) 0.142
Time-varying network metric Level Adjusted HR (95% Cl) P-value® Adjusted HR (95% Cl) P-value®
Degrees Continuous 1.04 (0.99-1.10) 0.151 1.04 (0.78-1.28) 0.828

1+ degrees 1.41 (1.21-1.64) <0.001 1.05 (0.86-1.20) 0.479
Eccentricity Continuous 0.99 (0.75-1.30) 0.923 0.78 (0.56-0.99) 0.048

1+ 0.95 (0.80, 1.14) 0.600 0.73 (0.57, 0.95) 0.017

2+ 0.47 (0.39, 0.56) <0.001 0.84 (0.65, 1.09) 0.190
Closeness centrality Continuous 1.32 (1.19-1.46) <0.001 1.25 (1.01-1.54) 0.043
Betweenness centrality Continuous 1.01 (0.98-1.03) 0.560 0.99 (0.96-1.03) 0.617
Clustering coefficient Continuous 0.78 (0.55-1.10) 0.158 0.67 (0.39-1.15) 0.143
Eigenvector centrality Continuous 1.40 (1.20-1.63) <0.001 1.25 (1.02-1.55) 0.039

?Each network metric modelled separately adjusted for sex, baseline injection frequency and interview density.
bEach network metric modelled separately adjusted for age, sex, baseline injection frequency and interview density.

aHR 0.49; 95% CI 0.28-0.85), relative to more central PWID
reporting a larger number of injecting partners. Densely-
connected PWID with comparatively large numbers of injecting
partners, who were themselves linked to other densely connected
nodes were, on average, associated with 1.40 times the rate of first
progression event (eigenvector centrality aHR 1.40; 95% CI 1.20-
1.33), although this relationship did not translate into a sustained
increase in injection frequency at 6 months. Whilst an increase in
clustering of PWID did not predict a changed rate of the injection
frequency increase, it did correlate with a reduction in the rate of
sustained increase at 6 months (aHR 0.46; 95% CI 0.27-0.77).
When these explanatory network characteristics were modelled
as time-varying factors, a minimum of one extra injection partner
over time was again associated with an increase in injection fre-
quency (aHR 1.41; 95% CI 1.21-1.64). Whilst increasing the
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number of injecting partners over time (i.e. increased node
degree) predicted an increase in injection frequency, this was
not sustained for more than 6 months. Those PWID who
migrated from the network centre and towards the periphery
over time (e.g. PWID who decreased the number of injecting
partners over the observation period) were associated with a
53% reduction in injection frequency (aHR 0.47; 95% CI 0.39-
0.56). Furthermore, as the overall size of injection drug network
increased (i.e. an increase in geodesic step), the rate of 6-month
sustained increase in injection frequency decreased (aHR 0.78;
95% CI 0.56-0.99).

Subsets of PWID who increased their injection frequency from
baseline levels became more central in the network and more
densely connected over the observation period. Increase closeness
centrality was associated with both 1.32 times the rate of injection
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Table 4. Cox proportional hazards model: baseline and time-varying network metrics as predictors of injecting frequency reduction

First reduction event (events =218)

Six-month sustained reduction (n=43 events)

Level Adjusted HR (95% CI) P-value? Adjusted HR (95% Cl) P-value®
Baseline network metric
Degrees Continuous 1.07 (1.01-1.14) 0.043 1.10 (0.95-1.27) 0.191
1+degrees 0.95 (0.47-1.95) 0.898 1.50 (0.20-11.08) 0.688
Eccentricity Continuous 0.97 (0.91-1.02) 0.219 0.91 (0.80-1.04) 0.162
1+ 0.96 (0.56, 1.64) 0.877 0.89 (0.31, 2.51) 0.891
2+ 0.84 (0.62, 1.14) 0.268 0.70 (0.38, 1.31) 0.267
Closeness centrality Continuous 0.94 (0.85-1.05) 0.258 0.87 (0.69-1.10) 0.232
Betweenness centrality Continuous 1.00 (0.99-1.00) 0.635 1.00 (0.99-1.01) 0.936
Clustering coefficient Continuous 0.99 (0.59-1.68) 0.997 1.20 (0.40-3.56) 0.742
Eigenvector centrality Continuous 1.53 (0.72-3.25) 0.269 0.93 (0.14-6.37) 0.941
>0 1.47 (1.01-2.24) 0.041 1.85 (0.77-4.41) 0.168
Time-varying network metric
Degrees Continuous 1.10 (1.05-1.16) <0.001 1.14 (1.00-1.29) 0.048
1+ degrees 1.47 (0.85-2.54) 0.173 1.93 (0.48-7.81) 0.355
Eccentricity Continuous 1.21 (1.05-1.69) 0.001 1.25 (1.11-1.41) <0.001
1+ 2.41 (2.02, 2.86) <0.001 3.34 (2.27, 4.92) <0.001
2+ 1.21 (1.01, 1.44) 0.036 1.28 (0.87, 1.90) 0.211
Closeness centrality Continuous 0.89 (0.58-1.36) 0.591 1.19 (0.52-2.73) 0.683
Betweenness centrality Continuous 1.00 (0.98-1.02) 0.842 1.01 (0.97-1.06) 0.542
Clustering coefficient Continuous 1.06 (0.75-1.49) 0.733 1.06 (0.47-2.38) 0.882
Eigenvector centrality Continuous 1.28 (0.85-1.91) 0.240 0.79 (0.25-2.53) 0.693
>0 0.92 (0.71-1.20) 0.557 1.16 (0.72-1.85) 0.542

?Each network metric modelled separately adjusted for sex, baseline injection frequency and interview density.
PEach network metric modelled separately adjusted for age, sex, baseline injection frequency and interview density.

frequency (aHR 1.32; 95% CI 1.19-1.46) and 6-month sustained
increase in monthly injection frequency (aHR 1.25; 95% CI
1.01-1.54). Similarly, increased network eigenvector centrality
was also associated with an increased rate of injection frequency
(aHR 1.40; 95% CI 1.20-1.63) and 6-month sustained increase
(aHR 1.25; 1.02-1.55).

As a sensitivity analysis, we further modelled the association
between increasing the number of injecting partners and different
quantities of injection frequency change. Every additional inject-
ing partner was associated with 1.09 times the rate of a minimum
injecting frequency increase of 10 (HR 1.09; 95% CI 1.01-1.26).
Similarly, every extra injecting partner was associated with 1.17
times the rate of at least 20 additional injections (HR 1.17; 95%
CI 1.01-1.34).

Injection frequency reduction

Relative to observed increase in injection frequency events, injec-
tion frequency reduction events were more frequent (218 events)
(Table 4). However, a comparatively smaller proportion of these
were sustained for 6 months (43, 19.7%). Interestingly, an increas-
ing number of injecting partners at baseline was associated with a
reduction in injection frequency (aHR 1.09, 95% CI 1.02-1.16),
commonly following an initial increase in injection frequency.
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The tendency of highly-connected PWID with lots of injecting
partners to inject with other highly connected nodes was similarly
correlated with an increased rate of reduction (aHR 1.47; 95% CI
1.01-2.24), although this reduction typically followed a preceding
increase in injection frequency. Furthermore, this reduction was
rarely sustained over 6 months

Comparatively stronger associations were observed within the
time-varying network metrics. Additional injecting partners
over the observation period were associated with an increase in
injection frequency reduction events (aHR 1.10; 95% CI 1.05-
1.16). However, in contrast to the baseline modelling, this increase
in the rate of the initial reduction event was sustained over 6
months of observation. Whilst this result was unexpected, the
movement of PWID over time from central network positions
towards the periphery (e.g. by reporting fewer and fewer injecting
partners over time) was also associated with an increase in the rate
of injection frequency reduction, both the initial observed event
(aHR 1.21; 95% CI 1.05-1.69) and subsequent 6-month regres-
sion (aHR 1.25; 95% CI 1.11-1.41).

Change in injection frequency from baseline

There was no association between a change in injection frequency
from reported baseline frequency and an increase in the number
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Table 5. Generalised Estimating Equation models of associations between
baseline and time-varying network characteristics with change from baseline
in monthly injection frequency

Baseline network Adjusted S coefficient

metric Level (95% ClI) P-value®
Degrees Continuous —0.28 (—0.95 to 0.38) 0.406
1+degrees —25.50 (—35.34 to —15.65) <0.001
Eccentricity Continuous —1.67 (—2.31 to —1.04) <0.001
1+ —22.93 (—29.22 to —16.63) <0.001
2+ —6.01 (—9.66 to 2.36) 0.001
Closeness Continuous 5.41 (4.13-6.70) <0.001
centrality
Betweenness Continuous 0.05 (0.03-0.07) <0.001
centrality
Clustering Continuous —2.89 (—10.14 to 4.35) 0.433
coefficient
>0 8.05 (4.46-11.65) <0.001
Eigenvector Continuous 9.93 (2.15-17.70) 0.012
centrality
Time-varying
network metric
Degrees Continuous 2.42 (1.18-3.66) <0.001
1+ degrees —1.64 (—21.46 to 18.18) 0.871
Eccentricity Continuous 1.42 (—0.39 to 3.24) 0.124
1+ —13.76 (—18.57 to —8.95) <0.001
2+ —5.61 (—9.54 to —1.68) 0.005
Closeness Continuous —1.85 (—4.93 to 1.23) 0.239
centrality
Betweenness Continuous 1.30 (0.90-1.70) <0.001
centrality
Clustering Continuous 4.52 (—4.33 to 13.36) 0.317
coefficient
>0 8.85 (4.50-13.19) <0.001
Eigenvector Continuous 15.35 (7.10-23.61) <0.001

centrality

Bold values are statistically significant (p-value >0.5).
®Each network metric modelled separately adjusted for age, sex, main drug, OST and
interview density

of injecting partners (8 —0.28; 95% CI —0.95 to 0.38) (Table 5).
PWID reporting fewer injecting partners and located further
out in the network periphery demonstrated increasingly larger
reductions in injection frequency, relative to more centrally
located PWID, with every additional step away from the network
centre associated with, on average, 1.67 less injections per month
(B=-1.67; 95% CI —2.32 to —1.04). This reduction from baseline
injecting frequency was even observed at relatively short distances
away from the centre with location of at least one step away from
the centre associated with 22.93 less injections per month
(B —22.93; 95% CI —29.22 to —16.63), relative to an eccentricity
of zero. This suggests that even modest reductions in the number
of injecting partners may be associated with meaningful reduc-
tions in injection frequency.

Increased clustering of PWID within the network was asso-
ciated with an increase in injection frequency, with a non-zero
clustering coefficient associated with, on average, an extra 8.05
injections per month over reported baseline frequency (= 8.05;
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95% CI 4.46-11.65). Similarly, as average baseline network con-
nectivity increases (i.e. increased node eigenvector centrality), so
too does post-baseline injecting frequency, with increasing eigen-
vector centrality associated with a 9.93 additional monthly injec-
tions over baseline levels (8=9.93; 95% CI 2.15-17.70). Further,
an increase in the number of shortest paths passing through
any one PWID was associated with a marginal increase in injec-
tion frequency (betweenness centrality f=0.05; 95% CI 0.03-
0.07). Consistent with these observations, increasing baseline
closeness centrality was also associated with an increase in injec-
tion frequency over time (8= 5.41; 95% CI 4.13-6.70). These cor-
relations were observed both within the baseline network and
across time (Table 5).

Every additional injecting partner at baseline was further
associated with 1.04 times the rate of incident HCV in-
fection (adjusted HR 1.04; 95% CI 1.01-1.09) (Supplementary
Table S1). Similarly, every additional injecting partner over the
observation period was associated with 1.05 times the rate of
HCV infection (adjusted HR 1.05; 95% CI 1.02-1.13).

Discussion

Social network characteristics of PWID have previously been
flagged as potential risk factors for HCV transmission.
However, most studies have focused on HIV risk networks.
This analysis of a longitudinal injection drug network of PWID
observed that structure and arrangement of interactions between
PWID within a risk network, both at baseline and across time,
may predict fluctuations in injection frequency and, by extension,
HCV transmission risk. Indeed, this observation may be extended
to other blood-borne viruses including HIV.

Having at least one injecting partner and increasing eigen-
vector centrality at baseline were associated with an increased
rate of injection frequency, whilst larger baseline eccentricity
was associated with a reduction. Increasing both the number of
injecting partners, closeness centrality and eigenvector centrality
over time were similarly associated with an increased rate of injec-
tion frequency. These results suggest that PWID who decrease
their number of injecting partners over time (i.e. move from the
network centre and towards the periphery) were less likely to
report an increase in injection frequency, relative to PWID placed
more centrally within the network. These increased injection fre-
quency events however appeared short-lived with just under half
of the first increased injecting frequency events (75, 46.3%) being
sustained for a minimum of 6 months and only 33 (20.4%) being
sustained for at least 12 months.

Increasing the number of injecting partners over time was also
associated with a reduced rate of injection frequency, both in
terms of any reduction event and 6- and 12-month sustained
reduction. This observation that an increase in the number of
injecting partners was associated with both an initial increase in
injection frequency often followed by a significant reduction
appeared to be localised more towards the centre of the network
where the number of injecting partners was highest. In other
words, PWID positioned more centrally within the risk network
and closer to the more densely connected sub-populations were
far more volatile in their injection frequency habits, recording
more frequent increases and decreases in injection frequency,
relative to PWID who reduced their number of injection partners.
Furthermore, this subset of PWID more frequently reported mov-
ing in and out of OST. Whilst OST itself did not statistically sig-
nificantly correlated with injection frequency, this may in part
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influence the observation that more densely connected PWID
tended to first increase, and then significantly decrease, their
injection frequency, as has been previously observed [37].

This observation that moving from central, densely connected
locations to more peripheral, less connected positions across the
observation period was associated with, on average, a decrease
in injection frequency, was further supported by the observed cor-
relation between increasing overall network size (eccentricity) and
outcome. Furthermore, increased centrality over time, as mea-
sured by both closeness and eigenvector centrality as time-varying
factors, was associated with a 6-month sustained increase in injec-
tion frequency modelled as a categorical event outcome and an
overall significant increase in the number of additional injections
per month.

This correlation between a change in network position and
injection frequency has potentially important implications. By
reflecting changes in both injection frequency and the number
of injecting partners, changes over time in a PWID’s position
within a network may potentially act as a proxy for HCV trans-
mission risk. However, the relatively small effect size observed
in our incident HCV modelling (i.e. every additional injecting
partner was associated with 1.04 times the rate of HCV infection;
P =0.048) is unlikely to be clinically significant. Thus, our present
results do not provide strong evidence for using injection fre-
quency as a transmission proxy. A larger sample with longer
follow-up would be required to both better characterise this cor-
relation and to formally test its utility as a proxy for transmission.
This in turn has implications for the design and implementation
of risk reduction strategies and targeting the roll-out of new era
direct acting antivirals (DAAs). Overall, our results suggest the
presence of a stable network periphery surrounding a relatively
changeable inner core. This means that moving away from the
network core, by reducing the number of injection partners,
may result in a sustained reduction of injection frequency. This
finding potentially has ramifications for the rolling out of
DAAs, as well as harm reduction and prevention measures.
These results suggest that treatment efforts could be preferentially
directed towards the volatile inner core of the network to poten-
tially maximise impact.

This study has a number of limitations. Not all of the enrolled
PWID in the Networks 2 were able to be included in the analysis
set secondary to uncertainty around the identity of a subset of
PWID nominated as injecting partners by study participants, des-
pite exhaustive efforts by field and office staff to confirm identities
and attempts at statistical probabilistic matching. The data collec-
tion also relies on self-report and thus is prone to be associated
with recall bias. There was also considerable variation in the
median time between assessments between PWID. Given the dif-
ficulties involved in following PWID longitudinally, both duration
and frequency of follow-up interviews were inconsistent across
participants. These issues were in part managed in the analysis
by adjusting both the time-to-event and change in injection fre-
quency models by interview density — the number of assessment
points divided by the years of follow-up at the level of each par-
ticipating PWID. The popularity of heroin may also have limited
the ability to investigate the influence of other injectables due to
underpowering. Overdose data were not collected and thus could
not be included in the analysis. This study does have a number of
strengths and advantages over previous, comparable studies. Most
notably the longitudinal nature of the data permitted an analysis
of how the change in network characteristics over time impacted
on injection frequency. This is in contrast with much of the
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available HCV networks literature which focuses on cross-
sectional networks, typically at a single point in time (i.e. baseline)
only.

Conclusion

This study corroborates previous observations that baseline net-
work measures of connectivity, centrality and dispersion may be
associated with changes in injection frequency and, by extension,
possibly predict subsequent HCV transmission risk. It extends
these previous observations to include longitudinal changes in
network position as correlates of injection frequency - with
PWID who decrease their number of injection partners associated
with a decreased rate of injection frequency. This underscores the
importance of regular testing for enabling PWID to be informed
on the HCV status of injecting partners. It further supports main-
taining a low threshold for entry into OST for PWID wishing to
reduce their injection frequency and transmission risk.

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/S095026881900061X.
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