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Abstract

A quasi-Newton method (QNM) in infinite-dimensional spaces for identifying parameters
involved in distributed parameter systems is presented in this paper. Next, the linear
convergence of a sequence generated by the QNM algorithm is also proved. We apply the
QNM algorithm to an identification problem for a nonlinear parabolic partial differential
equation to illustrate the efficiency of the QNM algorithm.

1. Introduction

Quasi-Newton methods play an important role in numerically solving optimization
problems on the Euclidean spaces. But few papers discuss these methods in identifi-
cation of infinite-dimensional systems.

Formulating parameter estimation problems as constrained, regularized optimiza-
tion problems, Kunisch etal. [13] investigated the reduced SQP (Sequential Quadratic
Programming) methods with BFGS (Broyden-Flecher-Goldfarb-Shanno) update for
the identification of an elliptic system.

In this paper we formulate an identification problem as an unconstrained opti-
mization one. We suggest a Quasi-Newton Method (QNM) to solve an unconstrained
optimization problem in Section 2. Following Broyden etal. [3] and using the Hilbert-
Schmidt class defined in [7], we prove that the approximate sequence generated by
the QNM procedure converges to the optimal element of the optimization problem if
the latter exists. In Section 3 we apply the QNM algorithm to estimating a coefficient
appearing in a nonlinear parabolic partial differential equation and we prove that the
assumptions, which ensure the convergence of the approximate sequence obtained by
the QNM algorithm, are satisfied. Finally, we illustrate a numerical example to show
the efficiency of the QNM algorithm.
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There are many papers dealing with the parameter identification problem for dis-
tributed parameter systems. Methods of solving some of those problems are listed in
the following:

(1) the gradient or conjugate gradient methods, for example, Chavent et al. [4],
Seinfeld et al. [17, 16], and Yu [18], which need to compute the derivative maps
of the operators described by partial differential equations;

(2) the generalized pulse spectrum technique (GPST), for example, Chen et al. [5,
22];

(3) the finite-dimensional approximate modal methods, for example, Banks et al.[\,
2];

(4) the regularization methods, for example, Yu et al. [19, 20, 21];
(5) the sequential quadratic programming (SQP) methods, for example, Kunisch and

Sachs [13] and Huang et al. [9];
(6) the Lagrangian method, for example, Ito and Kunisch [10, 11];
(7) Quasi-Newton methods for solving unconstrained optimal control problems, for

example, Kelley and Sachs [13].

Finally, it should be pointed out that proving a superlinear rate of convergence
for quasi-Newton methods in infinite-dimensional spaces is not trivial as it is in
finite-dimensional spaces. The Q-superlinear convergence for the above-mentioned
sequence can be obtained under an additional condition assumed by Griewank [8].

The QNM algorithm presented in this paper can also be applied to identification
problems of other PDS's.

2. A quasi-Newton method in Hilbert spaces

We consider the following unconstrained optimization problem (UOP):

minimize/Qc), (2.1)

where / : / / - » R, and H is a Hilbert space. A point x* is called optimal for UOP if
/ attains a local minimum at x*.

It is well-known that the necessary condition for x* being optimal is

/ '(**) = 0, (2.2)

where f'(x*) e S?(H\ R) = H' is the Frechet derivative of / a t x*, S?(X; Y) denotes
the space of bounded linear operators from a Banach space X to a Banach space Y
with the operator norm and H' is the adjoint space of H.

If / : W —• K, one frequently uses quasi-Newton methods for solving UOP
because of their high efficacy. So, we use a quasi-Newton method for solving UOP as
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an iterative scheme which generates the sequences {xk} and {Ak} from the formulas

Aksk = - / ' ( ** ) , (2.3)

xk+\ =xk+sk, (2.4)

yk = f'(xk+l) - f'(xk), (2.5)

Ak+i = Ak + yk(yk, -)/(yk, sk) - Aksk(Aksk, -)/(Aksk, sk), (2.6)

where x0 and Ao are given, (•, •) is the dual product between // ' and H, and for any
y e / / ' the operator (y, • ) : / / - > K is defined by

(y,-)x = (y,x), VxeH.

Obviously, Ak e Sf(H, //') and yk, /'(**) <= H'.
The above algorithm is just a BFGS formula in a Hilbert space. If set Bk = Ak

l,
then by the Sherman-Morrison-Woodbury formula, we obtain

B a , to -Bkyk){-,sk)+sk(-,sk -Bkyk) {yk,sk- Bkyk)
Dk+) = Dk-\ ; ; -r Sk(-, Sk), (2./)

(yk,sk) (yk,sk)
2

and Bk € i f ( / / ' ; H).
In this paper K : H ->• H' is the canonical isometry, that is, for any x € H

Kx e // ' and
<**,*) = (*,*), V5 € / / ,

(•, •) and ((•, •)) are the inner products of H and //', respectively.
The following definition can be found in [7].

DEFINITION 2.1. Let BS0{H; //') be the class of all compact operators on H and //'.
For any T e 3§Q(H; / / ' ) , define

l ^ j (2.8)

where || • || is the norm of H' and {4>k} is a complete orthonormal family in H. If the
series in the right-hand side does not converge, set ||r||2 = +00. Moreover, ||r||2
is independent of the choice of the complete orthonormal family [<pk] in (2.8). ||r||2
is called the Schmidt norm of T. The subset of g$o(H\ //') consisting of all T with
||71|2 < +00 is called the Hilbert-Schmidt class, which is denoted by B§2{H\ / / ' )•

BB-i{H\ //') is a Banach space with the norm || • ||2.

DEFINITION 2.2. For any T e ^ 2 ( / / ' ; / / ) , define the norm

U = \\KMTKMh, (2-9)

where M : H -*• H is positive and self-adjoint.
£§i(H'; H) is a Banach space with the norm || • \\M.
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Obviously, we have the following properties.

LEMMA 2.1. IfT e 3&2{H; / / ' ) , 5, € -Sf(tf), and S2 G &{H'\ where j£f(X) is the
space of bounded linear operators with the operator norm from X to X, then S2T,
TS, e 382(H\ H') and

l irs , | | 2< lisninrib, l|52r||2<ns2|| | |r| |2. (2.10)

Moreover, there are positive constants r)\ and r)2 with r\2 > 1 such that VT e
; H')

In this paper we always suppose that the following assumptions are satisfied:

HI / : H -> OS is twice continuously Frechet differentiable in Do C H, where Do

is a convex and open set.
H2 There exists an x* e Do such that /'(**) = 0, ||/"(**) II < P, and that

lirOO - /"(**)II < L\\x-x*\\, Vx e Do, (2.12)

where L is a constant.
H3 /"(**) is selfadjoint and strictly positive in the sense that f"{x*)h2 > X\\h\\2,

Wh € H, where X > 0, hence /"(**) is invertible, [f"{.x*)Tx = A e i f ( / / ' ; / /)
and || A|| < 6.

LEMMA 2.2. Let the assumptions H1-H3 be true. In addition, assume that there are
non-negative constants <X\ and a2 such that the operator sequence [Bk] defined by
(2.7) satisfies

llfli+i - A|U < (1 +a1an)\\Bn - A\\M +a2an, (2.13)

where an = max{||jrn — JC* ||, ||jtn+i — JC*||}. Then for each y G (0, 1) there exist
e = €(y) and S = 8(y), such that ifB0 and x0 satisfy

1 1 * 6 - * ! < * , \\BO-A\\M<8, (2.14)

then the sequence {xn} defined by the QNM algorithm is well-defined, converges to
x*, and satisfies

l l*»+i-**ll<y| |*.-**ll , n = 0, 1 , . . . . (2.15)

Furthermore, B~x exists and the sequences {||Bn||} and {||fi~'||} are uniformly
bounded.
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PROOF. By the assumption H2 for any y e (0,1) we can choose 8 = 8(y) > 0 and
6 = €(y) > 0 such that

6)3(1 + y)8r)2 < y,

+ a2)e/(l-y)<8, e < e0,

(0 + 4r,28)[L€/2 + 2(1 + yffm^ < Y,

where e0 is so small that

B(x*, €0) = {*€ / / ; \\x -x*\\< €0) C Do.

It follows from (2.11) that

(2.16)

(2.17)

(2.18)

and

IISoil <| |A| | - A | | <9 + r)28.

(2.19)

(2.20)

Because Bo = A + (Bo - A) and ||ft> - A||M < 8 < 1/0 < | |A- ' | r ' , by the
Banach inverse theorem, we deduce that Bo is invertible and that

But by (2.16)
1 - 6pr)28 > 1 - y/(l + y) = 1/(1 +

so

Furthermore,

IIAo - /"OOII = \\A0(A - B0)f"(x*)\\ < \\A0\\\\B0

< 0 + Y)P2m*.

It follows from the mean-value theorem that

II*, - JC*|| = ||(JC, - jco) + (*> - x*)\\ = || - B o - 7

= \\B^[-[f'(xo) - f(x*) - f"(x*)(x0 -

(2.21)

(2.22)

- x*)\\

< (0

f"(x* + t(x0- x*)) - f"(x*)](x0 - x*) dt

-x*\\< y\\x0 - x*\\.

(2.23)

https://doi.org/10.1017/S0334270000012339 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012339


6 Wenhuan Yu [6]

Next, from (2.13), (2.14), and (2.17) we have

P i - AIU < (l+aie)\\B0-A\\M+a2e<S + (aiS + a2)€ < 2dS. (2.24)

Using induction, we prove

| | f l»-A| | < 25 and ||jct+1-x*|| < y||*t - JC*||. (2.25)

In fact, suppose that (2.25) are true for k < m — 1. By (2.13)

llft+i - AIU < (1 + a i r l i f t - A|U +a2ey\

that is,

||ft+1 - AIU - lift - A|U < 2a,ey*« + CL2eyk = (2a,« +o2)ey*. (2.26)

Adding (2.26) from k = 0 to m — 1, one gets

m - l

llft.-A|U <||ft-A|U + (2a,« + a2)e£y*
*=o (2.27)

- y) < 28.

Therefore

lift. - ftlU< lift,-A|U + lift-A|U <3« Vm. (2.28)

In addition, by (2.11), (2.16), (2.21) and the above

^ I 3(1 + y)Pr,28 < y < 1,

where / G JC(H') is the identity operator. By the Banach theorem (B^'ft,)"1 exists,
hence Bm is invertible. Furthermore,

II^H = ||ft;1 II = \\[B0 + (BM-B0)]-l\\ < HB-'

< 0 + Y)fi £ > ( i + Y)Pm8]k = (l + y W[i - 3(1
(2.29)

(l + y ) ^ Vm,

that is, for any m e N, Bm is invertible and {||B~'||} is uniformly bounded as well.
Moreover,

llft.ll < llftll + lift. - Boll < (0 + *?2<5) + 3^25 = 0 +4ifc«, (2.30)

l|Am - /"(JC')H = ||Am(Bm - x)||
= 2(1 + y)2^2r?25.
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By the inductive assumption one has \\xm - x*\\ < e and so

HJW, - x*\\ = ||(xm+, - xm) + (xm - x*)\\ = || - B-'f\xm) + (xm - x*)\\

= II *-'{-[/'(*«) - fix*) - f"(x*)(xm - x*)]

+ [Am-f"(x*)](xm-x*)}\\

r"(x* + t(xa- x*)) - f(x*)](xm - x*) dt
(2.32)

+ I I A , , - / " ( * * ) I I I I * » - *

< (9 +4rl28)[L€/2 + 2(l + y)2/S2m8]\\xm - x*\\ < y\\xm -x'\\.

Furthermore,

\\xm+l-x*\\ < y\\xm-x*\\ < . . . < ym+l\\x0-x*\\ < ym+l€ < e0. (2.33)

Thus {xm} c Do, xm —> x* in H, and {||Bm||} and {||fi~'||} are uniformly bounded.

LEMMA 2.3. LetC,B e S£{H'\ H) be selfadjoint, y e H', s e H with (y, s) ^ 0,
and set

- = B + (s-By){.,s)+s{,s-By) _ <y,s-By)
(y,s) (y,s)2

IfMe Jif(H) is invertible and selfadjoint, then

E = P*EP + KM<f Cy){KMs, •> + ^^-{P*KM(s - Cy), •>, (2.35)
(ys) iys)

where E = KM(B - C)KM, E = KM(B - C)KM,P = I -
M~lK~'y{KMs, -)/{y,s), I e 3f(H) is the identity operator, and P* is the ad-
joint operator of P.

PROOF. Premultiplying and postmultiplying both sides of (2.34) by KM and subtract-
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ing KMCKM, we have the simple calculation

E = E + [KM[(s - Cy) - (B - C)y](KMs, •> + KMs{KM[(s - Cy)

-(B- C)y], -)}/(v, s) - KMs{y, (s - Cy) - (B - C)y)(KMs, -)/(y, sf

= E - EM^K^yiKMs, -)/(y,s) - KMs{EM~i K~ly, -)/{y,s)

+ {KM(s - Cy){KMs, •) + KMs{KM(s - Cy), -)}/(y, s)

+ {EM-lK-ly,M-lK-ly)KMs{KMs,-)/(y,s)2

-{y,s-Cy}KMs{KMs,-)/(y,s)2

- {EM-lK~ly, ->}/(v, s) + KM(s - Cy){KMs, -)/(y, s)

+ KMs[(KM(s - Cy), •> - (y, s - Cy)(KMs, -)/(y, s)}/{y, s).

(2.36)

It is obvious that E and E are selfadjoint and that

P* = I - KMs(-, M-lK~ly)/{y, s) e ££{H'). (2.37)

Considering the above results, from (2.36) we have

E = EP - KMs{EM~lK~sy - ] ^ x l

+ KM(s - Cy)(KMs, -)/{y, s) + KMs{KM(s - Cy)

- KMs{KM(s - Cy), M~lK~ly)/{y, s), ->/<y, s)

= EP- KMs([I - KMs{-, M-lK-ly)/{y,s)]EM-lK-ly, -)/{y, s)

+ KM(s-Cy)(KMs,-)/(y,s)

+ KMs([I - KMs{-, M-lK-ly)/(y, s)]KM(s - Cy), -)/{y, s)

= EP- KMs(P*EM-1K~ly, -)/{y, s) + KM(s - Cy){KMs, -)/{y, s)

+ KMs{P*KM(s - Cy), -)/{y, s)

= [/ - KMs{M-xK^y, -)/(y, s)]EP

KM(s - Cy)(KMs, -)/{y, s) + KMs(P*KM(s - Cy), -)/(y, s)

= P*EP + KM(s - Cy)(KMs, -)/{y, s) + KMs(P*KM(s - Cy), -)/{y, s).

LEMMA 2.4. Let M € Jf(H) be a non-singular selfadjoint operator such that

\\Ms - M-'/T'yll < p\\M-lK-ly\\, (2.38)

where p e (0, 1/3), s € H and y e H' with y ^ 0. Then

(1 - p)\\M-xK-'y\\2 < (y, s) < (1 + p)\\M-{K~ly\\2 (2.39)
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and for each E e Shifl, H'\

\\E[I - M-lK-ly(KM-lK~ly, -}/(y, s)]\\2 < (1 - Mv2)1/2||£||2, (2.40)

\\E[I-M-'K'

andVy e H', A € Jf(//, H'), s e H:

||(y - As)(tf Ms, •)/(>>, 5)||2 < 2||y - Asll/IIAf-'AT-'yH, (2.42)

where
p2) e (3/8,1)

and
v = IIEM-'Ar'yll/aifiyiAf-'A-'yH) e (0, 1).

PROOF. We have (2.39) from

(y,s) = (K-ly,s) l

= \\M-lK~ly\\2 + (M-lK~ly, Ms -

Observing that Vu,v e H,

\\E[I-u(v,-)]\\l

- (u, <h)Eu, E(j>k - (w, <f>k)Eu))
k

. Ecf>k)) - 2 J2(V, foMEu, E4>k)) + J2(v, 0*)2((£«, Eu))
k k k

= \\E\\l - 2((£II, E £ ( « , 0t)0t)) + ||U||2||EM||2

k

= \\E\\l - 2 ( (£H, £v)) + ||£«||2||v||2, (2.43)

and taking u = M~lK~ly/{y, s) and v = M~]K~ly, we immediately obtain

\\E[I - M-xK-'y{M~xK-'y, -)/{y, s)]\\2
2

= \\E\\\-2{EM-'K-'y,EM-xK-iy)/{y,s)

+ \\EM-iK-ly\\2\\M-lK-}y\\2/(y,s)2

= \\E\\l + [-2{y, s) + | | M - ' A r - ' y ^ ' ' 2 2
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which reduces to (2.40).
Owing to (2.40), in order to establish (2.41) we need only prove

y[{KMs, •> - (M~lK~[y, -)]/{y, s)\\2

K-iy-Ms,-)/(y,s)\\2

K~ly - Ms\\/(y,s)\\\\E\\2

K-Xy - Ms\\/[(l - p)\\M-{K-ly\\]\\E\\2.

Inequality (2.42) can be reduced in a similar fashion. In fact,

||(y - As)(KMs, -)/(y, s)\\2
2 = £ ||(y - As)(Ms, cj>k)/{y, s)\\2

k

= Y.\\y~ As\\2Ws, <pk)
2/(y, s)2 = \\y - As\\2\\Ms\\2/{y, s)2,

k

SO

||(y - As){KMs, -)/{y, s)\\2 = \\y - A*||\\Ms\\/(y, s)

< \\y - As\\/(y, sUWM-'K-'y -Ms\\ l

< \\y ~ As\\/[(l - p)\\M~lK~lyf ](l

LEMMA 2.5. Let M satisfy the conditions in Lemma 2.4 and let BQ — A e 3§2{H).
Then (sk, yk) ^ 0, and Bk+i is well-defined and satisfies

\\BM - A|U < 2(1 + p)\\KM\\\\sk - Ayk\\/[(1 - p?\\M~x K~xyk\\]

+ { j r ^ + 5/2\\Msk-M-xK-lyk\\/[(l-p)\\M-xK-xyk\\]}\\Bk-A\\M,
(2.44)

where (x = (1 - 2p)/(l - p2) € [3/8, 1] and v = \\KM(Bk - A)yk\\/(\\Bk -
A\\M\\M'XK-Xyk\\).

PROOF. It follows by the QNM algorithm and (2.39) that yk ^ 0 and (sk, yk) ^ 0. So
Bk+l is well-defined by (2.7).

According to Lemma 2.3 we have

Ek+l = P*EkP + KM(sk - Ayk){KMsk, -)/{yk, sk)

+ Msk(P*KM{sk - Ayk), -)/(yk, sk),

where Ek+1 = KM(Bk+l - A)KM, Ek = KM(Bk - A)KM, and P = I -
M-lK-xyk(KMsk,-)/{yk,sk).
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Applying Lemma 2.4, we have

\\P*EtP\\2 <

< {1 + \\Msk -

Hence,

\\P*EP\\2 <

x Ul - MV2 + ||M^ - M-'AT'ytll/Ul - p)\\M~lK^yM j ||£t||2
(2.46)

5\\Msk - M-'K-xyk\\/{2{\ - p)\\M~'K~'yk\\]\ \\Ek\\2.

Next, we estimate the other two terms of (2.45). Since

\\KM(sk - Ayk)(KMsk, -)/{yk, sk)\\\ = £ || (Msk ,<t>n)K M(sk - A ^
n

J2 - Ayk)\\
2/(yk,sk)

2

n

= \\Msk\\
2\\KM(sk - Ayk)\\

2/(yk,sk)
2

and

||Afjt|| < \\M-lK-lyk\\ + \\Msk - M~lK-lyk\\ < (1 + p)\\M~xK']yk\\,

we have

\\KM(sk - Ayk)(KMsk, ^/(y*. J*>||2 = \\Msk\\\\KM(sk - Ayk)\\/(yk,sk)

(2.47)

= (l + p)| |/:M|| | |^-A>'t | | /[(l-p)| |M-|/(:- |^| |].

On the other hand,

and hence

\\KMsk(P*KM(sk - Ayk), -}/(yk, sk)\\2

= \\P*KM(sk - Ayk)\\\\Msk\\/{yk,sk)

m = \\P\\ < 11/II + \\M-lK-lyk{KMsk, >/(y*,**>||

)

< 2(1 +p)||tf A/||||s* - Ayt||/[(1 -p) ! !^- 1 ^- 1 ^! ! ] . (2.49)
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Summing up (2.46), (2.47) and (2.49) and considering ||Bt+1 - A||M =
\\KM(Bk+l — A)A:M||2 = \\Ek+l ||2, we immediately obtain the estimate (2.44) from
(2.45).

THEOREM 2.6. Let assumptions HI, H2, and H3 be satisfied. Then the sequence [xn]
generated by the QNM algorithm is well-defined and converges to x* provided that
the initial guesses x0 and Bo satisfy the conditions of Lemma 2.2.

PROOF. Because /"(**)[-, •] is a bounded symmetric bilinear form on H x H, there
is a selfadjoint operator T € JSf (//) such that

f"(x*)[s,f\ = (Ts,t), Vj.reff.

Moreover, by assumption H3, there exists a selfadjoint positive operator M e J£(H)
such that M2 = T. Hence

f"(x*)[s, t] = (M2s, t) = (Ms, Mt), Vs, t € H.

For any y e H' we have K~ly e H and

y ~ /"(**)*(•) = (K~]y - M2s, •) = K[M(M-lK~ly - Ms)](-). (2.50)

But, by assumption H2 and the QNM algorithm one has

= / [/"(** + t(xk+i - xk) - f"(x*)](xk+l - xk)dt
l</o (2.51)

<L\\xk+l-xk\\
2/2=L\\sk\\

2/2.

So

- M-lK-lyk\\ = \\M-lK-l[yk - /"(x*)*t]||

Moreover, by assumption H3 there is a K > 0 such that

\\sk\\/K<\\M-lK-lyk\\<K\\sk\\. (2.53)

Summarizing (2.50), (2.51) and (2.53), we have

\\Msk - M-lyk\\ < p\\M-lK-lyk\\, (2.54)
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where p e (0, 1/3). It follows by Lemma 2.1 that Bk - A € 382(H', H). Therefore
by Lemma 2.5

l|B*+i - AIL < \ y / \ - ^ + 5\\Msk - M-xK-lyk\\l[2(\ - p)\\M~x K~x yk\\\\

x \\Bk - A|L + 2(1 + p)\\KM\\\\sk - Ayk\\/[(l - p)2\\M-lK-lyk\\]. (2.55)

Considering (2.52) and (2.53), we have

Ik - Ayk\\ = \\A(yk - f"(x*)sk\\ < 2 /2
i , (2.Do)

<9LK\\M-lK-lyk\\/2\\sk\\.

If we set a, = 5LK\\M~1 K~l/[4(l - p)] and a2 = (1 + P)LK\\KM\\/(\ - p)1, then
from (2.55) we have

||£*+1 - A | L < (l+a,CT*)||fi*- A | L + a 2 a t ,

where ak = max(||**+, - x*||, | |^ - x*||).
It follows by Lemma 2.2 that the conclusions of Theorem 2.6 are true.

From [8] we quote the following result.

THEOREM 2.7. Assume that the requirements in Theorem 2.6 are satisfied and that
Ao — F'(q*) is compact. Then the sequence [xn] generated by QNM is Q-superlinear
convergent, that is,

\im\\xk+l-x*\\/\\xk-x*\\=0,
k-*oo

provided \\x0 — x*\\ is sufficiently small.

3. Identification of a nonlinear parabolic system

The problem we address here is to identify the parameter q appearing in a parabolic
semilinear equation

d,u - AM + q2u2 = 0, (x, t) € D = Q x (0, T),

based on the final measurement of the state u

u\l=T = z(x), x€to. (3.2)

The assumptions we use in this section are as follows:
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Al . Q C Rm is bounded and its boundary 3ft e C2+p, where p e (0, 1);
A2. g e C2+"(J2).

For any <? € CP(Q) it was proved in [14] that problem (3.1) has a unique classical
solution, u e C2+f>']+p/2(D). So, we denote « = w(g) = u(x,t;q) to show the
dependence of u on 9.

The problem of identification is stated as an optimization problem

I(q) = l/2\\u(; T; q) - z |£2 ( 0 ) -> min . (3.3)

But the above problem is, usually, ill-posed in the Hadamard sense. Thus, we introduce
a regularization term as follows:

J(q)= \/2\\u{;T;q)-z\\2^) + a/2\\q\\2
H, (3.4)

where a > 0 is a constant, H = H'{Q.), and the order / of the Sobolev space is chosen
such that H is compactly embedded in Cfi(Q). For example, / = 1 when m = 1 and
/ = 2 when m = 2 or 3.

It follows by [21] that the optimal parameter for the problem (3.4) converges to the
optimal parameter of the problem (3.3) as a —> 0.

THEOREM3.1. Thefunctionu : / / ->• V = C2+/}-l+(l/2(D) defined by (3.1) is infinitely
differentiable, that is, u 6 CN(H; V), V W e N U {0}, where CN(H; V) denotes the
linear space of N -times continuously Frechet differentiable functions on H to V.
Moreover, the first Frechet derivative u'(•) : H —> S£(H\ V) and the second Frechet
derivative «"(•) : H —>• Jif(H; -£?(//; V)) of u at q are implicitly determined by
u'(q)h = u andu"{q)hk = ii, V/i, k e H, respectively, where u and ii are determined
by the problems

d,ii - AH + 2q2uu = -2qu2h, (x, t) 6 D

"l3fi=0, M|,=0 = 0,

and

d,ii - Au + 2q2uii = -Aquvh - Aquiik - 2q2iiv - 2u2hk, (x, t) e D

where u = u(q) is determined by (3.1), u = u'(q)h and v = u'(q)k are determined
by (3.5), respectively.

PROOF. First, we prove u e CN(H\ V).
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Take, for example, N = 0. The proof is similar for any order N. Let q, q e H.
Then it follows from (3.1) that u = u(q)&n&u = u[q). Set/i = q—q and 5M = U-U,
so Su satisfies

-(.q+q)u2h, (x,t)eD,

(Su)\m=0, (8u)\l=0 = 0.

It is obvious by [14] that \\Su\\v = O(\\h\\H). Hence M(-) € C(//; V).
Secondly, we prove u'.(q)h = u. For q, h e H, there exists a unique solution

u e V to the problem (3.5). Thus, set q = q + h, u = u(q), u = u(q), and
ii = ii — u — u = 8u — u. It is evident that u satisfies

d,u - AM + q2{u + u)u = -q2u8u - (q + q)(u + u)hSu - u2h2, (x, t) e D,

M|,=0=0.

It follows from (3.5) by [14] that u = O(\\h\\H). Moreover, by the above argument
we obtain 5M = o(l). Therefore, « = o(||/z||). Hence, u'(q)h = u. It is similar to
prove u"(q)hk = ii.

Next, we give the following result.

THEOREM 3.2. There exists an optimal element for the optimization problem (3.4).

PROOF. Suppose that {qn} is a minimizing sequence for the optimization problem (3.4),
that is,

J{qn) ^h= mf J(q). (3.8)

Thus [qn] is bounded in H. Since H is a Hilbert space, there exists a subsequence,
which is still denoted {qn}, such that qn -> q, in //. ' By the property of compact
embeddedness of H, it follows that qn A- q in C^(S2). Furthermore, by Theorem 3.1
we obtain that u(qn) 4- u(q) in C2+P'i+P/2(D).

We can write J(qn) as

J(qn) = 1/2||M(-, T; qn) - z\\2
LHn)+a/2\\qn\\

2
H = Mqn) + J2(qn). (3.9)

Obviously, J2(qn) = oi/2\\qn \\
2
H is convex and strongly lower semi-continuous, so it is

also weakly lower semi-continuous. Letting n —> oo in (3.9) and considering (3.8),
we obtain

J(q) = 1/2||M(-, T; q) - z\\2
LHn) + a/2\\q\\2

H = inf J(q).

That is, q is the optimal element.

x (or xn -*• x), in X" means that xn strongly (or weakly) converges to x in X.
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For calculating J'iq) we have the following results.

THEOREM 3.3. The functional J(q) defined by (3.4) is twice continuously Frechet
differentiable and its first Frechet differential J'(q)h is determined by the formula

), VheH, (3.10)

where j(q) e H' is defined by

fT

j(q) = -2 qp(q)u\q)dt+aKq, (3.11)
Jo

K : H -> H' is the canonical isometry, u{q) = u is determined by (3.1), and
p(q) = p is defined by the problem

-d,p-Ap + 2q2up = 0, (x,t)&D,

phn=0, p\t=T=u(T;q)-z.

Moreover, the second Frechet differential J"{q)hk is determined by the formula

CT

J"(q)hk = / {-Aquuk - Aquvh - 2q2uv - 2u2hk, p) dt
Jo (3.13)

+ {u(T),v(T))+a(h,k), Vh,keH,

where it — u'(q)h and v = u'(q)k are determined by (3.5) and (•, •) and (•, •) denote
the inner products in L2(Q) and H, respectively.

PROOF. It follows from the calculation

J(q +h)- J(q) - {{u(T; q), u(T; q) - z) + a(q, h)}

= l/2(u(T; q+h)- u(T; q) - u\q)h(T), u(T; q + h) - z)

+ \/2{u\q)h(T), u{T; q + h)- u(T; q))

+ \/2(u(T; q) - z, u(T; q + h)- u(T; q) - u'(q)h(T)) + a/2\\hfH

= o(\\h\\),

that

= (u(T\q),u(J;q)-z)+a{q,h), V/i e H. (3.14)
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Consideration of w(0; q) = 0 and p(J; q) = u{T\ q) — z and use of Green's
formula lead to

(ii(T; q), u(T; q) - z) = {u(T; q), p(T; q)) = f d,(u, p) dt
Jo

= I [(d,u, p) + (u, d,p)} dt = I {{d,u, p) + (u, — Ap + 2q up))dt
Jo Jo (3.15)

{d,ii - Ail + 2q2uu, p)dt = ( - / 2qu2pdt,h).
\ Jo I

Since H is a Sobolev space of order / with / > 0, H is compactly embedded in L2(S2).
If we choose L2(Q) to be a pivot space, that is , L2(Q) = [L2(Q)]', then

H C L2(Q.) c H'. (3.16)

Because K is the canonical isometry from H onto H',

(q, h) = (Kq, h)LHii), Vq, h e H. (3.17)

Substitution of (3.15) and (3.17) into (3.14) leads to

J\q)h={-2J qu2pdt + Kq,h\, Vh e H. (3.18)

From (3.11) we see that (3.10) holds.
Furthermore, by (3.14) we obtain

J\q + k)h - J\q)h - {(u"(q)hk(T), u(T; q) - z) + (u(T), i>(T)) + a(h, k)}

= {{u'(q + k)h(T), u(T; q+k)-z)+a(q+ k, h)}

-{(u'(qMT),u(T;q)-z)+a(q,h)}

- {{u(T), u(T; q)-z) + (u(T), v(T)) + a(h, k)}

= {u'(q + k)h(T) - u'(q)h(T) - u(T), u(T; q) - z)

+ (u'(q + k)h(T), u(T; q + k) - u(T; q) - v(T))

+ (u'(q + k)h(T) - u'(q)h(T), i>(T)) = o(\\hf + \\k\\2).

Thus, J(q) is twice Frechet differentiable and its second Frechet differential is

J"(q)hk = («(7)f u(T; q)-z) + <ii(T), v(T)) + a(h, k) VA, k € H.
(3.19)
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Using u(T; q) — z = p(T; q) from (3.12) and using an argument similar to (3.15),
we have

o

fT fT

= {{d,u,p) + (u,-Ap + 2q2up)}dt = (d,u - Aii +2q2uii, p)dt
Jo Jo ( 3 2 0 )

= I {-4quuk-4quvh-2q2uv-2u2hk, p)dt.
Jo

Substituting (3.20) for the first term of (3.19) we obtain immediately (3.13).

The following Lemma is quoted from [7].

LEMMA 3.4. Let (S, E, ix) be a positive measure space. Then an operator A in the
Hilbert space L2(S, £ , /x) is of Hilbert-Schmidt class if and only if there exists a /xx/x
measurable function A(-, •) on S x S such that

{LI
1/2

\A(x,t)\2n(ds)fi(dt)\ <oo (3.21)
5 JS

and such that

Af(s) = f A(s, t)f(t)ix (dt), f G L\S, E, ix), (3.22)
Js

for fx-almost all s. Moreover, \\A\\2 is exactly equal to the finite quantity (3.21).

LEMMA 3.5. The operator I"\q) : L2(S2) - • L2(Q) is of Hilbert-Schmidt class, where
I (q) is defined by (3.3).

PROOF. It is obvious that

I"(q)hk = (u'(T; q)k, u\T; q)h) + (u"(q)hk(T), u(T; q) - z) (3.23)

and

= [u'(T; q)Yu\q)h{T) + [u"(T; q)h]*[u{T- q) - z], (3.24)

where [u'(T; q)]* and [u"(T; q)h]* are the dual operators of u'(T; q) and u"(T; q)h,
respectively. Moreover, from [14] and problem (3.5), it is easy to see that

u'(T; q)h(x) = - 2 f [ G(x, £, T, x)q{l-)u2(£, r; q)h(J-) dl-dz, (3.25)
Jo Jn

https://doi.org/10.1017/S0334270000012339 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000012339


[19] A quasi-Newton approach to identification of a parabolic system 19

where G(x, f, /, r) is the Green function of the problem (3.5), and hence

[u'(T;q)Tk(x) = -2q(x) f f G($, x, T, T)U2(X, T; q)dxk^)d^ Vk € H.
Jn Jo (3.26)

Substitution of (3.25) into (3.26) and consideration of Lemma 3.4 lead to the conclu-
sion that the operator

[u'(T; q)Tu'(T; q) : L2(Q) -+ L2(tt)

is of Hilbert-Schmidt class.

We need the following assumption.

A3. Suppose that there exists a q* e H such that

/(<?*) = min/(<?). (3.27)

It is obvious that assumption A3 implies I'(q*) = 0 and I"(q*) > 0. Thus,

J"(q*)h2 = I"(q')h2 + a(h, h) > a\\h\\2
H, Wh G H, (3.28)

that is, J"(q*) is strictly positive. Therefore, q* solves the following operator equation

K-iI'(q*) = 0. (3.29)

When a is small, instead of (3.29) we consider the equation

f'(q) = K~l J'(q) = K-xI\q) +aq=0. (3.30)

Using the QNM algorithm stated in Section 2, we obtain an approximate sequence
{qn}, and its convergence is proved in the following theorem.

THEOREM 3.6. Let assumptions Al, A2, and \3betrue. The sequence [qn] determined
by the QNM algorithm is superlinearly convergent providing that q0 and Ao satisfy
the conditions of Lemma 2.2 and that Ao — f"(q*) is compact.

PROOF. Under assumptions A1-A3, the function f'(q) defined by (3.30) satisfies as-
sumptions H1-H3 of Section 2. Thus, by Theorem 2.7 the conclusions of Theorem 3.6
follow immediately.
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In order to solve (3.30) we used the QNM algorithm for the one-dimensional case,
that is, ft = (0, 1). Moreover, we take H = #0'(ft), and hence K = -d2/dx2.

Suppose that g(x) = sin27r;t and that the true parameter in (3.1) is q,r(x) =
x(l — x). Then z in (3.2) is z = u(T; qlr). We used the Crank-Nicholson implicit
finite difference method, for example see [15], to discretize (3.1) and (3.2), that is, we
could, for example, replace d,u{i Ax, j At) with

d,u(i Ax, (j + 1/2)At) * 2(M,-,,-+1/2 - uu)/At,

where uitj = u(iAx, jAt) and uiJ+]/2 = u(iAx, (j + l/2)At).
Therefore one could obtain the three-level stable approximate equations

1 2
—-^(Ui+ij+i/2 - 2uiJ+l/2 + M,_i,y+|/2) = — (M,-,;+I/2 - uu) + qfulj

and

2 2 + l/At)uu+i + ui+lJ+1/Ax2

- l/At)u,j - ui+lJ/Ax2 + qfu2
j+]/2

We also have similar discrete equations for problem (3.12).
In this paper we took T = 1, Ax = 0.1, At = 0.05, and N, = I/A*.
The computational results are summarized in Table 1, where

Atf, = q(i Ax) - qlr(iAx),

? 1).

u(iAx) — z(iAx)
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TABLE 1. Convergence for the algorithm QNM

21

Iteration
Times

1
2
3
4

m,

-8.359
-2.057
0.849
0.85

14.087
4.466

9.4£-2
9.06£-2

s

53.841
38.353

4.37£-5
2.33£-7

m2

1.25E-5
1.68E-6
5.21E-1
3.22E-7

a2

1.309£-5
1.724E-6
7.459£-7
3.007£-7

J

635.135
78.117

1.084E-5
1.381£-13
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