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Abstract

A quasi-Newton method (QNM) in infinite-dimensional spaces for identifying parameters
involved in distributed parameter systems is presented in this paper. Next, the linear
convergence of a sequence generated by the QNM algorithm is also proved. We apply the
QNM algorithm to an identification problem for a nonlinear parabolic partial differential
equation to illustrate the efficiency of the QNM algorithm.

1. Introduction

Quasi-Newton methods play an important role in numerically solving optimization
problems on the Euclidean spaces. But few papers discuss these methods in identifi-
cation of infinite-dimensional systems.

Formulating parameter estimation problems as constrained, regularized optimiza-
tion problems, Kunisch et al. [13] investigated the reduced SQP (Sequential Quadratic
Programming) methods with BFGS (Broyden-Flecher-Goldfarb-Shanno) update for
the identification of an elliptic system.

In this paper we formulate an identification problem as an unconstrained opti-
mization one. We suggest a Quasi-Newton Method (QNM) to solve an unconstrained
optimization problem in Section 2. Following Broyden et al. [3] and using the Hilbert-
Schmidt class defined in [7], we prove that the approximate sequence generated by
the QNM procedure converges to the optimal element of the optimization problem if
the latter exists. In Section 3 we apply the QNM algorithm to estimating a coefficient
appearing in a nonlinear parabolic partial differential equation and we prove that the
assumptions, which ensure the convergence of the approximate sequence obtained by
the QNM algorithm, are satisfied. Finally, we illustrate a numerical example to show
the efficiency of the QNM algorithm.
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There are many papers dealing with the parameter identification problem for dis-
tributed parameter systems. Methods of solving some of those problems are listed in
the following:

(1) the gradient or conjugate gradient methods, for example, Chavent er al. [4],
Seinfeld er al. [17, 16], and Yu [18], which need to compute the derivative maps
of the operators described by partial differential equations;

(2) the generalized pulse spectrum technique (GPST), for example, Chen et al. [5,
22];

(3) the finite-dimensional approximate modal methods, for example, Banks et al. [1,
2];

(4) the regularization methods, for example, Yu et al. [19, 20, 21];

(5) the sequential quadratic programming (SQP) methods, for example, Kunisch and
Sachs [13] and Huang et al. [9];

(6) the Lagrangian method, for example, Ito and Kunisch {10, 11];

(7) Quasi-Newton methods for solving unconstrained optimal control problems, for
example, Kelley and Sachs [13].

Finally, it should be pointed out that proving a superlinear rate of convergence
for quasi-Newton methods in infinite-dimensional spaces is not trivial as it is in
finite-dimensional spaces. The Q-superlinear convergence for the above-mentioned
sequence can be obtained under an additional condition assumed by Griewank [8].

The QNM algorithm presented in this paper can also be applied to identification
problems of other PDS’s.

2. A quasi-Newton method in Hilbert spaces

We consider the following unconstrained optimization problem (UOP):
minimize f(x), 2.1)

where f : H — R, and H is a Hilbert space. A point x* is called optimal for UOP if
[ attains a local minimum at x*.
It is well-known that the necessary condition for x* being optimal is

fx*) =0, 2.2)

where f'(x*) € £ (H; R) = H'is the Fréchet derivative of f atx*, £ (X; Y) denotes
the space of bounded linear operators from a Banach space X to a Banach space ¥
with the operator norm and H’ is the adjoint space of H.

If f : R” - R, one frequently uses quasi-Newton methods for solving UOP
because of their high efficacy. So, we use a quasi-Newton method for solving UOP as
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an iterative scheme which generates the sequences {x;} and {A,} from the formulas

Aise = — f'(x), (2.3)
Xpp1 = Xp + S, 24

Ye = F (1) = f(xi), (2.5)
A1 = Ap + Y0k M Ve Sk} — Asi{AeSe, -)/ (AwSk, i), (2.6)

where xo and Aq are given, (-, -} is the dual product between H' and H, and for any
y € H’ the operator (y, -) : H — R is defined by

(y,)x = (y, x), Vx € H.

Obviously, A, € Z(H, H') and y,, f'(x) € H'.
The above algorithm is just a BFGS formula in a Hilbert space. If set B, = A; ",
then by the Sherman-Morrison-Woodbury formula, we obtain
(s = Bey) (s se) +sulesse — Bave) (e Sk — Bae)

By = By + - sehse), (2.7)
! ) (Vs Sk) (Y 5)? ¢ ¢

and B, € Z(H'; H).
In this paper K : H — H’ is the canonical isometry, that is, for any x € H
Kx € H' and
(Kx,s) = (x,s), Vs € H,
(-, -) and ((-, -)) are the inner products of H and H', respectively.
The following definition can be found in [7].

DEFINITION 2.1. Let Z,(H; H’) be the class of all compact operators on H and H’.
Forany T € %,(H; H’), define

0 172
171, = (Z ||T¢ku2) : 238)
k=1

where || - || is the norm of H’ and {¢,} is a complete orthonormal family in H. If the

series in the right-hand side does not converge, set |||, = +o00. Moreover, || T,

is independent of the choice of the complete orthonormal family {¢,} in (2.8). || T||,

is called the Schmidt norm of T. The subset of %, (H; H') consisting of all T with

(T2 < 400 is called the Hilbert-Schmidt class, which is denoted by %,(H; H').
9,(H; H') is a Banach space with the norm || - ||,.

DEFINITION 2.2. For any T € %,(H’; H), define the norm
ITllse = IKMTKM|, 2.9

where M : H — H is positive and self-adjoint.
9,(H'; H) is a Banach space with the norm || - || 4.
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Obviously, we have the following properties.

LEMMA2.1. If T € %,(H; H'), S, € ¥(H), and S, € £ (H'), where £ (X) is the
space of bounded linear operators with the operator norm from X to X, then S,T,
TS, € #,(H; H) and

ITSill2 < ISiINT Iz, 15:Tll2 < IS0 T Ml (2.10)

Moreover, there are positive constants n, and 1, with n, > 1 such that VT €
#,(H; H")

MIT Iy < ITN = AT llm- (2.11)

In this paper we always suppose that the following assumptions are satisfied:

H1 f: H — Ris twice continuously Fréchet differentiable in D, C H, where D,
is a convex and open set.
H2 There exists an x* € Dy such that f'(x*) =0, | f"(x™)|| < B, and that

1f"G) = f7GHI < Lilx — x™II, Vx € Dy, (2.12)

where L is a constant.

H3 f”(x*) is selfadjoint and strictly positive in the sense that f”(x*)h? > Aljh|?,
Vh € H, where A > 0, hence f"(x*) is invertible, [ f"(x*)]™' = A € ZL(H'; H)
and |A] < 6.

LEMMA 2.2. Let the assumptions H1-H3 be true. In addition, assume that there are

non-negative constants a, and a; such that the operator sequence {B,} defined by
(2.7) satisfies

I Busr — Ally < (1 + @10,) | Bn — Al + @205, (2.13)

where o, = max{||x, — x*||, |xss1 — x*||}. Then for each y € (0, 1) there exist
€ = €(y) and § = 8(y), such that if By and xq satisfy

llxo — x*|| <e, IBo — Allm <8, (2.14)

then the sequence {x,} defined by the QNM algorithm is well-defined, converges to
x*, and satisfies

"xn+l—X*" SYHXn—X*H’ n=011,'--- (2'15)

Furthermore, B exists and the sequences {||B.||} and {||B'||} are uniformly
bounded.
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PROOF. By the assumption H2 for any y € (0, 1) we can choose § = §(y) > 0 and
€ = e(y) > 0 such that

68(1 + y)om < v, (2.16)
(Lard +ar)e/(1 —y) <4, € < €, 2.17)
0 +4md)[Le/2 +2(1 +y)fmsl <y, (2.18)

where ¢ is so small that
B(x*,ey) ={x € H; ||x — x*|| < ¢} C Dy.
It follows from (2.11) that
IBo — All < mallBo — Ally < m28 (2.19)

and

IBoll < IAIl+ l|1Bo — Al <6 + 2. (2.20)

Because By = A + (Bp — A) and ||By — Ally <8 < 1/B < ||IA7"|7Y, by the
Banach inverse theorem, we deduce that By is invertible and that

llAolt = 1Byl < IATHI/(1 = IAT 1 Bo — All) < B/(1 — Bnad) < B/(1 — 68myd).

But by (2.16)
1-68mdé>1—-y/(1+y)=1/1+vy),

SO
4ol = I1B5'l < (1 +¥)B. 221
Furthermore,
4o — f" ()l = | Ao(A — Bo) f"(x™)Il < Il Aollil Bo — AllILF" M) 2.22)
< (1+y)Bms.
It follows from the mean-value theorem that
s = x*[| = 161 = %0) + (X0 — x*)|| = | = By f'(x0) + (x0 — x|
= || By {—1f"(x0) = f/(x*) = f"(x")(x0 — x*)]
+ [Ao — f"(x")1(xo — x")}I
1
< I Boll ” /; LF/(x* +t(xo — x*) — £/ (x)])(x — x*) dt (2.23)

+ 140 — ")) lllxo — X‘II]

< (0 +md)[Le/2+ (1 + )Bn8llIxo — x*|| < yllxo — x7II-
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Next, from (2.i3), (2.14), and (2.17) we have
1By — Ally < (1 +a1€)l|By— Ally + e <8+ (8 + ax)e < 2d6. (2.24)
Using induction, we prove
1Bx — All <28 and  |Ixey) — X7l <yl — x| (2.25)
In fact, suppose that (2.25) are true for k <m — 1. By (2.13)
Byt = Ally < (14 a1y | By — Allm + ey,
that is,
I1Besri = Al — 1B ~ Allw < 201€*8 + azey® = Qo8 + ar)ey*. (2.26)

Adding (2.26) from k = 0 to m — 1, one gets

m—1

|Br — Ally < II1Bo— Ally + Qayd +ax)e Y ¥*
; (2.27)

<84+ Qad+ay)e/(1 — y) < 26.
Therefore
IBm — Bollm < I1Bn — Alls + 11Bo — Ally <38 Vm. (2.28)
In addition, by (2.11), (2.16), (2.21) and the above
17 — By'Bull < B3 H1Bw — Boll <301 +y)Bmé <y <1,

where I € £ (H’) is the identity operator. By the Banach theorem (B, 'B,,)~" exists,
hence B,, is invertible. Furthermore,

AR = 1B, = llBo + (B — Bo)I™' Il < 1B 1Y _ I1B5" 1“1 Bn — Boll*

<A+ y)BDY 31+ y)Bmsl = (1+ y)B/[1 - 3(1 + y)Bn:3]
(2.29)

< (1+y)B/(1 - 6Bms) < (1+ ), Vm,

that is, for any m € N, B, is invertible and {||B.'|l} is uniformly bounded as well.
Moreover,
| Bull < I Boll + [|Bm — Boll < (6 + n28) + 3m28 = 6 + 4nad, (2.30)
NAn — £/ = I1An(Bn = A) f' ) < ARl B — ANl M)

2.31
< (1+y)*Bm28B = 2(1 + y)*B2n.8. @30
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By the inductive assumption one has |lx,, — x*|| < € and so

Xmsr = X = [ Gmar = Xm) + o = XD =l = B, f'(xn) + (xm — x|
= 1B H{=[f (xn) = £/ (x) = f' () (xm — x™)]
+ [Am — f"O")] G — xMH

1
< IIB,;'H[ f ™+t —x5)) = f/ (M) xm — x*) dt
0 (2.32)
+ 1A — "G xm — x*lll
< (0 +4md)Le/2+2(1 + )’ B mbllxm — x*I| < ¥ llxm — x*|I.
Furthermore,
Xmsr — ¥ < Ylxm —x*f < -+ < y™lxg —x*|| < y™e < 6. (2.33)

Thus {x,,} C Dy, x, — x* in H, and {|| B, ||} and {|| B;'||} are uniformly bounded.

LEMMA 2.3. Let C, B € £(H'; H) be selfadjoint, y € H', s € H with (y,s) # 0,
and set

(s — By)(-,s) +s(,s — By) (y,s — By)

B=BRB
+ 0 5) . 512

s(-, ). (2.34)

If M € £ (H) is invertible and selfadjoint, then

_ KM(s-C KM

E=pPEP+ M= pprs oy + KM pekmis — cy). oy, @235
(y,s) (y.s)

where E = KM(B — C)KM, E = KMB — CO)KM,Pp = I —

M'K-'y(KMs, Y/{y,s), I € ZL(H) is the identity operator, and P* is the ad-
Joint operator of P.

PROOF. Premultiplying and postmultiplying both sides of (2.34) by K M and subtract-
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ing KMCK M, we have the simple calculation

E=E+{KM[(s —Cy) — (B—C)yl(KMs, )+ KMs(KM[(s — Cy)
= (B = C)y), )}y, s) — KMs(y, (s — Cy) — (B — C)y)}(KMs,-)/{y, s}
=E—-EM 'K 'y(KMs, -Y/(y,5) — KMs(EM™'K™ 'y, .}/(y, 5)
+{KM(s — Cy){KMs, )+ KMs(KM(s — Cy), )}/{y, s)
+(EM™'K'y, MT' K'Y\ K Ms(K Ms, -)/{y, s)*
—(y,5 — Cy)KMs(KMs,)/(y,s)
= E[I-M"'K'y(KMs, Y/(y,s)]+KMs{{EM™'K~'y, M~'y)(KMs, )y, 5)
—(EM™'K'y, )}/(y, s) + KM (s — Cy)(K Ms, -)/{y, s)
+ KMs{{KM(s — Cy), ") = (y,5s — CyNK Ms, ) /(y,s)}/(y,s).
(2.36)
It is obvious that E and E are selfadjoint and that

P*=1—KMs(, M'K~'y)/(y, s) € L(H'). (2.37)
Considering the above results, from (2.36) we have
E=EP—KMs(EM 'Ky — KMs(M™'K~'y, M"' K"y} /(y, 5), }/{, 5)
+ KM(s — Cy)(KMs,-)/{y,s) + KMs{(KM(s — Cy)
— KMs(KM(s — Cy), M K~'y)/(y,5), )/ {(y. s)

=EP— KMs{lIl — KMs(-, M"'"K~'y)/{y, s)IEM™' K"y, ) /{y, 5)
+ KM(s — Cy)(KMs, -)/(y, s)

+ KMS([I - KMS('? M_IK—|}’)/(}’,S)]KM(S —C)’)» )/()’,S>

=EP — KMs{P*EM™ K™y, )/{y,s) + KM(s — Cy){KMs, )/{y, s)
+ KMs(P*KM(s — Cy), )/{y, s)

=[I-KMs(M'K™ 'y, Y/{y,s)IEP
KM(s — Cy){KMs,-)/(y,s) + KMs(P*KM(s — Cy),-)/(y,s)
= P*EP + KM(s — Cy){KMs,)/(y,s) + KMs(P*KM(s — Cy), -}/(y, s).

LEMMA 24. Let M € £ (H) be a non-singular selfadjoint operator such that
IMs — M7 K"yl < pIM~ Kyl (2.38)
where p € (0,1/3),s € Hand y € H withy # 0. Then

(A= pIM~ K7 yI? < (y,5) < (L + p)IMT' Kyl (2.39)
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and for each E € %,(H, H'),
IEU — M7 K" y(KM™ K™y, )/ (y, $)ll2 < (1 — wv®)?|Ell,,  (2.40)
I1E(I — M~'K~'y(KMs, -}/ (y, )]l
< (A=) +IMs — M7 Ky1 /[ = p)IM ™ K'Y IBIE 2y gg 41
andVye H, Ae ¥Y(H,H'),s € H:
I(y — As)(KMs, ) /(y, s)ll2 < 2|y — Asll/IIM~' K" y|l, (2.42)

where

p=>10-2p)/10-p")e@3/81)

and
v=EMT'K7'ylI/UNENIMT K™ 'yl) € (0, 1).

PROOF. We have (2.39) from

(y,s) =K'y, s)=(MM'K 'y, s)=(M'K 'y, Ms—M'K'y + M~'K"'y)
= IM'K'y|IP+ (MK 'y, Ms — M7'K'y).

Observing that Vu, v € H,
IELT — u(v, )1I3
= ij IE — Eu(v, )¢l
= ;((Eq» — (v, 0 Eu, E¢y — (v, $y) En))
= ij((Ecpk, Ed)) —2 ij(v, & )((Eu, Edy)) + ;(v, ¢)*((Eu, Eu))
= |El} — 2((Eu, E ij(v, $))) + [Vl Eul?
= | El3 — 2((Eu, Ev)) + | Eu|?||v|?, (2.43)
and taking u = M~'K~'y/(y, s) and v = M~'K~'y, we immediately obtain

IEU — M~ K~ y(M™' K"y, )/(y, sNII3
= IEI; —2(EM™'K™'y, EM'K™'y)/(y, s)
+IEMT' Ky IPIMT K Y1/ (y, 5)
= IEI; + (=2(y,s) + IMT'K~"yIPHIEEM ™' K~ y I/ (y, 5)?
<EI; — (A =20 IEM™' K~"yI? /(0 = p)IM™' K~ yP1=(1 = wA)||El%,
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which reduces to (2.40).
Owing to (2.40), in order to establish (2.41) we need only prove

IEM™' K™ y[(KMs,-) — (M7'K™'y, )1/(y, 5)ll2
=EM'K~'y(M™ K™y — Ms, )/ (y, s) ]l
= MK yllIM~ K~y — Ms||/{y, I Ell
<MK~y — Ms||/[(1 — p)IM~ K~ YITIE],.

Inequality (2.42) can be reduced in a similar fashion. In fact,
(v — As)KMs,-)/(y,s)ll; = Z Iy — As)(Ms, ¢)/ (. s)II?
k
=D Ny — AsIP(Ms, $)*/(y, 5)* = lly — As|PIMs[*/(y, s)%,
k

SO

Iy — AsHK Ms, ) /(y,s)ll. = lly — Asll I Msll/(y, s)
<y - Asl/{y, sIM™'K ™'y — Ms|| + IM~'K ' yl)}
< lly — Asli/[d = p)IM~' K" yI211 + p)IM 'Kyl
<2lly - Asll/IMT'K"y].

LEMMA 2.5. Let M satisfy the conditions in Lemma 2.4 and let By — A € %,(H).
Then (si, yi) # 0, and By, is well-defined and satisfies

I Biss — Al < 201+ UK MllIsi — Ayell /T2 = p)* IM™' K™ yill]
+ (V1= uv2+5/2IMse — M7 K7yl /I(L — IM ™' K7y I3 Be ~ Allw,
(2.44)

where p = (1 —2p)/(1 — p*) € [3/8,1] and v = |KM(Bx — A)yell/(I| By —
AllmlIM~ K=yl

PROOF. It follows by the QNM algorithm and (2.39) that y, # 0 and (s;, y) # 0. So
By, is well-defined by (2.7).
According to Lemma 2.3 we have

Evyy = P EyP + KM (si — Ay ){(KMsy, <)/ (yi Se)

(2.45)
+ Msi(P*KM(s, — Ayi), =)/ (Y Sk),

where Eiyy = KM(Biyy — A)KM, E. = KM(B, — A)KM, and P = [ —
M_IK_lyk(KMsks ')/(yks sk)'
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Applying Lemma 2.4, we have
1P*EPI: < |VI= 00 + IMse = M~ K~ yell /10 = UMK 51} 1P Eull
< {14+ IMsc = M7 K™y /1= )M K™yl BEP .
Hence,
IP*EP|; < {1+ M5 = M7 K~y l/1CL = ) IM™ K~ yill])

x {VT=w0? + M5, — M7 K 5l/10 = UM K 1} 1El
(2.46)

< {VI= w2 + 51Ms — M7 K™ yell /1201 = 9)IM7 K~ yill)} 1Bl
Next, we estimate the other two terms of (2.45). Since

| KM (s, — Ay ) (K Msi, )/ (i, si)ll3 = Z | (Msi, @) K M (s — Ay P/ (Ves 5i)*
= (Msi, . 1K M (s — Ay)IP/ (v 5¢)?

= IMs|IPIK M (se — Ay IR/ (e 56)°
and

IMsell < IMT'K™ yell + [IMse — MKyl < (L )M K ),
we have

IKM (s — Ay (K Mse, )/ (i, si)ll2 = IM sl KM (s — Ayl / (Ve S)
<+ pIM Kyl K Mllse — Ayell /T = p)IM™ K™ el

(2.47)
= 1+ pIKM|lsc — Ayll/I(2 — P)IM ™K™' yell]
On the other hand,
P =Pl <+ MK 'y(KMs, - ,
NP =PI <1+ Vil K Msi, )/ (e, si) (2.48)

<1+ d+p)/(1A-p)=2/(1-p),
and hence
| KMsi(P*KM (s — Ayi), )/ (Ye» sidllz
= |P*KM(sy — Ayl Msell/(ye, si)
< WP K MIllise — Ayell(1 4+ ) IM ™ K yell/[(1 = p) 1M~ K~y
<201 + PIK Mllllsi = Ayll/I(1 = p)IM ™ K™ y]l). (2.49)
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Summing up (2.46), (2.47) and (2.49) and considering ||Byy — Ally =
|KM(Byyy — AYKM||; = || Egqa ]2, we immediately obtain the estimate (2.44) from
(2.45).

THEOREM 2.6. Let assumptions H1, H2, and H3 be satisfied. Then the sequence {x,}
generated by the QNM algorithm is well-defined and converges to x* provided that
the initial guesses xo and By satisfy the conditions of Lemma 2.2.

PROOF. Because f”(x*})[-, -] is a bounded symmetric bilinear form on H x H, there
is a selfadjoint operator T € #(H) such that

f'&xM)s, 1] = (Ts, 1), Vs, t € H.

Moreover, by assumption H3, there exists a selfadjoint positive operator M € Z(H)
such that M2 = T. Hence

F'(x)s, ] = (M?s,t) = (Ms, Mt),  Vs,t € H.
Forany y € H we have K~'y € H and
y=f'xMsC) = (K'y = M?s,) = KIM(M™' K™y — Ms)I(). (2.50)
But, by assumption H2 and the QNM algorithm one has
e = £/ sl = 1F Grrr) = ') — f7 )il
/O-I[f"(x" + t (et = X)) = fU X)X — xe) dt

2.51)
< Lllxesr — xll?/2 = Lllsell*/2.
So
15— MKyl = MK = £/l 25
<M~ K~ |ILlIsell*/2.
Moreover, by assumption H3 there is a k > 0 such that
lisell/ie < IM~ K=" yell < iellsell- (2.53)
Summarizing (2.50), (2.51) and (2.53), we have
IMsy — M7yl < pliIM™' K™y, (2.54)
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where p € (0, 1/3). It follows by Lemma 2.1 that B, — A € %,(H’, H). Therefore
by Lemma 2.5

IBiss — Alls < [\/1 —? + 5| Ms, — M7 Ky /1201 — p)uM"K“yku]]
x 1B = Allw +2(1 + p)IK Mlllise — Ayell/I(1 — p2IM™ K" yell]. 2.55)
Considering (2.52) and (2.53), we have

lIse — Ayell = IAGe — " ()sell < BAINLIsell?/2

o (2.56)
< OLkl| M7 K™ yill /2l sill-

If we seta; = S5Lk||[M~'K~'/[4(1 — p))and @, = (1 + p)Lk || K M| /(1 — p)?, then
from (2.55) we have
IBesr — Ally < (1 + a100)|| By — Ally + o205,

where 0, = max(|[xg; — x|, lxe — x*|))-
It follows by Lemma 2.2 that the conclusions of Theorem 2.6 are true.

From [8] we quote the following result.

THEOREM 2.7. Assume that the requirements in Theorem 2.6 are satisfied and that
Ao — F'(q*) is compact. Then the sequence {x,} generated by QNM is Q-superlinear
convergent, that is,

Jim Jlxeer — x| /llxe — x*|| =0,

provided ||xo — x*|| is sufficiently small.

3. Identification of a nonlinear parabolic system

The problem we address here is to identify the parameter g appearing in a parabolic

semilinear equation
du — Au+ q*u* =0, x,)eD=Qx (0, 7T),
3.1)
ulag =0, Ul = g(x),
based on the final measurement of the state «
ul=r = z2(x), x €. 3.2

The assumptions we use in this section are as follows:
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Al. © C R" is bounded and its boundary 9 € C**#, where B € (0, 1);
A2. g e C**F(Q).

For any g € C#(Q) it was proved in [14] that problem (3.1) has a unique classical
solution, u € C*#+A/2(D). So, we denote u = u(g) = u(x,t;q) to show the
dependence of 4 on q.

The problem of identification is stated as an optimization problem

1(q) = 1/2l|u(;, T; q) — zll72.q, — min. (3.3)

But the above problem is, usually, ill-posed in the Hadamard sense. Thus, we introduce
a regularization term as follows:

J(@) =1/201u(, T; @) — zlii2q, + @/2lqll%;, (34)

where « > 0is a constant, H = H'(Q), and the order [ of the Sobolev space is chosen
such that H is compactly embedded in C#($2). For example, [ = 1 when m = 1 and
| =2whenm = 2 or 3.

It follows by [21] that the optimal parameter for the problem (3.4) converges to the
optimal parameter of the problem (3.3) asa — 0.

THEOREM 3.1. The functionu : H — V = C**#'+8/2(D) defined by (3.1) is infinitely
differentiable, that is, u € C¥(H; V), VN € N U {0}, where C"(H; V) denotes the
linear space of N-times continuously Fréchet differentiable functions on H to V.
Moreover, the first Fréchet derivative u'(-) : H — £ (H; V) and the second Fréchet
derivative u”’(-) : H - £ (H; £(H;V)) of u at q are implicitly determined by
u'(q)h = uandu”(q)hk = i, Yh, k € H, respectively, where u and ii are determined
by the problems

du — Au+ 2q*ui = —2qu’h, (x,t)e D

ulse =0, =0 =0,

3.9

and

8,ii — Ali + 2q*uii = —4quvh — d4quuk — 2q*uv — 2u*hk, (x,t)e D
ﬁlan = O, a|l=0 = O, (36)

where u = u(q) is determined by (3.1), u = u'(q)h and v = u’(q)k are determined
by (3.5), respectively.

PROOF. First, we prove u € CV(H; V).
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Take, for example, N = 0. The proof is similar for any order N. Letgq,q € H.
Then it follows from (3.1) that &t = u(g) andu = u(q). Seth =qg—qanddu = i —u,
so du satisfies

3, (8u) — ABu) + q*(a + u)(du) = —(q + q)i*h, (x,1) € D,
(8u)lsa =0, (6u)li=0 = 0.
It is obvious by {14} that ||Su|ly = O(||h]lx). Hence u(-) € C(H; V).
Secondly, we prove u(q)h = u. For q,h € H, there exists a unique solution

u € V to the problem (3.5). Thus, set g = g + h, u = u(q), u = u(g), and
U =u—u—u=d8u—u. ltisevident that # satisfies

37

8t — At + q*( + wit = —q*udu — (q + q) (@ + u)hdu — u*h?, (x,t) e D,

ilae =0, Uli= = 0.

It follows from (3.5) by [14] that & = O(||k||y). Moreover, by the above argument
we obtain du = o(1). Therefore, u = o(||h]]). Hence, u'(g)h = u. It is similar to
prove u”(q)hk = u.

Next, we give the following result.

THEOREM 3.2. There exists an optimal element for the optimization problem (3.4).

PROOE. Suppose that {g,} is a minimizing sequence for the optimization problem (3.4),
that is,

J(g,) = h = inf J(q). 3.8

qeH
Thus {gq,} is bounded in H. Since H is a Hilbert space, there exists a subsequence,
which is still denoted {q,}, such that g, — §, in H.' By the property of compact
embeddedness of H, it follows that g, 5 g in C#(2). Furthermore, by Theorem 3.1

we obtain that u(g,) - u(g) in C*+£1+62(D).
We can write J(g,) as

J(ga) = 1/21u(, T; ga) — 2l + @/2019a11% = 11(ga) + 1(ga). (39

Obviously, J,(g.) = @/2]|q.|l% is convex and strongly lower semi-continuous, so it is
also weakly lower semi-continuous. Letting n — oo in (3.9) and considering (3.8),
we obtain

J@ = 1/21u(, T3 §) = 2ljaq + /20417, = inf J (@)
That is, g is the optimal element.

g, = % (orx, = ¥), in X” means that x, strongly (or weakly) converges to x in X.
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For calculating J'(g) we have the following results.

THEOREM 3.3. The functional J(q) defined by (3.4) is twice continuously Fréchet
differentiable and its first Fréchet differential J'(q)h is determined by the formula

J'(@h = (j(q), h), Vh € H, (3.10)

where j(q) € H' is defined by

T
j@)=-2 /0 ap(u*(g)dt + aKgq, (3.11)

K : H — H’ is the canonical isometry, u(q) = u is determined by (3.1), and
p(q) = p is defined by the problem

—3,p— Ap +2¢%up =0, (x,t) € D,

3.12)
P|afz =0’ pll:T =u(T§(I) - 2.

Moreover, the second Fréchet differential J"(q)hk is determined by the formula

T
J"(g)hk = —4quuk — 4quvh — 2q*uv — 2uthk, p) dt
@ fo (—4quu quv q uv —2u p) (3.13)

+ (u(T), v(T)) + a(h, k), Vh,k € H,

where u = u'(q)h and v = u'(q)k are determined by (3.5) and (-, -) and (-, -) denote
the inner products in L*(Q2) and H, respectively.

PROOF. It follows from the calculation

J(g+h) — J (@) — {{u(T; q), u(T; q) — 2) + a(q, h)}
=1/2u(T;q+h) —u(T;q) —u'(@)h(T), u(T; q + h) — z)
+ 1/2(u'(@)h(T), u(T; q + h) — u(T; q))
+1/2(u(T; q) — z,u(T; g + h) —u(T; q) — u' (@h(T)) + /2||k |},
= o(|IAIl),

that

J'(@)h = u(T; q),u(T; q) — z) + (g, h), Vhe H. (3.14)
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Consideration of u(0; g) = 0 and p(T;q) = u(T;q) — z and use of Green’s
formula lead to

T
@(T; q), u(T; q) — 2) = (@(T; q), p(T; @) = / 3, (i, p) dt
0

T T
=/ {<a,u,p>+<u,a,p>}dt=f (@i, p) + (i, —Ap + 2q°up)} dt
0 0 (3.15)

T T
= / (8,4 — At + 2q%uu, p)dt = (—/ 2quipdt, h).
0 0

Since H is a Sobolev space of order [ with! > 0, H is compactly embedded in L2(£2).
If we choose L2(2) to be a pivot space, that is , L2(2) = [L2(R2)], then

HcCL¥Q)CH. (3.16)

Because K is the canonical isometry from H onto H’,
L]

(q, h) = (Kq, h)LZ(Q), Vq, heH. (3.17)

Substitution of (3.15) and (3.17) into (3.14) leads to
T
J'(g)h = (—2/ qu’pdt + Kgq, h>, VYh € H. (3.18)
0

From (3.11) we see that (3.10) holds.
Furthermore, by (3.14) we obtain

J'(q + Kb — T (@)h — {{u"(@)hk(T), u(T; q) — z) + (u(T), v(T)) + a(h, k)}
= {(' (@ + A(T), u(T;q + k) —z) +a(qg + k, h)}
— (W' (@h(T), u(T; q) — 2) + a(g, h)}
= {u(T), u(T; q) — z) + (u(T), »(T)) + a(h, k)}
= (u'(q + kK)h(T) — W' (@)h(T) — i(T), u(T; q) — z)
+ (u'(g + K)h(T), u(T; q + k) — u(T; q) — v(T))
+ (u'(g + K)R(T) — u' (@h(T), ¥(T)) = o(lhl* + lIkI1?).

Thus, J(q) is twice Fréchet differentiable and its second Fréchet differential is

J"(@Yhk = (i(T), u(T; q) — z) + (u(T), 0(T)) + a(h, k) Vh,k € H.
3.19)

https://doi.org/10.1017/50334270000012339 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000012339

18 Wenhuan Yu [18]

Using u(T; q) — z = p(T, q) from (3.12) and using an argument similar to (3.15),
we have

T
(), u(T; q) — 2) = (i(T), p(T; q)) = f 3,4, p) dt
0

T T
= / {(8,it, p) + (i, —Ap + 2q*up)}dt = f (8,4 — Aii + 2q°uii, p)dt
0 0

(3.20)
T
= / (—4quik — d4quih —2g*uv — 2u*hk, p) dt.
0

Substituting (3.20) for the first term of (3.19) we obtain immediately (3.13).

The following Lemma is quoted from [7].

LEMMA 3.4. Let (S, Z, u) be a positive measure space. Then an operator A in the

Hilbert space L*(S, =, w) is of Hilbert-Schmidt class if and only if there exists a ju X
measurable function A(-, ) on S x § such that

1/2
{//IA(x,t)lzp,(ds)u,(dt)} < 00 (3.21)
sJs

and such that

Af(s) E/A(s, N fOu dr), fel’S, 2w, (3.22)
S

for p-almost all s. Moreover, || Al|; is exactly equal to the finite quantity (3.21).

LEMMA 3.5. The operator 1"(q) : LY(2) — L2(R) is of Hilbert-Schmidt class, where
I1(q) is defined by (3.3).

PROOE. It is obvious that

I"(q)hk = (W' (T; @)k, u'(T; g)h) + (u"(q@)hk(T), u(T; q) — z) (3.23)
and

I"(@)h = [W'(T; @)1'u'(@h(T) + [u'(T; q)h)'[u(T; q) — 2], 3.29)

where [u'(T'; q)1* and [u”(T'; q)h]* are the dual operators of u'(T'; q) and u"(T'; q)h,
respectively. Moreover, from [14] and problem (3.5), it is easy to see that

T
W (T; @h(x) = —2 / / G(x, & T, g€ E, T3 Oh(€) dedr, (3.25)
0 Q
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where G (x, &, t, 1) is the Green function of the problem (3.5), and hence

T
[ (T; )T k(x) = —2q(x)/ / GE,x, T, Dul(x, T; qg)dtk(£)dE Vk € H.
e J0 (3.26)

Substitution of (3.25) into (3.26) and consideration of Lemma 3.4 lead to the conclu-
sion that the operator

[W'(T; @)T'u'(T; q) : L* () — LX(RQ)

is of Hilbert-Schmidt class.

We need the following assumption.

A3. Suppose that there exists a ¢* € H such that
I(g*) =minI(g). 3.27)
qeEH

It is obvious that assumption A3 implies /'(g*) = 0 and 1”(g*) > 0. Thus,
J"(gh? = 1"(g")h* + a(h, h) > a|h|?, Vh e H, (3.28)
thatis, J”(g*) is strictly positive. Therefore, g* solves the following operator equation
K~'I'(g*) =0. (3.29)
When « is small, instead of (3.29) we consider the equation
f@=K'J(@g)=K"I'(q)+aq=0. (3.30)

Using the QNM algorithm stated in Section 2, we obtain an approximate sequence
{g.}, and its convergence is proved in the following theorem.

THEOREM 3.6. Letassumptions A1, A2, and A3 be true. The sequence {q,} determined
by the QNM algorithm is superlinearly convergent providing that qo and Ay satisfy
the conditions of Lemma 2.2 and that Ay — f"(q"*) is compact.

PROOF. Under assumptions A1-A3, the function f’'(q) defined by (3.30) satisfies as-

sumptions H1-H3 of Section 2. Thus, by Theorem 2.7 the conclusions of Theorem 3.6
follow immediately.
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In order to solve (3.30) we used the QNM algorithm for the one-dimensional case,
that is, Q@ = (0, 1). Moreover, we take H = H] (2), and hence K = —3%/9x>.

Suppose that g(x) = sin’wx and that the true parameter in (3.1) is g, (x) =
x(1 — x). Then z in (3.2) is z = u(T; q,,). We used the Crank-Nicholson implicit
finite difference method, for example see [15], to discretize (3.1) and (3.2), that is, we
could, for example, replace d,u(i Ax, j At) with

du(Ax, (j + 1/2)At) =~ 2(u; j12 — uij)/ At,

where u; ; = u(iAx, jAt) and u; j . = u(idx, (j + 1/2)Atr).
Therefore one could obtain the three-level stable approximate equations

1 2
22
K;(ui+l.j+l/2 - 2ui.j+1/2 + ui—l.j+1/2) = E(ui.j+l/2 - ui.j) + g; U;;

and

ui-—l,j+l/Ax2 —-2(1/Ax* + 1/Atu; j + ui+l,j+l/Ax2
= _ui—l,j/Ax2 + 2(1/Ax2 - I/At)u,'_j —_ u,-+|‘,~/Ax2 + qfu§j+,/2.

We also have similar discrete equations for problem (3.12).
In this paper we took T = 1, Ax = 0.1, At = 0.05,and N, = 1/Ax.
The computational results are summarized in Table 1, where

Ag; = q(iAx) — g, (i Ax),

my =Yoo Agi/ (N, + 1),

o1 = /X[ Ag — m F/N,.

s =/ TicolAgi,

yi =u(iAx) — z(iAx)

my = Z,N;o yi/(Ny + 1),

o = \/Z.{v:xo[)’i — my)?/N;,,

J=Ax YNy 24+ a Y [q(G + 1) Ax) — qi Ax)P/2Ax.
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TABLE 1. Convergence for the algorithm QNM

Iteration
Times

o s m; o, J

635.135
78.117
1.084E—5
1.381E—-13

1 14.087
4.466
94E-2

9.06E-2

1.25E-5
1.68E—6
521E-7
3.22E-7

1.309E-5
1.724E—6
7.459E—17
3.007E-7

—8.359
-2.057
0.849
0.85

53.841
38.353
4.37E-5
2.33E-7
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