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The transition to dripping in the gravity-driven flow of a liquid film under an inclined
plate is investigated at zero Reynolds number. Computations are carried out on a periodic
domain assuming either a fixed fluid volume or a fixed flow rate for a hierarchy of models:
two lubrication models with either linearised curvature or full curvature (the LCM and
FCM, respectively), and the full equations of Stokes flow. Of particular interest is the
breakdown of travelling-wave solutions as the plate inclination angle is increased. For
any fixed volume, the LCM reaches the horizontal state where it attains a cosine-shaped
profile. For sufficiently small volume, the FCM and Stokes solutions attain a weak
Young–Laplace equilibrium profile, the approach to which is described by an asymptotic
analysis generalising that of Kalliadasis & Chang (J. Fluid Mech., vol. 261, 1994, pp.
135–168) for the LCM. For large volumes, the bifurcation curves for the FCM and Stokes
model have a turning point so that the fully inverted state is never reached. For fixed flow
rate, the LCM blows up at a critical angle that is well predicted by asymptotic analysis. The
bifurcation curve for the FCM either has a turning point or else reaches a point at which the
surface profile has an infinite slope singularity, indicating the onset of multi-valuedness.
The latter is confirmed by the Stokes model, which can be continued to obtain overturning
surface profiles. Overall, the thin-film models either provide an accurate prediction for
dripping onset or else supply an upper bound on the critical inclination angle.
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1. Introduction

The flow of a viscous liquid film down an inclined plate is of fundamental theoretical
and experimental interest; see, for example, the review article by Craster & Matar (2009)
and the monograph by Kalliadasis et al. (2011). While most research on this topic has
focused on the flow down the upper side of a plate, there has been steadily growing
interest in understanding the dynamics of inverted films, including those flowing down
the underside of a plate, and hanging beneath an inverted plane wall. Of particular interest
are the fundamental mechanisms responsible for dripping wherein gravitational effects
lead to the formation of large-amplitude structures on the surface of the film that form into
droplets and ultimately detach (Indeikina, Veretennikov & Chang 1997; Lin & Kondic
2010; Brun et al. 2015; Scheid, Kofman & Rohlfs 2016; Rohlfs, Pischke & Scheid 2017;
Charogiannis et al. 2018; Kofman et al. 2018; Zhou & Prosperetti 2022).

A wide range of technological devices and industrial, environmental and biomedical
processes make use of inverted or partially inverted films. Industrial applications
include liquid film coating and fills in cooling towers (Rohlfs et al. 2017), and
environmental applications include glacier hydrology and the morphogenesis of cave
patterns (Camporeale 2017). In biomedicine, inverted films arise in the process of
microbicide epithelial coating used for protection against HIV (Hu 2016). Understanding
the dynamics of inverted films, including dripping phenomena, is also relevant to forensic
science, for example in blood pattern analysis (Kabaliuk et al. 2013). In these and other
applications, various fluid dynamical features are of especial importance. For example,
destabilising effects such as gravity and inertia produce spatial heterogeneity that might be
desirable in some applications (e.g. heat transfer in cooling films and falling-film chemical
reactors) but detrimental in others (e.g. in film coating).

A viscous film falling down a vertical wall under the influence of gravity is stable in
the absence of inertia (Benjamin 1957; Yih 1963). As the inclination angle is increased
beyond the vertical, the film becomes partially inverted and thereby susceptible to the
gravitational Rayleigh–Taylor linear instability. If the inclination angle is not too great,
then one might expect that linear disturbances will grow, become dominated by nonlinear
effects, and ultimately saturate; and indeed experiments (Brun et al. 2015) show that
the film surface develops large-amplitude travelling-wave structures. However, common
experience suggests that beyond a critical angle, disturbances do not saturate but continue
to grow in size, eventually leading to dripping. This suggests that a possible approach
to understanding and predicting dripping onset is to track the branch of travelling-wave
solutions via a continuation method with a view to observing some form of breakdown
at the critical angle. A preliminary attempt at this for the fixed-volume case was made by
Kofman et al. (2018) using weighted residual integral boundary layer models.

In the fully inverted state, there is no preferential flow direction and it is possible to
obtain static equilibria that correspond to solutions of the Young–Laplace (henceforth YL)
equation expressing a balance between surface tension and gravity. Such equilibria were
constructed in two dimensions by Pitts (1973), who showed that in agreement with physical
intuition, static solutions exist provided that the drop volume is sufficiently small. In line
with this, the branch of static solutions computed by Pitts (1973) has a turning point at a
certain volume; and, in fact, two possible static equilibria co-exist over a particular range
of volumes, although only one of these is stable (Pitts 1973; Lowry & Steen 1995). Static
hanging-drop solutions have also been computed for inclined planes (Pozrikidis 2012). YL
solutions are relevant to the dripping problem since, following the travelling-wave protocol
suggested above and provided that certain conditions are met, they should be attained in
the limit as the plate becomes fully inverted. This will happen in the fixed-volume case if
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the fluid volume is less than the threshold value identified by Pitts (1973). However, if the
volume exceeds this threshold value or, as is intuitively clear, if the flow rate in the film is
fixed, then the horizontal state cannot be reached via continuation. In this case, we might
anticipate that the branch of travelling-wave solutions cannot be continued to the fully
inverted state and, consequently, that dripping should occur at some angle before this.

In an alternative viewpoint, the onset of dripping on an inverted film has been discussed
in the context of convective and absolute instability by a number of authors, including
Brun et al. (2015) – who proposed the idea – Scheid et al. (2016), Kofman et al. (2018)
and also Tomlin, Cimpeanu & Papageorgiou (2020), who applied it to an electrified film.
This approach was criticised by Zhou & Prosperetti (2022), who claimed that the dripping
mechanism is intrinsically nonlinear and, consequently, cannot be adequately explained as
a transition from convective to absolute instability. In an approach similar to that adopted
here but for the fixed-volume case only, Zhou & Prosperetti (2022) carried out numerical
computations of the full Navier–Stokes equations using the open-source software Basilisk
(http://basilisk.fr). By solving the unsteady form of the equations from a prescribed initial
condition, and by slowly and continuously increasing the inclination angle of the plate
during the simulation, they were able to compute near travelling-wave states in which
the film exhibits a localised drop-like bulge in the centre of the computational domain.
In particular, they found that such a state is reached provided that the inclination angle
does not become so large that the localised drop detaches from the film, corresponding to
dripping. They linked the drop detachment process with the point at which the curvature
at the drop tip exceeds the tip curvature of a static YL drop of maximum volume for a
fully inverted plate. They provided corroborating evidence to support this connection by
overlaying the YL solutions onto their simulated wave profiles at times near to the onset
of dripping.

There remain two outstanding issues of primary importance. The first is to provide an
indicator for the onset of dripping that can be measured easily or computed and hence
utilised in practice by the wider community. The second is a rigorous mathematical
justification of the use of this indicator. In an attempt to provide these, in this paper
we compute travelling-wave branches both for the fixed-volume case and for the
fixed-flow-rate case. Both of these set-ups are relevant to applications. In particular, we
perform a proper continuation study of travelling-wave solutions supported by asymptotic
analysis. For simplicity, and to focus on the competition between surface tension and
gravity, we disregard fluid inertia. We study models with increasing levels of complexity.
At the simplest level, we employ a classical lubrication model that includes a rational
linearisation of the curvature at the film surface. This is complemented by an ad hoc
generalised model in which the same equation is used but with the full curvature term
substituted arbitrarily. Such an approach has been followed by other authors in the
literature for various related problems (e.g. Eggers & Villermaux 2008; Kofman et al.
2018; Lopes, Thiele & Hazel 2018). Here, this step is motivated by the observation that
for inverted flow, we expect large-amplitude surface deformations and, consequently, that
the capillary pressure, and hence the curvature, will play a dominant role in the dynamics.
Moreover, including the full curvature term allows for the full YL equation for the static
configuration to be recovered in the limit when the plate tends to become horizontal.

The rest of the paper is organised as follows. In § 2, we define the mathematical
problem and discuss the relevant dimensionless parameters. In § 3, we present the thin-film
equations and discuss an equivalence between the fixed-flow-rate and fixed-volume cases
that holds for the linearised curvature model. In § 4, we present an asymptotic analysis of
the full curvature lubrication model for the fixed-volume case that is valid in the limit as
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Figure 1. (a) Schematic representation of a viscous liquid film flow down an inclined plane wall.
(b) Schematic for the fixed-volume case showing a drop on a thin precursor film.

the plate becomes fully inverted. The numerical method that we use for the full Stokes
computations, which is based on a boundary-integral formulation and which employs
a spectrally accurate representation for the flow, is developed in § 5. In § 6, we present
the results of our numerical computations. Finally, in § 7, we summarise and discuss our
findings.

2. Problem statement

We consider an inverted two-dimensional viscous liquid film that is flowing down the
underside of a plane wall that is inclined at an angle β to the horizontal, where π/2 ≤ β ≤
π (see figure 1a). We use Cartesian coordinates (x̃, ỹ), with x̃ and ỹ measuring distance
along the wall and normal to it, respectively, as shown in the figure. We use tildes to
indicate dimensional variables. Assuming that inertia is negligible, the flow is governed
by the Stokes momentum and continuity equations, namely

0 = −∇̃p̃ + μ ∇̃2ũ + ρG̃, ∇̃ · ũ = 0, (2.1a,b)

where p̃ and ũ = (ũ, ṽ) are respectively the pressure and velocity in the liquid film,
G̃ = g(sinβ,− cosβ) is the gravitational acceleration, and ∇̃ = (∂/∂ x̃, ∂/∂ ỹ). The
dynamic viscosity and density of the fluid are μ and ρ, respectively. The pressure in the
air below the film is taken to be zero without loss of generality.

At the wall, we have the no-slip condition, ũ = 0 at ỹ = 0. At the free surface, we must
impose the kinematic condition, Df̃ /Dt̃ = 0, where f̃ = 0 describes the location of the free
surface, and t̃ denotes time. In the simplest case, the free surface is a graph of a function
such that f̃ = ỹ − h̃(x̃, t̃), and the kinematic condition takes the form

ṽ = h̃t̃ + ũh̃x̃, (2.2)

at ỹ = h̃(x̃, t̃). Also, at the free surface, we impose the dynamic stress conditions

t · T̃ · n = 0, n · T̃ · n = σ κ̃, (2.3a,b)

where σ is the surface tension coefficient, and t and n are the unit tangent and unit
normal vectors at the free surface, respectively, with n pointing into the liquid. The free
surface curvature is given by κ̃ = ∇̃ · n and is positive/negative as illustrated in figure 1(a),
and T̃ = −p̃I + μ(∇̃ũ + ∇̃ũT) is the Newtonian stress tensor in the liquid (where the
superscript T denotes matrix transpose).
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For a flat film of uniform thickness h0, the velocity field inside the film adopts the
unidirectional Nusselt velocity profile with velocity components

ũ(ỹ) = ρg sinβ
2μ

(2h0ỹ − ỹ2), ṽ = 0. (2.4a,b)

The associated flow rate is

q̃ = ρgh3
0 sinβ
3μ

. (2.5)

When β = π, the film is static and the relevant solutions correspond to a balance
between surface tension and gravity, that is, solutions to the YL equation discussed in
Appendix A.

According to the definition of q̃, to maintain the same flow rate for a flat film, the film
thickness changes with the inclination angle so that

h0(β) = h∗

(sinβ)1/3
, (2.6)

where h∗ = (3μq̃/ρg)1/3 is the flat film thickness that is obtained on a vertical wall so that
h∗ = h0(π/2). It is convenient to introduce dimensionless variables that are independent
of β. To do this, we use h∗ as the length scale, 2μ/ρgh∗ as the time scale, and ρgh∗/2
as the pressure scale. This reveals the dynamical importance of the dimensionless Bond
number

Bo = ρgh∗2

2σ
, (2.7)

and the dimensionless flow rate

q =
(

2μ
ρgh∗3

)
q̃ = 2

3
h3

p sinβ, (2.8)

where q̃ is the dimensional flow rate for a Nusselt film defined in (2.5), and

hp = h0

h∗ = 1
(sinβ)1/3

(2.9)

is the dimensionless upstream film thickness. Henceforth we drop the tildes to indicate
dimensionless variables. In what follows, we will perform calculations assuming a
dimensionless fixed flow rate q at different inclination angles β, and also calculations
in which the flow is assumed to be periodic in x with a fixed volume in each period, again
for different inclination angles.

Simplifications can be made in the case when the thickness is small in comparison to the
typical length scale of any streamwise variations. This is considered in the next section.

3. Thin-film analysis

Assuming that the length scale of the interfacial deformation λ is large compared with h∗
(i.e. the so called thin-film parameter ε = h∗/λ is small), the film thickness satisfies the
model equation, made dimensionless according to the scales given in § 2:

ht + qx = 0, q = h3Px, P = 2 sinβ
3

x − 2 cosβ
3

h + 1
3 Bo

hxx, (3.1a–c)

where h(x, t) and q(x, t) are the dimensionless film thickness and flow rate, respectively,
and P(x, t) represents a combination of the leading-order effects of gravity and
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surface tension. The latter includes the hydrostatic pressure due to gravity, represented
by the first two terms (giving the x and y components, respectively), and the capillary
pressure due to surface tension, represented by the third term. Equation (3.1a–c) is derived
using systematic asymptotics in Kalliadasis et al. (2011) (see also Tseluiko, Blyth &
Papageorgiou 2013), and is valid in the present case of negligible inertia provided that
Bo = O(ε2) and cotβ = O(ε−1) (Blyth et al. 2018).

We seek travelling-wave solutions in the form of localised pulses or drops such that the
film thickness h becomes constant upstream and downstream. Introducing a moving-frame
coordinate via the mapping x �→ x + ct, for constant wavespeed c, a travelling-wave
solution h(x) to (3.1a–c) must satisfy[

−ch + h3
(

2 sinβ
3

− 2 cosβ
3

h′ + 1
3Bo

h′′′
)]′

= 0, (3.2)

where a prime indicates differentiation with respect to x. We either fix the dimensionless
flow rate q, which effectively sets the film thickness upstream and downstream via (2.9),
or else fix the volume of fluid over a specified domain [−L, L], that is, we set

∫ L

−L
h dx = V, (3.3)

for some V .
There exists an equivalence between a fixed-V localised droplet solution with a

precursor film thickness hp(β) for an angle β and a fixed-q solution with upstream film
thickness ĥp(β̂) for a certain angle β̂. This equivalence is established by noting that
transforming (3.2) so that

h �→ hp(β) h, x �→ (−2 Bo cosβ)−1/2x, c �→ 1
3(−8 Bo cos3 β)1/2 h3

p(β) c (3.4a–c)

for the fixed-volume case, and

h �→ ĥp(β̂) h, x �→ (−2 Bo cos β̂)−1/2x, c �→ 1
3(−8 Bo cos3 β̂)1/2 ĥ3

p(β̂) c (3.5a–c)

for the fixed-flow-rate case leads to the same equation, namely

[−ch + h3 (γ + h′ + h′′′)]′ = 0, (3.6)

subject to the condition that h approaches unity in the far field, where

γ = − tanβ
hp(β) (−2 Bo cosβ)1/2

= − tan β̂

ĥp(β̂) (−2 Bo cos β̂)1/2
> 0. (3.7)

The upstream film thickness for the fixed-flow-rate solution is known via (2.8) to
be ĥp(β̂) = (3q/2 sin β̂)1/3, but the precursor film thickness hp(β) for the fixed-volume
localised droplet case must be found as part of the solution to the problem. Equation
(3.6) was also derived and analysed by Kalliadasis & Chang (1994) in a different
context, namely drop formation on vertical fibres. They showed that solutions to (3.6)
with h(±∞) = 1 blow up as c → ∞ such that γ → γc ≈ 0.5960. The problem was
later revisited by Yu & Hinch (2013), who supplied higher-order corrections, noting that
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γ = γc + 0.33c−2/3 + 0.19c−1 + O(c−4/3). The implications for the present work are: (i)
for the fixed-V case,

hp(β) = π − β

γc(2 Bo)1/2
+ o(π − β) (3.8)

as β → π−, and (ii) for the fixed-q case, there is a critical angle, β̂c say, at which blow-up
occurs, that satisfies

(sin β̂c)
4/3

21/631/3q1/3 Bo1/2(− cos β̂c)3/2
= γc ≈ 0.5960. (3.9)

A common approximation adopted in the literature is to replace the simplified curvature
term in (3.1a–c) with its exact form. Such an approximation is ad hoc, but nevertheless
it has been used successfully to predict thin-film flows in a number of different contexts,
for example in liquid-film break-up (Gauglitz & Radke 1988). In this case, the thin-film
system takes the form (3.1a–c) but with

P = 2 sinβ
3

x − 2 cosβ
3

h + 1
3 Bo

κ, (3.10)

where

κ = hxx

(1 + h2
x)

3/2 (3.11)

is the curvature. We will refer to this as the full curvature model (FCM), and we will refer
to (3.1a–c) as the linearised curvature model (LCM). Note that there is no equivalence
between the cases of fixed flow rate and fixed volume for the FCM. Similarly, there is no
such equivalence for the full Stokes system described in § 2.

In the fixed-volume case, our particular interest is in the limit when β → π− so that
the wall tends to become horizontal. Numerical computations, which will be discussed
in detail later, indicate that solutions take the form of localised drops with a very thin
precursor film on either side, as sketched in figure 1(b). As β approaches π, the precursor
film thickness tends to zero, and the drop profiles converge to solutions of the YL equation
for a static drop that represent a balance between surface tension and gravity. Such
solutions are discussed in Appendix A.

Given the aforementioned restrictions, the thin-film models formally break down when
β is sufficiently close to π. We will subsequently carry out computations for the full
equations of Stokes flow with a view to assessing the performance of the thin-film models.
This comparison will be presented along with all of our main results in § 6.

4. Asymptotics for β → π− for fixed volume for the FCM

In this section, we present an asymptotic analysis of the fixed-volume FCM solutions in
the limit β → π−. According to the discussion in Appendix A, such an analysis is relevant
provided that Bo V ≤ 2.60 and there exists a limiting static solution (see in particular
figure 14). We do not attempt a similar analysis for fixed flow rate since the numerical
continuation studies to be presented in a later section indicate the presence of either a
turning point or an infinite-slope singularity meaning that the angle β = π is not reached.
For the LCM model, the fixed-volume and fixed-flow-rate cases are equivalent, as was
noted in § 3, and the analogous asymptotic analysis has been carried out elsewhere (see
Kalliadasis & Chang 1994; Yu & Hinch 2013).
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Figure 2. Sketch of the asymptotic regions for the case of fixed volume.

In a frame of reference travelling at speed c in the positive x direction, writing z =
x − ct, the FCM (3.10) becomes

− chz + qz = 0, q = h3
(

2 sinβ
3

− 2 cosβ
3

hz + 1
3 Bo

κz

)
, (4.1a,b)

where the curvature is

κ = hzz

(1 + h2
z )

3/2 , (4.2)

assuming that the solution is a single-valued function of z. Integrating once, we have

− ch + q = Q (4.3)

for constant Q. We introduce the parameter δ = π − β and henceforth assume that δ 

1. The asymptotic solution has the structure depicted in figure 2 and incorporates four
regions: the main part of the drop (region R2), the left-side matching zone (region B1), the
right-side matching zone (region B2) and the precursor films (regions R1 and R3).

In region R2, we expand by writing

h = h0(z)+ δ h1(z)+ δ3/2 h2(z)+ · · · , c = δ3/2c0 + · · · , Q = δ5/2Q0 + · · · ,
(4.4a–c)

where the forms of the expansions have been selected to allow a consistent match between
the regions. The inherent degeneracy in the problem due to a translational invariance in z
is removed by pinning the drop with its maximum at the origin so that h′(0) = 0, where a
prime denotes differentiation with respect to z.

Substituting (4.4a–c) into (4.3) and integrating the leading-order equation once, we
obtain

2h0 + 1
Bo

h′′
0

(1 + h′2
0 )

3/2
= P0, (4.5)

where P0 is a constant of integration. The solution h0(z) is a static-drop at β = π
with the support from −
 to 
. It touches the wall with zero slope at the ends so that
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Figure 3. For V = 8 and Bo = 0.3: (a) leading-order solution h0(z); (b) the functions h1O(z) and h1P(z).

h0(±
) = h′
0(±
) = 0, and has volume V so that

∫ 


−

h0(z) dz = V, (4.6)

and the volume contained in each of h1, h2, etc. is zero. This solution is analysed in
Appendix A. With the pinning condition h′

0(0) = 0, we have

h0 ∼ a0(z ± 
)2 as z → ∓
, (4.7)

where the coefficient a0 can be estimated from the numerical solution and depends on V .
The solution for the case V = 8 and Bo = 0.3 is shown in figure 3(a) and is such that

 = 3.3598 and a0 = 0.3572.

At O(δ), we find after one integration,

(2 Bo)h′
1 +

(
h′

1

(1 + h′2
0 )

3/2

)′′
= −2 Bo. (4.8)

The solution can be written in the form

h1(z) = b1 h1E(z)+ b2 h1O(z)+ b3 + h1P(z), (4.9)

for constants b1, b2, b3, where h1E(z) and h1O(z) are even and odd functions, respectively,
and the particular integral h1P(z) is odd. We assume without loss of generality that
h1E(0) = 1, h′

1O(0) = 1 and h′
1P(0) = 1. Numerically computed solutions for h1O(z)

and h1P(z) are shown in figure 3. Restricting attention to the range [0, 
], since h0(z)
is symmetric about the inflection point at z = 
/2 (see Appendix A), h1O(z) is also
symmetric about the line z = 
/2. The pinning condition h′

1(0) = 0 demands that b2 =
−1. Hence

h1(
)− h1(−
) = 2h1P(
). (4.10)

From our numerical solution, we determine that h1P(
) = −3.3740.
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At O(δ3/2), we find

(2 Bo)h′
2 +

(
h′

2

(1 + h′2
0 )

3/2

)′′
= 3c0 Bo

h2
0
. (4.11)

The solution has the singular behaviour

h2 ∼ −c0 Bo

2a2
0
(z ± 
)−1 (4.12)

as z → ∓
, signalling a breakdown in the expansion (4.4a–c) in region R2 where z ± 
 =
O(δ1/2), thus necessitating the regions B1 and B2 to be discussed below.

In regions R1 and R3, we expand by writing

h = δhp0 + · · · . (4.13)

Substituting into (4.3), we obtain at leading order −c0hp0 = Q0. In region B1, we write
(z + 
) = δ1/2ξ , where ξ = O(1), and expand by writing h = δH0(ξ)+ · · · . Substituting
into (4.1a,b) and integrating once, we obtain

H3
0H0ξξξ − c0H0 = Q0. (4.14)

Matching with regions R1 and R2 requires that

H0 ∼ hp0 as ξ → −∞, H0 ∼ a0ξ
2 + h1(−L)− c0 Bo

2a2
0
ξ−1 as ξ → ∞, (4.15a,b)

respectively. Here, hp0 is the scaled leading-order precursor film thickness to be
determined. If we rescale by writing ξ = (hp0/c

1/3
0 )ζ , H0(ξ) = hp0 F(ζ ), then the problem

takes the form (see also Bretherton 1961)

F3Fζ ζ ζ − F + 1 = 0, (4.16)

with

F ∼ 1 as ζ → −∞, F ∼ μ0ζ
2 + μ1ζ + μ2 as ζ → ∞, (4.17a,b)

where μ0 = a0hp0/c
2/3
0 , and μ1, μ2 are constants to be found. Useful insight is obtained

by reformulating the problem as the first-order system (u1, u2, u3)ζ = (u2, u3, u−2
1 − u−3

1 ),
with (u1, u2, u3) = (F,Fζ ,Fζ ζ ). It is straightforward to show that the fixed point at
(1, 0, 0) has a one-dimensional unstable manifold and a two-dimensional stable manifold.
Thus, if it exists, the solution that fulfils the boundary conditions (4.17a,b) is unique up to
a translation in ζ . This freedom allows us to fix μ1 = 0 so as to satisfy (4.15a,b) and match
with region R2. Solving numerically, we determine that μ0 = 0.3215 and μ2 = 2.8996, in
exact agreement with the values calculated by Yu & Hinch (2013). The numerical solution
is shown in figure 4.

Similar scalings apply in region B2. Writing z − 
 = δ1/2ξ̃ and h = δ H̃0(ξ̃ )+ · · · , the
leading-order equation is found to be identical to (4.14) but with tildes over all of the
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Figure 4. (a) Solution F( y) to the problem (4.16), (4.17a,b). (b) Solution G(Y) to the problem (4.19),
(4.20a,b).

symbols except c0. Matching to regions R2 and R3 requires that

H̃0 ∼ a0ξ̃
2 + h1(
)− c0 Bo

2a2
0
ξ̃−1 as ξ̃ → −∞, H̃0 → hp0 as ξ̃ → ∞, (4.18a,b)

respectively. Rescaling so that ξ̃ = (hp0/c
1/3
0 )Y , H̃0(ξ̃ ) = hp0 G(Y), we have

G3GYYY − G + 1 = 0, (4.19)

with

G ∼ μ0Y2 + ν1Y + ν2 + · · · as Y → −∞, G ∼ 1 as Y → ∞, (4.20a,b)

for constants ν1, ν2. The translational invariance with respect to Y affords the freedom to
set ν1 = 0 as required by the match with region R2 via (4.18a,b).

Recasting as a first-order system, it is readily seen that the fixed point at (G,GY ,GYY) =
(1, 0, 0) has a two-dimensional stable manifold, indicating that (4.19)–(4.20a,b) have a
one-parameter family of solutions for G(Y). The numerical solution, for which μ0 is set
to the value computed above in region B1, determines that ν2 = −0.8453. This is in exact
agreement with the value given by Yu & Hinch (2013).

Using the above results, we have that h1(−
) = μ2hp0 and h1(
) = ν2hp0. Then using
(4.10), we obtain the value of the scaled leading-order precursor film thickness,

hp0 = 2 h1P(
)

ν2 − μ2
= 1.80, (4.21)

and the leading-order wave speed coefficient

c0 =
(

a0hp0

μ0

)3/2

= 2.83. (4.22)

5. Travelling-wave computational method for Stokes flow

The thin-film models are formally restricted to small Bond numbers and the requirement
that cotβ = O(ε−1), as discussed in § 3. The latter condition means that the thin-film
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model breaks down when β is sufficiently close to π and the inverted wall is almost
horizontal. In § 6, we will present results based on the thin-film models for angles β
that are very close to π, and also for large-amplitude surface deformations. To allow
us to corroborate these calculations, we herein extend the discussion to parameter
regimes beyond the range of validity of the thin-film models, and present a numerical
boundary-integral method for computing travelling waves in Stokes flow (see, for example,
Pozrikidis (1992) for a discussion of the theoretical formulation for such methods).

We work in a frame of reference that is travelling with the wave at speed c. Here and
henceforth, all variables have been made dimensionless according to the scales mentioned
in § 2. We decompose the velocity field in the fluid by writing

u = (U( y)− ci)+ ū(x, t), (5.1)

where U = (u, v) is the dimensionless form of the Nusselt solution (2.4a,b), i is the unit
vector in the x direction, and ū is the disturbance field that vanishes at the wall and is to
be found. The fluid stress f at a point (x, y) on the free surface is similarly split up so that
f = F + f̄ , where F is the dimensionless Nusselt stress given by

F = −2 cosβ (sin−1/3 β − y)n + 2 sinβ (sin−1/3 β − y)
(

0 1
1 0

)
n, (5.2)

and n is the unit normal vector at the surface pointing into the fluid.
The disturbance velocity and traction fields satisfy the Fredholm integral equation of the

second kind for the disturbance velocity,

2π ūj(x0) = −Sj(x0)+ Dj(x0), (5.3)

for j = 1, 2 at a point x0 = (x0, y0) that is located on the free surface, labelled C , where

Sj(x0) =
∫

C
Gij(x, x0) f̄i(x) ds(x), Dj(x0) =

∫ p.v.

C
ūi(x)Tijk(x, x0) nk(x) ds(x)

(5.4a,b)

are the single-layer and double-layer potentials, respectively, and where p.v. denotes the
principal value. In (5.4a,b), s is arc length along the free surface C , and Gij(x, x0) and
Tijk(x, x0) are suitable choices for the Green’s function and the stress tensor, respectively,
for singularly forced Stokes flow. In the travelling frame, the kinematic condition requires
that the normal component of velocity on the free surface vanishes, so that u · n = 0, and
therefore

ū = u(t)t − U + ci (5.5)

on C , where u(t) = u · t is the a priori unknown tangential component of the total fluid
velocity at the free surface, and t is the unit tangent pointing in the direction of increasing
arc length.

The dynamic stress conditions (2.3a,b) demand that t · f = 0 and n · f = Bo−1 κ on
C , and hence that

f̄ = Bo−1 κn − F (5.6)

on C , where F was given in (5.2). Here, the curvature is κ = −n · ts, where the subscript s
denotes a derivative with respect to arc length. This definition is consistent with that made
in § 2.

The integral equation (5.3) together with the kinematic condition (5.5) and the dynamic
stress conditions (5.6) must be solved numerically. We work on a computational domain
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On the transition to dripping of an inverted liquid film

with periodic boundary conditions, and we use the periodic Green’s function GPW that has
the property GPW(x, x0) = 0 when x lies on the wall at y = 0 (see, for example, Pozrikidis
1992):

GPW(x, x0) = GP(x̂)− GP(X̂ )+ 2y2
0 GDP(X̂ )− 2y0 GSDP(X̂ ), (5.7)

where x̂ = x − x0, and X = x − x′
0, with x′

0 = (x0,−y0). In (5.7), the Green’s function

GP(x) =
(

1 − A − yAy yAx
yAx yAy − A

)
, (5.8)

where

A(x) = 1
2 log (cosh(2πy/L)− cos(2πx/L))+ 1

2 log 2 (5.9)

corresponds to a periodic array of Stokeslets, with Ax,Ay denoting derivatives, and GDP,
GSDP the periodic potential dipole and periodic Stokeslet doublet, respectively, both given
in closed form in Pozrikidis (1992). An alternative form for the Green’s function and stress
tensor, derived using a complex variable approach, was provided recently by Crowdy &
Luca (2019).

We compute the solution to the integral equation (5.3) with spectral accuracy by
adapting the protocol proposed by Veerapaneni et al. (2009) for the motion of vesicles
in a Stokes flow. We describe a point x(α) = (x(α), y(α)) on the free surface, and the
tangential surface velocity in the form

x(α) = αL
π

i +
N∑

n=−N

x̂n einα, u(t)(α) =
N∑

n=−N

ûn einα, (5.10a,b)

where 2L is the domain size, α ∈ [0, 2π) is a parameter, x̂n and ûn are complex coefficients
to be found, N is a specified truncation level, and i is the unit vector in the x direction.
Since x and u(t) are real, x̂n = x̂∗−n and ûn = û∗−n, where the asterisk denotes the complex
conjugate.

Inserting (5.5) and (5.6) into (5.3), we enforce the resulting integral equation at a set of
2N + 1 equally-spaced collocation points x0 = x(α0), where α0 ∈ {2(k − 1)π/(2N + 1) :
k = 1, . . . , 2N + 1}. The necessary α derivatives are computed at each collocation point
using a fast Fourier transform to yield numerical approximations for the unit normal and
tangent vectors, and for the free-surface curvature. The single-layer potential Sj(x0) is
weakly singular as x → x0, and in particular, the Green’s function and stress tensor tend
toward the two-dimensional Stokeslet

GST
ij = −δij log r + x̂ix̂j

r2 , TST
ijk = −4

x̂ix̂jx̂k

r4 , (5.11a,b)

where r = |x − x0|. The integrand of the single-layer potential is therefore logarithmically
singular in this limit and, following Veerapaneni et al. (2009), we calculate it numerically
with spectral accuracy using the hybrid Gauss-trapezoidal quadrature formula of Alpert
(1999). This hybrid formula assumes the presence of a logarithmic singularity at the
lower integration limit, and applies the usual trapezoidal rule in the centre of the
integration range, with a weighted Gaussian quadrature at each end. Specifically, it
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supplies the approximation

Sij(α0) ≈ ω

NL∑
k=1

wL
k Sij(v

L
kω, α0)+ ω

NT∑
k=0

Sij(aω + kω, α0)+ ω

NR∑
k=1

wR
k Sij(v

R
k ω, α0),

(5.12)

where the wk and vk with L/R superscripts are NL,NR weights and nodes at the left-hand
and right-hand ends, respectively; NT is the number of trapezium rule points with spacing
ω = 1/(NT + a + b − 1), where a and b are parameters that are related to the convergence
properties of the quadrature. In our calculations, we took a = 10 and b = 7 with NL = 15
and NR = 8 to achieve convergence of O(ω16 logω) (see tables 6 and 8 of Alpert (1999),
where numerical values for the weights and nodes are given). As suggested by Veerapaneni
et al. (2009), we split the integration of the single-layer potential into the ranges [0, α0]
and [α0, 2π], and apply the quadrature rule (5.12) appropriately over each range. For the
double-layer potential, we apply the regular quadrature rule of Alpert (1999), which is
obtained by setting a = b and using the same weights and nodes at both ends in (5.12); in
this case, we took a = 7 to achieve O(ω16) convergence (see table 6 of Alpert 1999).

Next, we express the boundary integral equation (5.3) in the form R ≡ 2πu + S −
D = 0 and we enforce the conditions

R · n = 0, R · t = 0 (5.13a,b)

at the 2N + 1 collocation points x0 = x(α0) defined above, yielding 4N + 2 algebraic
equations. A further 2N equations follow by demanding∫ 2π

0
|xα| einα dα = 0 (5.14)

for n = ±1,±2, . . . ,±N, so that sα = |xα| is constant along C , and the collocation points
are equally spaced with respect to arc length along the free surface. Here, the α subscript
denotes a derivative. One further equation arises by fixing the origin in x, specifically by
setting x(0) = −L. The final equation needed is supplied either by fixing the height of the
film at one end of the domain in the case of a fixed-flow-rate calculation, setting y(0) = h0,
or else by fixing the fluid volume as∫ L

−L
y dx =

∫ 2π

0
yxα dα = V. (5.15)

The translational invariance of the system is removed by fixing the free-surface maximum
to lie in the middle of the domain, setting

yα(π) = 0. (5.16)

For any x0, conservation of mass implies that (Pozrikidis 1992)∫
C

GPW
ij (x, x0) nj(x) ds(x) = 0, (5.17)

so, referring to (5.3), the disturbance stress f̄ is determined to within an arbitrary constant
multiple of n. Consequently, one equation can be removed arbitrarily from the projection
R · n = 0 in (5.13a,b) to obtain a system of 6N + 4 equations for the 6N + 4 unknowns
comprising the 6N + 3 Fourier coefficients {x̂n, ûn}, and c. This system is solved using
Newton’s method, wherein at each stage we compute the Fourier representation (5.10a,b)
using a fast Fourier transform.
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On the transition to dripping of an inverted liquid film

Bo V BoV q Figure

Fixed volume 0.005 400, 900 2.0, 4.5 — 5, 6
0.3 8, 15 2.4, 4.5 — 7, 9

Fixed flow rate 0.005 — — 2/3 10
0.3 — — 2/3 11

Table 1. Summary of the calculations in § 6. Note that the turning point for the YL fixed-volume solutions in
figure 14 occurs at Bo V = 2.60.

6. Numerical results

In this section, we study the behaviour of steady pulse solutions in the two cases of fixed
flow rate and fixed volume. Of particular interest is to follow the solution branch for a pulse
as β increases and the wall tends to become horizontal, a limit that we naturally associate,
on the basis of physical intuition, with the onset of dripping.

Working on a periodic domain [−L, L], we compute travelling-wave solutions to the
long-wave LCM and FCM equations introduced in § 3 using a scheme based on Newton
iterations and a Fourier pseudo-spectral representation of the spatial derivatives (see Blyth
et al. 2018; Lin et al. 2018), and to the equations of Stokes flow using the numerical method
discussed in § 5. Travelling-wave solution branches emerge from the neutral stability
point where the growth rate of small-amplitude periodic waves vanishes. The relationship
between β, Bo and L at the neutral stability point is

L = π(−2 Bo cosβ)−1/2 (6.1)

for both the LCM and the FCM (see Blyth et al. 2018), and for Stokes flow (see
Appendix C). For a chosen Bo, we fix the domain size 2L and calculate the inclination
angle close to the critical value determined from (6.1) to compute a small-amplitude
periodic wave. We then perform pseudo-arc-length continuation in β to study localised
drop formation as the wall tends to become horizontal.

In the following subsections, we study the cases of fixed volume V and fixed flow rate q
separately. Throughout, we will refer to the maximum vertical distance between the wall
and the film surface (measured in the y direction, as depicted in figure 1) as the drop height
H, and we will use it as a measure of the solutions in the bifurcation diagrams that we will
construct. In each case, we consider computations at the small Bond number Bo = 0.005
in order to facilitate comparison between the long-wave models and Stokes flow, as well
as the larger Bond number Bo = 0.3 in order to study the dynamics beyond the range of
validity of the long-wave models. In the case of fixed volume, for each Bond number we
select a couple of cases wherein Bo V is before and after the turning point in figure 14.
Specifically, we choose V = 400 and 900 for the case Bo = 0.005, and we choose V = 8
and 15 for the case Bo = 0.3 (see table 1). For fixed flow rate, for each of the two Bond
numbers we set q = 2/3 as required by the non-dimensionalisation, which demands a film
of unit dimensionless thickness on a vertical wall according to (2.9).

6.1. Fixed volume
In each set of results, we show bifurcation diagrams of the drop height H versus the
inclination angle β, as well as the drop profiles at certain inclination angles. As indicated
in the relevant figure captions, computations for the LCM are shown with red dot-dashed
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Figure 5. Fixed-volume calculation for Bo = 0.005 and V = 400 (so Bo V = 2.0). Comparison between the
boundary-integral calculation for Stokes flow, shown with thick blue lines, and the FCM and LCM, shown
with solid black lines and dot-dashed red lines, respectively. The computations were done on the domain
[−150, 150]. (a) Drop height H versus inclination angle β. (b,c) Drop profiles at β = 3.129 and 3.14,
respectively, corresponding to the pentagram and the filled square, and to the end points of the FCM and
LCM curves in (a). The blue dashed line in (c) is the YL solution to (A2).

lines, those for the FCM are shown with thin black solid lines, and those for Stokes flow
are shown with thick blue solid lines. First, we discuss the case of a small Bond number,
taking Bo = 0.005, for which we expect to find good agreement between the predictions
from the thin-film models and the Stokes flow computations.

In the case with Bo V = 2.0 shown in figure 5, there exists a YL solution for the fully
inverted plate at β = π. We see that the bifurcation curves in (a) all continue to β = π,
and that those for the FCM and for Stokes flow both approach the static YL solution.
Confirmation of this is provided in figure 5(c), where the drop profile for the FCM at
β = 3.14 is very close to the YL profile. The LCM approaches a pure cosine solution to
(A4), with support (2/Bo)1/2π ≈ 62.8, as expected. Computational difficulties obstruct
the continuation of the Stokes flow solution beyond the value β ≈ 3.129, where the
corresponding bifurcation curve in the figure terminates. Nevertheless, the drop profiles
shown at β = 3.129 in figure 5(b) confirm the excellent agreement between the FCM and
Stokes flow computations.

If the volume is increased so that Bo V = 4.5, then there is no YL solution at β = π.
In this case, the bifurcation curves for the FCM and for Stokes flow both turn around
before reaching β = π, as can be seen in figure 6. The bifurcation curve for the LCM
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Figure 6. Fixed-volume calculation with Bo = 0.005 and V = 900 (so Bo V = 4.5). Thin-film calculation for
the FCM (3.10), shown with black solid lines, the LCM (3.1a–c), shown with red dot-dashed lines, and the
Stokes calculation, shown with thick blue solid lines, all computed on the domain [−60, 60]. (a) Drop height
H versus inclination angle β. (b) Maximum of the absolute value of the drop slope versus inclination angle β.
(c) Drop profiles at β = 2.9439 corresponding to the filled and empty circles (solid and dashed lines,
respectively, for the FCM) and the filled square (dot-dashed line for the LCM) in the diagrams (a,b). (d) Drop
profiles for Stokes flow at the filled and empty star symbols corresponding to β = 2.6335 (solid and dashed
lines, respectively) and at the filled square at β = 2.9158 (dot-dashed line) corresponding to the turning point.

continues to β = π, as expected, and the solution profile approaches a pure cosine of
support (2/Bo)1/2π ≈ 62.8. The bifurcation curve for the FCM terminates when the slope
at one point on the downstream side of the pulse becomes infinite (see figure 6b), thus
indicating a breakdown of the model. Profiles for the FCM model on the lower and upper
branches of the bifurcation curve can be seen in figure 6(c), including that near to the
infinite slope singularity at β = 2.9439; the corresponding LCM solution is shown at the
same β value. The breakdown of the FCM model appears to occur at the point where
the profile is about to become multi-valued. This assertion is supported by the Stokes
calculations. In this case, the bifurcation curve (thick blue line in figure 6(a)) passes
through the point where the profile becomes multi-valued, and we are ultimately forced
to terminate the branch due to computational difficulties. The most extreme profile for
Stokes flow, corresponding to the empty star symbol in figure 6(a), is shown as the dashed
line in figure 6(d). It is striking that this wave profile closely resembles a hanging drop
close to the point of pinch-off and subsequent dripping.
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Figure 7. Fixed-volume calculation with Bo = 0.3 and V = 8 (so Bo V = 2.4). Thin-film calculation for the
FCM (3.10), shown with black solid lines, and the LCM (3.1a–c), shown with red dot-dashed lines, and the
Stokes calculation, shown with a thick blue solid line, all on the domain [−6, 6]. (a) Drop heights H versus
inclination angle β. (b) Drop profiles at β = 3.1398 (shown with filled and empty circles in (a)), including a
comparison with the YL equation (A2) for β = π (for which L = 3.36 is found), shown with a dashed line.
(c) Close-up of the drop profiles for the FCM and YL models.

For the larger Bond number case with Bo V = 2.4, the bifurcation curves all tend
towards β = π, as can be seen in figure 7(a), where the profiles for the FCM and for Stokes
flow tend to conform with the YL solution (figure 7b), and the limiting profile for the
LCM is a cosine wave with support (2/Bo)1/2π ≈ 8.1. Notably, the FCM and the Stokes
model agree well near to β = π, as might be expected, but show significant divergence for
inclination angles away from horizontal. The wave speed c and the precursor thickness hp

both approach zero as β → π; and for the FCM, this occurs such that c ∼ 2.83(π − β)3/2

and hp ∼ 1.80(π − β), as discussed in § 4. Figure 8 shows a comparison between these
asymptotic predictions for the FCM and the numerical results, with excellent agreement
between the two. We have also confirmed that our numerics agree with the near-horizontal
asymptotics for the LCM case, which predicts according to (3.8) that hp ∼ 2.17(π − β).

For the same Bond number at larger volume so that Bo V = 4.5, the results in figure 9
show that the bifurcation curves for the FCM and for Stokes flow have a turning point, and
the LCM curve approaches a pure cosine solution with support 8.1 at β = π (compare
figure 6). Beyond the turning point, the bifurcation curve for the FCM terminates at an
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Figure 8. Behaviour of the wave speed c and the precursor film thickness hp near to β = π for the calculation
in figure 7. The dashed lines correspond to the asymptotic estimates c = (π − β)3/2c0, with c0 = 2.83
according to (4.22), and hp = (π − β)hp0, with hp0 = 1.80 according to (4.21).

infinite-slope singularity (see figure 9(b) for detail), and the curve for Stokes flow stops
because of computational issues.

6.2. Fixed flow rate
Turning now to the case of fixed flow rate, in figure 10 we show results for the case of
small Bond number, Bo = 0.005, for q = 2/3. The drop height for the LCM blows up at
a critical inclination angle given by β = 3.022 according to (3.9). As discussed in § 4, the
near blow-up behaviour is described by the asymptotic analysis of Kalliadasis & Chang
(1994) and Yu & Hinch (2013). The LCM agrees well with the FCM for inclination angles
up to about β = 3. The LCM and FCM drop profiles are almost coincident at β = 3.0,
as can be seen in figure 10(b). The bifurcation curve for the FCM has a turning point
at β ≈ 3.012. The FCM predicts the correct qualitative behaviour, but the location of the
turning point is delayed compared to the Stokes calculation, where the turning point occurs
at β = 3.002. The bifurcation curve for the FCM computation terminates due to an infinite
slope singularity (cf. figure 9), and the bifurcation curve for Stokes flow stops where shown
due to numerical difficulties. Overall, we see that for sufficiently small Bond number, the
boundary of the travelling pulse solutions – that is, the inclination angle beyond which
such solutions do not exist – is predicted consistently to within only a small error by the
two long-wave models. Therefore, if we infer that dripping occurs beyond this boundary,
then the LCM and the FCM both provide an accurate predictor for dripping. Furthermore,
for the LCM, we have a simple formula for the boundary value, given by (3.9).

Results for fixed flow rate at the larger Bond number Bo = 0.3 and q = 2/3 are shown
in figure 11. The bifurcation curve for the LCM pulse solutions exhibits blow-up at β =
2.638, as predicted by (3.9), and beyond this point, such solutions do not exist. In this case,
it is more difficult to assess the consistency of this prediction with the FCM and Stokes
calculations. The FCM computation fails at an infinite-slope singularity that occurs earlier
than the LCM blow-up point at β ≈ 2.55. The Stokes profile shows strong overturning
behaviour well before the LCM blow-up angle. Figure 11(d) shows the Stokes profile at
β = 2.374. Numerical convergence issues prevent us continuing the solution beyond this
point. For smaller inclination angles, the eddy inside the pulse is relatively small and
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Figure 9. Fixed-volume calculation with Bo = 0.3 and V = 15 (so Bo V = 4.5). Thin-film calculation for the
FCM (3.10), shown with black solid lines, and the LCM (3.1a–c), shown with red dot-dashed lines, and the
Stokes calculation, shown with a thick blue solid line, all on the domain [−8, 8]. (a) Drop height H versus
inclination angle β, including a close-up inset near to the turning point. (b) Maximum of the absolute value of
the drop slope versus inclination angle β. (c) Drop profiles at β = 2.95 corresponding to the filled and empty
circles (solid and dashed lines, respectively, for the FCM) and the filled square (dot-dashed line for the LCM)
in (a,b). (d) Drop profiles for Stokes flow at the filled and empty star symbols corresponding to β = 2.56 (solid
and dashed lines, respectively), and at the filled square at β = 2.92 (dot-dashed line) corresponding to the
turning point.

confined to the near-tip region. However, as the inclination angle increases and approaches
the last computed point at β = 2.374, the eddy grows in size and the rightmost stagnation
point moves down towards the heel of the pulse (indicated by the solid dot in figure 11d).
The curvature at the stagnation point grows substantially as the stagnation point moves
downwards, leading us to conjecture that the free surface might be approaching a cusp at
a critical β. Cusping in two-dimensional Stokes flows has been discussed by a number of
authors (e.g. Richardson 1968; Jeong & Moffatt 1992). Unfortunately, our present code is
unable to reveal greater detail, and further work is needed to determine what is going on
in this region – this is the subject of our ongoing investigations.

7. Summary and discussion

We have examined the flow of a liquid film on the underside of an inclined flat plate in
the absence of inertia with a view to describing the onset of dripping. In particular, we
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Figure 10. Fixed-flow-rate calculation with Bo = 0.005 and q = 2/3. Thin-film calculation for the FCM
(3.10), shown with thin black solid lines, the LCM (3.1a–c), shown with red dot-dashed lines, and the Stokes
calculation, shown with thick blue solid lines. (a) Drop height H versus inclination angle β, with the inset
showing a close-up. (b) Drop profiles at β = 3.0. The profile on the lower branch for the boundary-integral
Stokes calculation (filled star symbol in (a)) is shown with a thick solid line, and that on the upper branch
(empty star symbol in (a)) is shown with a broken line. The almost coincident lowermost curves are the
profiles for the LCM and FCM corresponding to the square symbol in (a). In (a), the LCM curve has a vertical
asymptote at β = 3.022 according to (3.9).

have used several different model equations (a linearised and a full curvature lubrication
model, LCM and FCM, respectively, and the full equations of Stokes flow) to compute
travelling-wave solutions on the assumption of either fixed volume in a periodic domain
or else a constant flow rate. Our particular focus has been on following the solutions using
parameter continuation towards the case where the plate is horizontal.

In this limit, LCM and FCM solutions approach localised pure cosine and YL solutions,
respectively, the latter existing only if the volume is smaller than a certain critical value.
We have investigated the fixed-volume horizontal limit for the FCM model using an
asymptotic analysis that generalises that presented by other authors for linearised curvature
(see Kalliadasis & Chang 1994; Yu & Hinch 2013). For the FCM, if the volume is
sufficiently large, then the travelling-pulse solutions cease to exist beyond a certain critical
plate inclination angle corresponding to a turning point in the bifurcation curve. Beyond
the turning point, the FCM eventually breaks down at an infinite slope singularity. For
a single parameter set, and at fixed volume, Kofman et al. (2018) computed bifurcation
curves for travelling-wave solutions using a number of different weighted residual integral
boundary layer models that take inertia into account, and they also detected an infinite
slope singularity, but it is unclear from their results whether a turning point is reached
first. We suggest that it is the turning point that is connected with the onset of dripping.
For the fixed-flow-rate case, the LCM solutions grow in amplitude as the plate tends to
become more horizontal, and they eventually blow up at a critical inclination angle, which
is predicted by the asymptotic analysis. In contrast, the bifurcation diagrams for the FCM
and Stokes flow models exhibit turning points at certain inclination angles.

Zhou & Prosperetti (2022) discussed dripping of a liquid film from the underside of a
flat plate. They performed numerical computations in the presence of fluid inertia using
the open-source finite-volume software Basilisk (http://basilisk.fr). By prescribing the
fluid volume over a periodic domain and then slowly increasing the inclination angle
during an unsteady simulation, they were able to obtain quasi-equilibria corresponding
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Figure 11. Fixed-flow-rate calculation with Bo = 0.3 and q = 2/3. The results for the FCM (3.10) and the
LCM (3.1a–c) are shown with thin black solid lines and red dot-dashed lines, respectively, and the Stokes
calculation is shown with a thick blue solid line. (a) Drop height H versus inclination angle β. (b) Maximum of
the absolute value of the drop slope versus inclination angle β. (c) Drop profiles at β = 2.545 corresponding
to the filled circle (solid line for the FCM) and the filled square (dot-dashed line for the LCM) in (a,b). In (a,b),
the vertical dotted line indicates the blow-up angle β = 2.638 (from (3.9)) for the LCM. (d) The overturning
Stokes flow profile at β = 2.374. The solid red dots indicate the stagnation points. The flow is from right to left
below the eddy, and in the clockwise direction inside the eddy.

to travelling-wave solutions of the type that we have computed here. They placed special
emphasis on the film curvature at the tip of the wave crest, κT . (Here, tip refers to the
local maximum at the wave crest with respect to a set of coordinates where the x-axis
is horizontal and the y-axis points vertically downwards in the direction of gravity.)
They suggested that the onset of dripping essentially starts at that point in time at
which the tip curvature exceeds (in absolute value) the value |κc|, which obtains for the
maximum-volume YL profile for a film underneath a horizontal plate (i.e. that found at
the turning point in our figure 14). To reconcile this observation with our results, we show
in figure 12 a comparison between one of our fixed-volume travelling-wave solutions and
solutions of the YL equation. Figure 12(a) shows the travelling wave calculated at the
turning point of the bifurcation curve for Stokes flow in figure 6 (shown there with a
thick solid line; the turning point occurs at β = 2.9158). Since, as was noted by Zhou &
Prosperetti (2022), the axis of the drop shape over the main part of the pulse is almost
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Figure 12. Comparison with the static YL solution for the case of fixed-volume Stokes flow shown in figure 6.
(a) Film profile (blue solid line) at the turning point β = 2.9158, with the YL solution computed at β = π and
then rotated through angle π − 2.9158. The arrow indicates the direction of gravity. (b) Scaled film curvature
κ/(2 Bo)1/2 (the dotted line indicates the tip curvature for the maximum-volume YL solution). (c) Plot of P
defined in (3.10), which represents the combined effect of hydrostatic and capillary forces. The arrow indicates
the region over which the YL equation holds approximately.

aligned with the direction of gravity, we superimpose onto the profile the YL solution
computed at β = π for the same Bond number. (The YL profile has been rotated through
angle π − β so that the gravity vectors, indicated by the arrow, for the two solutions are
aligned.) Figure 12(b) shows the curvature of the wave profile together with the value for
appropriately scaled tip curvature of the maximum-volume YL solution. Evidently, the tip
curvature of the travelling pulse is very close to that for the YL solution, corroborating the
observation made by Zhou & Prosperetti (2022). However, if we examine the force balance
at the surface, shown in figure 12(c), we see that the YL equation is relevant over only a
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portion of the domain (that, incidentally, includes the wave tip), this portion being where P
is approximately constant, indicated by the arrow. Here, P as defined in (3.10) corresponds
to the force balance in the YL equation for a drop hanging underneath a horizontal wall.
The fact that P is not constant over other parts of the wave indicates that the flow within
the pulse has an important effect in shaping the drop profile. Nevertheless, the observation
that the tip curvature reaches the same value as the maximum-volume YL tip curvature at
the turning point of our bifurcation curves is interesting.

Using the tip curvature as an indicator of dripping is perhaps not so useful in practice.
However, since we have now established that the maximum-volume YL tip curvature
occurs at the turning point of our bifurcation diagrams, we may instead use these as a
practically useful indicator of dripping. They supply an estimate for the inclination angle
at which dripping will start to occur.

For small Bond numbers, the inclination angle that we associate with dripping onset is
predicted consistently to within only a small error by the thin-film models. Therefore, if
we accept that dripping occurs for more extreme inclination angles, then the LCM and
the FCM both provide a useful prediction for dripping transition. Given their relative
simplicity and amenability to straightforward numerical computation, they therefore offer
a relatively simple and potentially effective tool for dripping prediction. At larger Bond
numbers, the lubrication models (LCM and FCM) are qualitatively but not quantitatively
accurate, and full Stokes calculations are needed.

Finally, we note that for the fixed-flow-rate case, when the Bond number is relatively
large, the solutions of the LCM blow up as before, but the computations for both the FCM
and the Stokes models break down before a turning point is reached. The FCM fails at an
infinite slope singularity indicating that the profiles are tending to become multi-valued.
However, the reason for the breakdown of the Stokes model is unclear, and this remains a
topic for future investigation.
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Appendix A. Static drops

When the inclination angle is β = π, the liquid film is static and its surface shape is
described by the static YL equation. According to the scales introduced in § 2, this takes
the dimensionless form

κ

Bo
+ 2y = P0, (A1)

where P0 is an a priori unknown constant reference pressure inside the drop. The first
term in (A1) represents the capillary pressure due to surface curvature, and the second
term represents the hydrostatic pressure at the surface. Assuming that the drop meets the
wall at a zero contact angle, a global force balance over the drop in the vertical direction
shows that P0 = V/
, where 2
 is the support of the drop. Written in terms of the surface
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Figure 13. Sketch of the YL problem for a static drop under a horizontal wall (β = π) with support 2
. In the
sketch, gravity acts in the positive y direction.
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Figure 14. Static drop solutions to the YL problem (A2), (B1) with volume constraint (B2). (a) Bifurcation
diagram showing scaled drop height Bo1/2H against scaled drop volume Bo V . The square symbol indicates the
onset of multi-valuedness in the solution profiles on the upper branch for V < 2.39 Bo−1. Solutions on the solid
part of the curve are stable, and on the broken part are unstable, according to Pitts (1973). The dot-dashed line
corresponds to the linearised curvature solution to (A4). (b) Drop profiles for particular volumes V , including
the profile at the saddle-node (�) where V = 2.60 Bo−1, and at the point of pinching (•) where V = 1.10 Bo−1.

parametrisation (a(s), b(s)) shown in figure 13, the YL equation is then given by

1
Bo

a′b′′ − b′a′′

(a′2 + b′2)3/2
+ 2b = V



. (A2)

In the case when the parameter s represents arc length, the denominator in the first term in
(A2) is equal to unity. The drop is symmetric about x = 0 and has support 2
.

Pitts (1973) obtained an exact solution to (A2) for general contact angle and for a given
drop volume using elliptic functions. Of interest here is the case of zero contact angle
since such solutions represent the limiting weak solutions that are approached in our
travelling-wave calculations as β → π− and the wall tends to become horizontal. We have
obtained solutions of this type numerically using the procedure described in Appendix B
and confirmed that they agree with those of Pitts (1973). The results are shown in figure 14.
Since the Bond number can be removed from the static problem by scaling lengths by
Bo−1/2, the bifurcation diagram in figure 14(a) shows the scaled dimensionless drop height
Bo1/2H against the scaled dimensionless drop volume Bo V (see the blue solid and blue
dashed lines). In addition, the black dot-dashed line corresponds to linearised curvature
solutions, which will be discussed later. Figure 14(b) shows drop profiles at particular
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values of V along the bifurcation curve in figure 14(a). The profiles are multi-valued on
the upper branch when V < 2.39 Bo−1. The presence of a saddle node at V = 2.60 Bo−1

suggests that the solutions on the upper branch are unstable and those on the lower
branch are stable. This is confirmed for ‘static’ stability by the work of Pitts (1973).
(We draw a distinction here between static and dynamic stability in the sense defined
by Lowry & Steen (1995); the issue of dynamic stability for pendent drops was examined
by Pozrikidis (2012) under conditions of Stokes flow, but it is not addressed here for our
specific configuration.) The drop profiles on the upper branch pinch at V = 1.10 Bo−1.
The upper branch can be continued beyond this point up to V = 0, but all of the profiles
are self-intersecting and therefore they are not physically relevant.

The existence of a turning point in the bifurcation curve indicates that there is no static
solution for V > 2.60 Bo−1. Physical intuition suggests that beyond this point, the drop
volume is too large to be sustained by surface tension, and dripping will ensue.

The preceding results can be explained using a phase plane analysis. Setting s = x, a =
±x and b = h(x) in (A2), we obtain a form appropriate for computing a single-valued
solution h(x). Integrating this equation once, we obtain

∓ 1
(1 + h′2)1/2

+ (Bo1/2 h − ν)2 = E, (A3)

where ν = Bo1/2 P0/2, and E is a constant of integration. The ∓ sign corresponds to
the case when n · j is negative/positive, where j is the unit vector in the y direction. The
phase portraits for either choice of sign are shown in figure 15 for the case ν = 0: the
constant ν can be effectively removed from (A3) via the mapping h �→ h + Bo−1/2 ν,
which corresponds to a horizontal translation of the phase portrait. A single-valued or
a multi-valued drop profile is constructed by following the thick blue or red trajectories. In
both cases, the profiles are symmetric with respect to the inflection point at x = 
/2. For
a multi-valued drop, a jump is made from the portrait in figure 15(a) to the trajectory with
the same value of E in figure 15(b), and then back again. In both cases, an appropriate
horizontal shift is required to ensure that h = 0 at the point of contact with the wall.

In the case of the linearised curvature approximation, the reduced form of the YL
equation is

1
Bo

hxx + 2h = V


. (A4)

This has the solution h = (V/2
)(cos
√

2 Bo x + 1) for |x| < 
, where 
 = π/
√

2 Bo. This
is represented by the straight dot-dashed line with slope

√
2/π in figure 14(a).

Appendix B. Numerical solution of the YL equation

Assuming left–right symmetry, we solve (A2) subject to the boundary conditions

a(0) = 0, a′(0) = 1, b(0) = H, b′(0) = 0, (B1a)

a(S) = 
, a′(S) = 1, b(S) = 0, b′(S) = 0, (B1b)

where, with reference to the sketch in figure 13, the support of the drop is of length 2
, H is
the height at the centre of the drop, and 2S is the total arc length over the drop surface. The
derivative boundary conditions in (B1) assume zero contact angle at the wall, as illustrated
in figure 13. Such solutions represent the limiting weak solutions that are approached in
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Figure 15. Phase portraits in the (h, h′) plane for (A3) with (a) the minus sign and (b) the plus sign, both
shown for ν = 0. The trajectories correspond to different values of E: in (a), the dot at the origin corresponds to
E = −1, the trajectory E = 0 is dashed, and the closed orbits correspond to −1 ≤ E ≤ 0; in (b), the trajectory
E = 1 is dashed, the U-shaped trajectories are for 0 ≤ E ≤ 1, and the remainder are for E > 1. The thick blue
and thick red trajectories correspond to one-half of a single-valued and a multi-valued free-surface profile,
respectively. The filled circle indicates the drop maximum, and the empty circle indicates the point of contact
with the wall. In each case, the phase portrait should be shifted by an appropriate choice of ν to move the empty
circle to the origin. For the multi-valued profile, a jump is made to the trajectory with the same value of E in
portrait in (b) and back again.

our travelling-wave calculations as β → π− and the wall tends to become horizontal. The
lengths 
 and H are to be determined as part of the solution to the problem subject to the
constraint

∫ S

0
ba′ ds = V

2
, (B2)

which fixes the volume of the drop to be V .
Here, we obtain a solution numerically by first rewriting (A2) as the first-order system

u′ = F (u), where u = (u1, u2, u3, u4) = (a, a′, b, b′), and

F = (u2, Bo (2u3u4 − u4V/
), u4, Bo (−2u2u3 + u2V/
)) . (B3)

The second and fourth entries in F have been obtained by multiplying (A2) by b′ and a′,
respectively, and then using the fact that a′2 + b′2 = 1. We can eliminate the Bond number
from (A2) by making the transformation s �→ Bo−1/2 s, a �→ Bo−1/2 a, b �→ Bo−1/2 b
and A �→ Bo−1/2 A. It is therefore sufficient to solve for the case Bo = 1; solutions for
other Bond numbers can be obtained by using the aforementioned rescaling. In numerical
practice, we guess the values of H and 
, and then shoot forwards from s = 0, using
Runge–Kutta integration, for example, until b′ = 0. We then compute the volume so
obtained and refine the values of H and 
 using Newton iterations until the drop volume
attains the desired value V , and b vanishes at the same point as b′. The value of S is
extracted from the converged solution. Having obtained a solution for one value of V , we
use arc length continuation to follow the solution branch as V changes.
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Appendix C. Linear stability of a flat film for Stokes flow

In this appendix we present a brief discussion of the linear stability of a flat film under
conditions of Stokes flow. We work under the same non-dimensionalisation introduced in
§ 2.

We perturb the Nusselt solution corresponding to a flat film of unit dimensionless
thickness by introducing a small disturbance, writing

h(x, t) = 1 + A(eσ t eikx + c.c.), (C1)

where A 
 1, k is the real wavenumber of the disturbance, σ is the complex growth rate,
and c.c. denotes the complex conjugate. Working with a streamfunction ψ , we make the
expansion

ψ = ( y2 − y3/3) sinβ + Aψ1( y) eσ t eikx + · · · . (C2)

Substituting into the Stokes governing equation ∇4ψ = 0, and linearising, we obtain

ψ
(iv)
1 − 2k2ψ ′′

1 + k4ψ1 = 0, (C3)

where a prime denotes differentiation with respect to y. To satisfy the no-slip and
impermeability conditions, we require that ψ1 = ψ ′

1 = 0 at y = 0. Linearising the
dimensionless form of the surface conditions (2.3a,b), we derive the linearised tangential
stress condition

ψ ′′
1 (1)+ k2 ψ1(1) = 2 sinβ, (C4)

and the linearised normal stress condition

− iψ ′′′
1 (1)− 3k2 ψ ′

1(1) = 2k(cosβ − k We)+ k3/Bo. (C5)

The linearised kinematic equation (2.2) yields

ψ1(1) = iσ/k − sinβ. (C6)

The general solution to (C3) is

ψ1( y) = a1 cosh(ky)+ a2y cosh(ky)+ a3 sinh(ky)+ a4y sinh(ky). (C7)

Compiling the boundary conditions, we assemble the matrix system Ax = b, where

A =

⎛
⎜⎝

0 1 k 0
1 0 0 0

2k2 cosh k 2k(sinh k + k cosh k) 2k2 sinh k 2k(cosh k + k sinh k)
2ik3 sinh k 2ik3 sinh k 2ik3 cosh k 2ik3 cosh k

⎞
⎟⎠ , (C8)

and x = (a1, a2, a3, a4)
T and b = (0, 0, 2 sinβ, kT), where T(k) = 2 cosβ + k2/Bo.

Substituting the solution to this system into (C6), we obtain the growth rate

σ =
(

k − sinh k cosh k

k2 + cosh2 k

)
T(k)
2k

− ik

(
1 + cosh2 k + k2

k2 + cosh2 k

)
sinβ. (C9)

Since k − sinh k cosh k < 0 for all k > 0, it follows that Re(σ ) > 0 if T(k) < 0. This
occurs when cosβ < 0, in which case Re(σ ) > 0 if k ∈ (0, kc), where

kc =
√

−2 Bo cosβ. (C10)

Accordingly, the cut-off wavenumber for linear instability under conditions of Stokes flow
is identical to that obtained for the LCM and FCM (see Blyth et al. 2018).
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