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Abstract. In this paper, we study the multiplicity of solutions for the following
problem: {

−�u − �(|u|α)|u|α−2u = g(x, u) + θh(x, u), x ∈ �,

u = 0, x ∈ ∂�,

where α ≥ 2, � is a smooth bounded domain in �N , θ is a parameter and g, h ∈
C(�̄ × �). Under the assumptions that g(x, u) is odd and locally superlinear at infinity
in u, we prove that for any j ∈ � there exists εj > 0 such that if |θ | ≤ εj, the above
problem possesses at least j distinct solutions. Our results generalize some known
results in the literature and are new even in the symmetric situation.

2000 Mathematics Subject Classification. 35B20, 35J20, 35J62.

1. Introduction and main results. Consider the following quasilinear Schrödinger
equations: {

−�u − �(|u|α)|u|α−2u = g(x, u) + θh(x, u), x ∈ �,

u = 0, x ∈ ∂�,
(1)

where α ≥ 2, � is a bounded domain in �N with smooth boundary ∂�, θ is a parameter,
and g, h ∈ C(�̄ × �).

The quasilinear elliptic equation (1), referred as Modified Schrödinger equation
due to the quasilinear and nonconvex term �(|u|α)|u|α−2u, is derived from several
models of mathematical physics (see [7, 9, 17]). Compared to the semilinear elliptic
equation, the quasilinear case becomes much more difficult because of the effects of
the quasilinear term. The main difficulty is that there is no suitable space on which
the energy functional is well defined and belongs to the class of C1. In recent years,
several approaches have been developed to overcome this difficulty, such as the Nehari
method (see [13, 20]), constrained minimization (see [11]), dual approach (see [11, 25,
27]), perturbation method (see [14, 15, 26]). Recently, Liu and Zhao [16] obtained
the existence of infinitely many solutions of the quasilinear problem under broken
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symmetry situations. This kind of problem is referred to as perturbation from symmetry
problem, and the main feature is that the symmetry of the corresponding energy
functional is broken by non-odd perturbed terms. It is worth pointing that the multiple
critical values can be maintained by restricting the growth range of the perturbed
terms with suitable bounds, and the perturbation from symmetry problem for elliptic
equations and systems has been extensively studied (see [2–4, 8, 18, 21–23, 28, 29] and
the references therein).

In this paper, we consider the perturbation from symmetry problem in another
direction. Roughly speaking, if g(x, t) is odd and locally superlinear at infinity in t
for a.e. x ∈ �, h ∈ C(�̄ × �) with no growth and symmetric conditions, we study the
multiplicity of solutions for problem (1). As far as we know, a few papers have discussed
this problem. There are several difficulties to study this problem. First, when θ �= 0,
the perturbation term h may break the symmetry of the energy functional for problem
(1), the classical multiple critical point theorems cannot be used directly. On the other
hand, apart from continuity, we do not impose any condition on h, so there is no
hope of obtaining multiple solutions of problem (1) by the methods in [2–4, 8, 18,
21–23, 28, 29]. Li and Liu [10] studied a similar perturbation problem for semilinear
elliptic equation, their proof is based on the approach developed by Degiovanni and
Lancelotti [6]. Since g(x, t) is assumed to be locally superlinear at infinity in t, the
method in [10] cannot be applied directly. Our approach is different from the method
used in [10]. Next, we explain our method briefly. First, we introduce an orthogonal
sequence on a Banach space E due to the indefinite property of g, and then a sequence
of families of subsets on E can be constructed. When we control the parameter θ small
enough, the effect of the perturbation term h is so small that the critical values of the
energy functional for problem (1) can be reconstructed by minimax procedure over the
families of subsets on E introduced above. In detail, we obtain the following results.

THEOREM 1.1. Assume that g satisfy the following conditions:
(g1) there exist constants 2α < p < 2∗α and C0 > 0 such that

|g(x, t)| ≤ C0(1 + |t|p−1), (x, t) ∈ � × �,

where 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := ∞ if N = 1, 2;
(g2) there exist constants μ > 2α, 1 < α1 < 2α and C1 > 0 such that

|μG(x, t) − tg(x, t)| ≤ C1
(|t|α1 + 1

)
, (x, t) ∈ � × �,

where G(x, t) := ∫ t
0 g(x, s)ds;

(g3) there exists a nonempty open subset � ⊂ � such that

lim
|t|→∞

G(x, t)
|t|2α

= ∞, a.e. x ∈ �,

and there exists r0 ≥ 0 such that

G(x, t) ≥ 0, (x, t) ∈ � × � and |t| ≥ r0;

(g4) g(x, t) = −g(x,−t) for (x, t) ∈ � × �.
Then, for any j ∈ �, there exists θj > 0 such that if |θ | ≤ θj , then problem (1) possesses
at least j distinct solutions.
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THEOREM 1.2. Assume that (g1)–(g4) are satisfied. Then, there exists an unbounded
sequence of solutions for problem (1) with θ = 0.

REMARK 1.1. When θ = 0, problem (1.1) is in the symmetric situation, and our
results are also new. In fact, condition (g3) implies that g(x, t) is only of locally
superlinear growth in t as |t| → ∞. There are some functions satisfying condition
(g3), for example, g(x, t) = a(x)|t|p−2t, where a(x) ∈ C(�̄, �) changes sign in � and
2α < p < 2∗α. But this function does not satisfy the globally superlinear growth
conditions presented in the reference.

The paper is organized as follows. In Section 2, we establish the variational
framework associated with problem (1), and we also give some preliminary lemmas
which are useful in the sequel. The proofs of our main results are given in Section 3.

2. Variational setting and preliminaries. First, we introduce some function spaces.
For 1 ≤ s < +∞, let

‖u‖s :=
( ∫

�

|u|sdx
)1/s

, u ∈ Ls(�).

Let E := H1
0 (�) be the usual Sobolev space with the norm

‖u‖ :=
( ∫

�

|∇u|2dx
)1/2

.

It is well known that E is continuously embedded into Lν(�) for 1 ≤ ν ≤ 2∗, i.e., there
exists τν > 0 such that ‖u‖ν ≤ τν‖u‖, u ∈ E. Moreover, E is compactly embedded into
Lν(�) only for 1 ≤ ν < 2∗.

By direct computation, problem (1) is the Euler–Lagrange equation associated
with the energy functional Jθ : � × E → � given by

Jθ (u) = 1
2

∫
�

|∇u|2dx + 1
2α

∫
�

|∇(|u|α)|2dx −
∫

�

G(x, u)dx − θ

∫
�

H(x, u)dx, (2)

where H(x, t) := ∫ t
0 h(x, s)ds. It is obvious that Jθ may not be well defined in � × E.

To overcome this difficulty, we adapt a dual approach as in [5, 11]. More precisely,
the main idea of dual approach is that the quasilinear equation can be reduced to a
semilinear equation by the use of a suitable function f , and then the classical Sobolev
space framework can be used as the working space. In the spirit of the transformation
introduced in [1], we make the change of variables by v = f −1(u), where the function f
can be defined by

f ′(t) = (
1 + α|f (t)|2(α−1))− 1

2 , t ∈ [0,+∞) and f (−t) = −f (t), t ∈ (−∞, 0].

Next, we collect some properties of the function f , which will be used frequently
in the sequel of the paper. Detailed proofs can be found in [1].

LEMMA 2.1. The function f and its derivative have the following properties:
(f1) f is uniquely defined C∞ function and invertible;
(f2) 0 < f ′(t) ≤ 1 and |f (t)| ≤ |t|, ∀ t ∈ �;
(f3) limt→0

|f (t)|
|t| = 1 and limt→∞

|f (t)|α
|t| = √

α;
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(f4) there exists a positive constant C such that |f (t)|α−1f ′(t) ≤ C, ∀ t ∈ �;
(f5) f ′′(t)f (t) = (α − 1)(f ′(t))2

(
(f ′(t))2 − 1

)
, ∀ t ∈ �.

Therefore, by a change of variables and (2), we obtain the following functional:

Iθ (v) := Jθ (f (v)) = 1
2

∫
�

|∇v|2dx −
∫

�

G(x, f (v))dx

− θ

∫
�

H(x, f (v))dx, (θ, v) ∈ � × E.

Under suitable hypotheses on g and h, for fixed θ0 ∈ �, Iθ0 ∈ C1(E, �) and

〈I ′
θ0

(v), w〉 =
∫

�

∇v∇wdx −
∫

�

g(x, f (v))f ′(v)wdx − θ0

∫
�

h(x, f (v))f ′(v)wdx

for any v, w ∈ E. Moreover, the critical points of Iθ0 are the weak solutions of the
following problem:{

−�v = (
1 + α|f (v)|2(α−1)

)− 1
2
(
g(x, f (v)) + θ0h(x, f (v))

)
, x ∈ �,

v = 0, x ∈ ∂�.

Arguing similarly as in the proof of Lemma 2.6 and Remark 2.7 in [1], if v0 ∈ E is a
critical point of the functional Iθ0 , then u0 = f (v0) ∈ E is a weak solution of problem
(1.1) with θ = θ0.

Since we only know h ∈ C(�̄ × �), we cannot apply the variational methods to
Iθ directly. To overcome this difficulty, we use several cut-off functions to introduce
some truncated functionals, then we seek multiple critical points of these truncated
functionals, and finally we can prove that the critical points of these truncated
functionals are also critical points of Iθ that yield multiple solutions for problem
(1).

For any k ∈ �, we introduce cut-off functions ζk ∈ C(�, �) satisfying⎧⎪⎨
⎪⎩

ζk(t) = 1, |t| ≤ k,

0 ≤ ζk(t) ≤ 1, k < |t| < k + 1,

ζk(t) = 0, |t| ≥ k + 1.

(3)

By the use of these cut-off functions, define

hk(x, t) := ζk(t)h(x, t), (x, t) ∈ � × �, (4)

and Hk(x, t) := ∫ t
0 hk(x, s)ds. First, we introduce the functionals

Iθk (v) = 1
2
‖v‖2 −

∫
�

G(x, f (v))dx − θ

∫
�

Hk(x, f (v))dx. (5)

By (g1), (3) and (4), for any (θ, k) ∈ � × �, Iθk is well defined on E. Moreover, for any
(θ, k) ∈ � × �, Iθk is of class C1(E, �) with its derivative given by

〈I ′
θk

(v), w〉 =
∫

�

∇v∇wdx −
∫

�

g(x, f (v))f ′(v)wdx − θ

∫
�

hk(x, f (v))f ′(v)wdx (6)
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for any v, w ∈ E. Next, we define a functional I0 : E → � given by

I0(v) = 1
2
‖v‖2 −

∫
�

G(x, f (v))dx, v ∈ E. (7)

Under assumption (g1), I0 is of class C1(E, �) and its derivative is

〈I ′
0(v), w〉 =

∫
�

∇v∇wdx −
∫

�

g(x, f (v))f ′(v)wdx, ∀ v, w ∈ E.

LEMMA 2.2. Suppose that (g1) and (g2) are satisfied. Then,
(H1) for every (θ, k) ∈ � × �, Iθk satisfies the Palais–Smale condition;
(H2) for any (θ, k) ∈ � × �, there exists a positive constant Ck depending on k such

that

|Iθk (v) − I0(v)| ≤ Ck|θ |, ∀ v ∈ E. (8)

Proof. For any (θ, k) ∈ � × �, we show that Iθk satisfies the Palais–Smale
condition. Assume that {vn}n∈� ⊂ E is a (PS) sequence, i.e.,

|Iθk (vn)| ≤ M and I ′
θk

(vn) → 0, n → ∞, (9)

where M is a positive constant. Next, we need to prove that {vn} has a convergent
subsequence. First, we show that {vn} is bounded. By (f3) in Lemma 2.1, there exist
positive constants M0 and C2 such that

|f (t)| ≤ C2|t|1/α, |t| ≥ M0. (10)

For any v ∈ E, it follows from (f2) and (10) that∫
�

|f (v)|α1 dx =
∫

�0

|f (v)|α1 dx +
∫

�\�0

|f (v)|α1 dx

≤ C2

∫
�0

|v|α1/αdx +
∫

�\�0

|v|α1 dx

≤ C2

∫
�

|v|α1/αdx + Mα1
0 meas(�), (11)

where �0 := {x ∈ � : |v(x)| ≥ M0}. By Hölder’s inequality, (g2) and (11), there exists
a positive constant C3 such that∫

�

∣∣μG(x, f (v)) − g(x, f (v))f (v)
∣∣dx ≤ C3

(‖v‖α1/α + 1
)
, ∀ v ∈ E. (12)

Set ψ = f (v)
f ′(v) , ∀ v ∈ E. Then, by (f5) in Lemma 2.1 and direct computation, there exists

a positive constant C4 independent of v such that

‖ψ‖ ≤ C4‖v‖, ∀ v ∈ E. (13)

In view of (3) and (4), there exists a constant Ck > 0 depending on k such that∣∣∣ ∫
�

Hk(x, f (v))dx
∣∣∣ ≤ Ck,

∣∣∣ ∫
�

hk(x, f (v))f (v)dx
∣∣∣ ≤ Ck, v ∈ E. (14)
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By (5), (6) and (14),

Iθk (vn) − 1
μ

〈
I ′
θk

(vn),
f (vn)
f ′(vn)

〉
≥ μ − 2α

2μ
‖vn‖2 + α − 1

μ

∫
�

(f ′(vn))2|∇vn|2dx

− C3
(‖vn‖α1/α + 1

) − 2Ck|θ |. (15)

In combination with (9), (13) and (15), {vn} is bounded in E, that is, there exists a
constant A > 0 such that ‖vn‖ ≤ A, n ∈ �. Since E is a reflexive space, passing to a
subsequence, also denoted by {vn}, it can be assumed that vn ⇀ v0, n → ∞. By the
fact that E is compactly embedded into Lν(�) for any ν ∈ [1, 2∗), up to a subsequence,
also denoted by {vn},

vn → v0 in Lν(�), (16)

as n → ∞ for any ν ∈ [1, 2∗).

For any v,w ∈ E, by Hölder’s inequality, (10), (f2) and (f4) in Lemma 2.1,∫
�

|f (v)|p−1f ′(v)|w|dx =
∫

�0

|f (v)|p−1f ′(v)|w|dx +
∫

�\�0

|f (v)|p−1f ′(v)|w|dx

≤ CC2

∫
�0

|v| p−α

α |w|dx +
∫

�\�0

|v|p−1|w|dx

≤ CC2‖v‖
p−α

α
p
α

‖w‖ p
α

+ Mp−1
0 ‖w‖1, (17)

where �0 := {x ∈ � : |v(x)| ≥ M0}. In view of (g1), (16), (17) and (f2) in Lemma 2.1,∣∣∣∣
∫

�

g
(
x, f (vn)

)
f ′(vn)(vn − v0)dx

∣∣∣∣ ≤ C0

∫
�

(1 + |f (vn)|p−1)f ′(vn)|vn − v0|dx

≤ C0
(
CC2‖vn‖

p−α

α
p
α

‖vn − v0‖ p
α

+ (Mp−1
0 + 1)‖vn − v0‖1

)
≤ on(1). (18)

Similarly, we also have∣∣∣∣
∫

�

g
(
x, f (v0)

)
f ′(v0)(vn − v0)dx

∣∣∣∣ ≤ on(1). (19)

In combination with (18) and (19),∣∣∣∣
∫

�

[
g
(
x, f (vn)

)
f ′(vn) − g

(
x, f (v0)

)
f ′(v0)

]
(vn − v0)dx

∣∣∣∣ → 0, n → ∞. (20)

By (4), (16) and (f2) in Lemma 2.1,∣∣∣ ∫
�

hk
(
x, f (vn)

)
f ′(vn)(vn − v0)dx

∣∣∣ → 0, n → ∞. (21)

On the other hand, by the fact that vn ⇀ v0 and (9),∣∣〈I ′
θk

(vn) − I ′
0(v0), vn − v0〉

∣∣ := εn → 0, n → ∞. (22)
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In view of (5), (6) and (7),

‖vn − v0‖2 ≤
∣∣∣∣
∫

�

[
g
(
x, f (vn)

)
f ′(vn) − g

(
x, f (v0)

)
f ′(v0)

]
(vn − v0)dx

∣∣∣∣
+ |θ |

∣∣∣ ∫
�

hk
(
x, f (vn)

)
f ′(vn)(vn − v0)dx

∣∣∣ + εn,

which implies that vn → v0 in E by (20), (21) and (22). Hence, Iθk satisfies Palais–Smale
condition.

To prove (H2), in view of (5), (7) and (14), (8) holds. �
LEMMA 2.3. There exists a normalized orthogonal sequence {φn}∞n=1 ⊂ C∞

0 (�) such
that supp φn ⊂ �, n ∈ �, where � is the nonempty open set given in (g3).

Proof. Since � is a nonempty open set, there exist a point x0 ∈ � and δ0 > 0
such that B(x0, δ0) ⊂ �, where B(x0, ρ) denotes the open ball of radius ρ centred at
x0, and B̄ denotes the closure in �N . Choose a strictly increasing sequence {rn}∞n=1
such that 0 < r1 < r2 < · · · < rn < · · · → δ0/4. Define On = B(x0, rn+1)\B̄(x0, rn), n ∈
�. Let xn ∈ On and choose dn > 0 such that

B̄(xn, dn) ⊂ On, n ∈ �. (23)

Define

φ(x) =
{

e1/(|x|2−1), |x| < 1,

0, |x| ≥ 1.
(24)

In view of (24), define φn as follows:

φn(x) = φ
(
(x − xn)/dn

)
, n ∈ �. (25)

In combination with (24) and (25), φn ∈ C∞
0 (�), n ∈ �. Replace φn by ‖φn‖−1φn,

also denoted by φn, and then ‖φn‖ = 1. By (23) and (25), supp φn ⊂ On ⊂ �, then
the supports of φn are disjoint to each other, so (φi, φj) = δij, where δij stands for
Kronecker’s symbol, i.e., δij = 1 if i = j and δij = 0 if i �= j. So, {φn}∞n=1 forms a
normalized orthogonal sequence in E. �

Let Dn = span{φ1, . . . , φn}, n ∈ �. It is obvious that Dn is a finite dimensional
subspace in E. Next, we prove that there exists a strictly increasing sequence of numbers
Rn such that

I0(v) ≤ 0, v ∈ Dn\BRn , (26)

where BRn denotes the open ball of radius Rn centred at 0 in E, and B̄Rn denotes the
closure of BRn in E.

LEMMA 2.4. Under assumption (g3), for any finite dimensional subspace Dn ⊂ E,

I0(v) → −∞, ‖v‖ → ∞, v ∈ Dn. (27)

Proof. We prove (27) by contradiction. If not, there exists a sequence {vm} ⊂ Dn

with ‖vm‖ → ∞, there exists M1 > 0 such that I0(vm) ≥ −M1 for all m ∈ �. Set wm =
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vm/‖vm‖, then ‖wm‖ = 1. Passing to subsequence, we may assume wm ⇀ w in E. Since
Dn is a finite dimensional space, wm → w ∈ Dn and ‖w‖ = 1. Set � = {x ∈ � : w(x) �=
0}. Since ‖w‖ = 1, meas(�) > 0. Moreover, by Lemma 2.3, � ⊂ � and

lim
m→∞ |vm(x)| = ∞, a.e. x ∈ �. (28)

For 0 ≤ a < b, let �m(a, b) = {
x ∈ � : a ≤ ∣∣f (

vm(x)
)∣∣ < b

}
. By (f3) in Lemma 2.1 and

(28), � ⊂ �m(r0,∞) for large m ∈ � and

lim
m→∞ |f (

vm(x)
)| = ∞, a.e. x ∈ �. (29)

In view of Lemma 2.3, (g1), (29) and Fatou’s Lemma,

0 ≤ lim sup
m→∞

I0(vm)
‖vm‖2

= lim sup
m→∞

[
1
2

−
∫

�

G(x, f (vm))
‖vm‖2

dx
]

= lim sup
m→∞

[
1
2

−
∫

�

G(x, f (vm))
‖vm‖2

dx
]

= lim sup
m→∞

[
1
2

−
∫

�m(0,r0)

G(x, f (vm))
‖vm‖2

dx −
∫

�m(r0,∞)

G(x, f (vm))
|vm|2 |wm|2dx

]

≤ lim sup
m→∞

[
1
2

+ C0
(
r0 + rp

0

)
meas(�)‖vm‖−2 −

∫
�m(r0,∞)

G(x, f (vm))
|vm|2 |wm|2dx

]

≤ 1
2

− lim inf
m→∞

∫
�m(r0,∞)

G(x, f (vm))
f 2α(vm)

· f 2α(vm)
|vm|2 |wm|2dx

= 1
2

− lim inf
m→∞

∫
�

G(x, f (vm))
f 2α(vm)

· f 2α(vm)
|vm|2 |wm|2[χ�m(r0,∞)(x)

]
dx

≤ 1
2

−
∫

�

lim inf
m→∞

G(x, f (vm))
f 2α(vm)

· f 2α(vm)
|vm|2 |wm|2[χ�m(r0,∞)(x)

]
dx

= − ∞,

which is a contradiction. Thus, (27) holds. �

3. Proofs of the main results. First, we introduce some continuous maps in E to
construct a sequence of minimax values of I0. Set

�n = {h ∈ C(Fn, E)| h is odd and h = id on ∂BRn ∩ Dn}, (30)

where Fn := B̄Rn ∩ Dn. By (30), we define a sequence of minimax values:

bn = inf
h∈�n

max
v∈Fn

I0(h(v)). (31)

Since E is a speratable Hilbert space, there exists a total orthonormal basis {ej} of E.
Define Xj = �ej, j ∈ � and

Yn = ⊕n
j=1Xj, Zn = ⊕∞

j=n+1Xj, n ∈ �. (32)

By (32), it is clear that E = Yn ⊕ Zn and Zn = Y⊥
n , n ∈ �.
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In order to get the lower bound of the minimax values bn, we give an intersection
property which has been essentially proved by Rabinowitz in Proposition 9.23 of [19].

LEMMA 3.1. Let ρ > 0. For any n ∈ �, ρ < Rn and h ∈ �n, h(Fn) ∩ ∂Bρ ∩ Zn−1 �= ∅.

LEMMA 3.2. Assume that (g1) holds. Then,

bn → ∞, n → ∞. (33)

Proof. By Lemma 3.1, for any h ∈ �n and ρ < Rn there exists vn ∈ h(Fn) ∩ ∂Bρ ∩
Zn−1, such that

max
v∈Fn

I0(h(v)) ≥ I0(vn) ≥ inf
v∈∂Bρ∩Zn−1

I0(v). (34)

In view of (g1) and (f3) in Lemma 2.1, there exists a positive constant C5 such that∫
�

∣∣G(x, f (v))
∣∣dx ≤ C5

(
‖v‖

p
α
p
α

+ 1
)
, v ∈ E. (35)

By a similar proof in Lemma 3.8 in [24],

βn := sup
v∈Zn, ‖v‖=1

‖v‖ p
α

→ 0, n → ∞. (36)

In combination with (7), (35) and (36), for v ∈ Zn−1,

I0(v) ≥ ‖v‖2

2
− C5

(
β

p
α

n−1‖v‖ p
α + 1

)
. (37)

By (37), if v ∈ ∂Bρ ∩ Zn−1,

I0(v) ≥ ρ2
(1

2
− C5β

p
α

n−1ρ
p−2α

α

)
− C5. (38)

In view of (38), choose ρn := (4C5β
p
α

n−1)
α

2α−p , when v ∈ ∂Bρn ∩ Zn−1,

I0(v) ≥ 1
4
ρ2

n − C5. (39)

By (31), (34), (36) and (39), (33) holds. �
Next, we introduce some continuous maps in E. Set

�n := {
H ∈ C(Un, E)| H|Fn ∈ �n and H = id for

v ∈ Qn := (∂BRn+1 ∩ Dn+1) ∪ (
(BRn+1\B̄Rn ) ∩ Dn

)}
, (40)

where

Un :=
{
v = tφn+1 + ω| t ∈ [0, Rn+1], ω ∈ B̄Rn+1 ∩ Dn, ‖v‖ ≤ Rn+1

}
. (41)

In view of Lemma 3.2, it is impossible that bn+1 ≤ bn for all large n. Next, we can
construct critical values of Iθk as follows.
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LEMMA 3.3. Let n be a positive integer satisfying bn+1 > bn > 0. For any δ ∈
(0, bn+1 − bn), define

�n(δ) = {
H ∈ �n| I0(H(v)) ≤ bn + δ for v ∈ Fn

}
. (42)

For any k ∈ � and |θ | < 2C−1
k (bn+1 − bn − δ), where Ck is given in Lemma 2.2, define

cn(θ ) = inf
H∈�n(δ)

max
v∈Un

Iθk (H(v)). (43)

Then, cn(θ ) is a critical value of Iθk .

Proof. By (H2) in Lemma 2.2, we have

I0(v) − Ck|θ | ≤ Iθk (v) ≤ I0(v) + Ck|θ |, ∀ v ∈ E. (44)

For any H ∈ �n(δ), since Fn+1 = Un ∪ (−Un), H can be continuously extended to Fn+1

as an odd function H̄. Moreover, H̄ ∈ �n+1. Since I0 is even, by the construction of H̄,

max
v∈Un

I0(H(v)) = max
v∈Fn+1

I0(H̄(v)). (45)

In combination with (31), (44) and (45),

max
v∈Un

Iθk (H(v)) ≥ max
v∈Un

I0(H(v)) − Ck|θ |
= max

v∈Fn+1

I0(H̄(v)) − Ck|θ |
≥ bn+1 − Ck|θ |. (46)

Since H is an arbitrary map in �n(δ), by (43) and (46),

cn(θ ) ≥ bn+1 − Ck|θ | > bn + δ + Ck|θ |. (47)

If we choose Hn ∈ �n(δ), then Hn can be continuously extended to Fn+1 as an odd
function H̄n. Moreover, H̄n ∈ �n+1. Define

cn = max
v∈Un

I0(Hn(v)). (48)

It is obvious that cn < +∞ and cn is independent of θ and k. By (31) and (48),

cn = max
v∈Un

I0(Hn(v)) = max
v∈Fn+1

I0(H̄n(v)) ≥ bn+1. (49)

Moreover, by (43), (44) and (48),

cn(θ ) ≤ cn + Ck|θ |. (50)

Next, we show that cn(θ ) is a critical value of Iθk . If cn(θ ) is a regular value of Iθk , define

ε̄ = (cn(θ ) − bn − δ − Ck|θ |)/2. (51)

In view of (47), ε̄ > 0. By (H1) in Lemma 2.2 and the Deformation Theorem (see [19]),
there exist ε ∈ (0, ε̄) and η ∈ C([0, 1] × E, E) such that

η(1, v) = v, if Iθk (v) �∈ [cn(θ ) − ε̄, cn(θ ) + ε̄], (52)
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and if Iθk (v) ≤ cn(θ ) + ε, then

Iθk (η(1, v)) ≤ cn(θ ) − ε. (53)

By (43), there exists H0 ∈ �n(δ) such that

max
v∈Un

Iθk (H0(v)) < cn(θ ) + ε. (54)

Define

H̄0(·) = η(1, H0(·)). (55)

Next, we prove H̄0 ∈ �n(δ). It is obvious that H̄0 ∈ C(Un, E). In view of H0 ∈ �n(δ),
(42), (44) and (51),

Iθk (H0(v)) ≤ I0(H0(v)) + Ck|θ | ≤ bn + δ + Ck|θ | < cn(θ ) − ε̄, v ∈ Fn. (56)

In combination with (52), (55) and (56), H̄0(v) = η(1, H0(v)) = H0(v), v ∈ Fn, which
yields that

H̄0|Fn ∈ �n and I0(H̄0(v)) = I0(H0(v)) ≤ bn + δ, v ∈ Fn. (57)

In view of H0 ∈ �n(δ) and the definitions of Rn and Rn+1

H0(v) = v and I0(H0(v)) ≤ 0, v ∈ Qn. (58)

By (44), (51) and (58), we have

Iθk (H0(v)) ≤ I0(H0(v)) + Ck|θ | ≤ Ck|θ | < cn(θ ) − ε̄, v ∈ Qn. (59)

In combination with (52), (55) and (59),

H̄0(v) = η(1, H0(v)) = H0(v) = v, v ∈ Qn. (60)

In view of (57) and (60), H̄0 ∈ �n(δ). Moreover, by (53) and (54),

max
v∈Un

Iθk

(
H̄0(v)

) = max
v∈Un

Iθk

(
η(1, H0(v))

) ≤ cn(θ ) − ε,

which is a contradiction to (43). �
Proof of Theorem 1.1. For any j ∈ �, choose strictly increasing integers pi (1 ≤ i ≤

j + 1) such that

bpi+1 > bpi > 0 and bp(i+1) > cpi , 1 ≤ i ≤ j. (61)

By Lemma 3.3, for every k ∈ �, there exists ε′
k > 0 such that if |θ | ≤ ε′

k, then cpi (θ )
(1 ≤ i ≤ j) defined by (43) are critical values of Iθk . Moreover, in view of (47) and (50),

bpi − Ck|θ | ≤ cpi (θ ) ≤ cpi + Ck|θ |, 1 ≤ i ≤ j. (62)

By (61) and (62), for every k ∈ �, choose ε′′
k > 0 such that if |θ | ≤ ε′′

k ,

cpi + Ck|θ | < bp(i+1) − Ck|θ |, cpi (θ ) ≤ bp(j+1) (63)
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for 1 ≤ i ≤ j. In view of (3) and (4), for every k ∈ �, there exists ε′′′
k > 0 such that if

|θ | ≤ ε′′′
k ,

|θ ||hk(x, t)t| < 1, |θ ||Hk(x, t)| < 1, (x, t) ∈ � × �. (64)

For every k ∈ �, define εk = min{ε′
k, ε

′′
k, ε

′′′
k }. By (62) and (63), for every k ∈ �, |θ | ≤ εk,

Iθk has at least j distinct critical values cp1 (θ ), cp2 (θ ), . . ., cpj (θ ) such that

cp1 (θ ) < cp2 (θ ) < · · · < cpj (θ ) ≤ bp(j+1) . (65)

By (65), for every k ∈ �, |θ | ≤ εk, Iθk has at least j distinct critical points vi(θ ), 1 ≤ i ≤ j.
By (5) and (6), there are j distinct critical points vi(θ ) (1 ≤ i ≤ j) of Iθk such that

cpi (θ ) = 1
2
‖vi(θ )‖2 −

∫
�

G(x, f (vi(θ )))dx − θ

∫
�

Hk(x, f (vi(θ )))dx, (66)

and

α‖vi(θ )‖2 = (α − 1)
∫

�

(f ′(vi(θ )))2|∇vi(θ )|2dx −
∫

�

g(x, f (vi(θ )))f (vi(θ ))dx

− θ

∫
�

hk(x, f (vi(θ )))f (vi(θ ))dx. (67)

By (12) and (63)–(67),

bp(j+1) ≥ cpi (θ ) ≥ μ − 2α

2μ
‖vi(θ )‖2 − C3

(‖vi(θ )‖α1/α + 1
) − 2meas(�) (68)

for 1 ≤ i ≤ j. In view of (g1), (g2) and (68), there exists a positive constant Cj only
depending on j such that ‖vi(θ )‖ ≤ Cj, 1 ≤ i ≤ j. By classical elliptic theory, there
exists a positive constant C′

j only depending on j such that for every k ∈ �, |θ | ≤ εk,
‖vi(θ )‖C(�̄) ≤ C′

j , 1 ≤ i ≤ j. So, we can choose k > C′
j , for any θ with |θ | ≤ εk, Iθk has

at least j distinct critical points v1(θ ), v2(θ ), . . ., vj(θ ) and ‖vi(θ )‖C(�̄) ≤ C′
j , 1 ≤ i ≤ j.

Moreover, by (f2) in Lemma 2.1, for any θ with |θ | ≤ εk,

‖f
(
vi(θ ))‖C(�̄) ≤ C′

j, 1 ≤ i ≤ j. (69)

Since k > C′
j , by (3), (4), (6) and (69), for any θ with |θ | ≤ εk, v1(θ ), v2(θ ), . . ., vj(θ )

are also j distinct critical points of Iθ . So, for any θ with |θ | ≤ εk, problem (1.1) has at
least j distinct solutions. �

Proof of Theorem 1.2. If θ = 0, by Deformation Theorem and Lemma 3.2, we can
prove that {bn} is a sequence of critical values of I0 which converge to +∞. Hence, the
corresponding critical points are solutions of problem (1.1) with θ = 0. �
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