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Filament-based coil optimizations are performed for several quasi-helical stellarator
configurations, beginning with the one from Landreman & Paul (Phys. Rev. Lett., vol.
128, 2022, 035001), demonstrating that precise quasi-helical symmetry can be achieved
with realistic coils. Several constraints are placed on the shape and spacing of the coils,
such as low curvature and sufficient plasma—coil distance for neutron shielding. The coils
resulting from this optimization have a maximum curvature 0.8 times that of the coils of
the Helically Symmetric eXperiment (HSX) and a mean squared curvature 0.4 times that
of the HSX coils when scaled to the same plasma minor radius. When scaled up to reactor
size and magnetic field strength, no fast particle losses were found in the free-boundary
configuration when simulating 5000 alpha particles launched at 3.5MeV on the flux
surface with a normalized toroidal flux of s = 0.5. An analysis of the tolerance of the
coils to manufacturing errors is performed using a Gaussian process model, and the coils
are found to maintain low particle losses for smooth, large-scale errors up to amplitudes
of approximately 0.15 m. Another coil optimization is performed for the Landreman—Paul
configuration with the additional constraint that the coils are purely planar. Visual
inspection of the Poincaré plot of the resulting magnetic field-lines reveal that the planar
modular coils alone do a poor job of reproducing the target equilibrium. Additional
non-planar coil optimizations are performed for the quasi-helical configuration with 5 %
volume-averaged plasma beta from Landreman et al. (Phys. Plasma, vol. 29, issue 8,
2022, 082501), and a similar configuration also optimized to satisfy the Mercier criterion.
The finite beta configurations had larger fast-particle losses, with the free-boundary
Mercier-optimized configuration performing the worst, losing approximately 5.5 % of
alpha particles launched at s = 0.5.

Keyword: fusion plasma

1. Introduction

Unlike toroidal confinement concepts with an explicit direction of continuous symmetry,
stellarators need to be optimized to ensure that collisionless drift-orbits are confined. One
way to achieve such confinement is to optimize the magnetic field to be quasi-symmetric.

+ Email address for correspondence: sb0095 @princeton.edu

https://doi.org/10.1017/50022377824000540 Published online by Cambridge University Press


http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0718-6712
https://orcid.org/0000-0002-7233-577X
mailto:sb0095@princeton.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377824000540&domain=pdf
https://doi.org/10.1017/S0022377824000540

2 A. Wiedman, S. Buller and M. Landreman

In a quasi-symmetric field, the magnetic field strength B is constant with respect to a linear
combination of the Boozer angles — special coordinates in which the particle dynamics
only explicitly depend on the magnitude of B instead of the full magnetic vector field
B. As a result, the particle orbits behave as if the field had an exact symmetry (Boozer
1983). Depending on the direction of symmetry in B, the contours of B will close either
toroidally, helically or poloidally, and the field is said to be quasi-axisymmetric (QA),
quasi-helically symmetric (QH) or quasi-poloidally symmetric (QP). Apart from true
axisymmetry, exact quasi-symmetry is believed to be impossible to achieve in the entire
toroidal volume (Garren & Boozer 1991), but it is possible to approximate quasi-symmetry
to high accuracy (Niithrenberg & Zille 1988).

Recent developments in stellarator optimization have led to a variety of new magnetic
field configurations with record low quasi-symmetry error (Landreman & Paul 2022).
However, for these improvements to be of practical relevance, it is necessary to produce the
configurations with discrete electromagnetic coils. The goal of this paper is to demonstrate
that it is indeed possible to find coils for several recent QH configurations.

In the conventional approach to stellarator design, a magnetic configuration is first
optimized for confinement and other properties (stage I optimization), and a second
optimization (stage II optimization) is used to find coils that reproduce this optimized
configuration to sufficient accuracy (Merkel 1987; Strickler, Berry & Hirshman 2002).
Coils can be optimized either through current—potential methods, where currents are
optimized on a specified winding-surface (Merkel 1987; Landreman 2017) or using
filamentary coils, where the optimization is done directly on parameters describing the
coil shapes and currents (Zhu et al. 2017).

The latter is the approach taken here. Specifically, we search for optimized coils for
the precise quasi-helical vacuum configuration found by Landreman & Paul (2022), a
similar 4-field-period QH configuration with 5 % volume-averaged plasma g (Landreman,
Buller & Drevlak 2022) and a similar 5 %  QH configuration also optimized for Mercier
stability. Here, 8 is the ratio of plasma thermal energy density to magnetic energy density.

The coils presented here are among the first to achieve precise quasi-helical symmetry.
While coils for QH configurations have been designed and even built in the past
(Anderson et al. 1995; Bader et al. 2020), these configurations had significantly higher
quasi-symmetry error. Previously, coils producing several precisely quasi-axisymmetric
fields were presented by Wechsung et al. (2022b). Coils for quasi-helical symmetry were
recently presented briefly by Roberg-Clark et al. (2023), although the field produced by
these coils was not analysed in detail.

Much of the difficulty in coil optimization lies in the trade-off between accurately
reproducing the fields and coil complexity. Coil complexity can be a major factor in
the construction cost of a stellarator (Strykowsky et al. 2012; Klinger et al. 2013). Coils
also require shielding from high plasma temperatures and neutron bombardment, so a
minimum distance from the plasma surface must be maintained. There should also be
gaps between coils large enough to allow for access to the plasma by diagnostics and
for maintenance, and to accommodate strain from the strong magnetic forces at work. Coil
optimization must account for these different competing objectives for coils to be practical.

A downside of doing the coil optimization separately from the optimization of the
magnetic configuration is that different configurations with similar performance may be
easier to reproduce accurately with simple coils. For this reason, coil optimization is
sometimes incorporated into the optimization of the plasma shape (Pomphrey et al. 2001;
Giuliani et al. 2023; Jorge et al. 2023). However, this comes with the downside of needing
to optimize a more complicated objective function with more parameters. An alternative
approach may be to instead penalize aspects of the magnetic configuration that lead to
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more complicated coils, such as scale-lengths in the magnetic field (Kappel, Landreman
& Malhotra 2023).

Small error tolerances are another driver of costs in stellarator construction. The
National Compact Stellarator eXperiment (NCSX) was cancelled due to the escalating
costs associated with the precision required for the coils (Strykowsky et al. 2012). Hence,
it is important to investigate the robustness of coils with respect to errors.

The rest of the paper is structured as follows. In § 2.1, we present the QH configurations
in more detail and describe some of their properties. In § 2.2, we outline the method of
optimization for finding accurate and simple coils. In § 2.3, we introduce a measurement
of error tolerance and compute it for our coils. In § 3, we show a specific set of coils
found for the vacuum case and give several metrics of comparison with the original QH
configuration. We then present coils for two finite-8 QH configurations and evaluate their
performance. Finally, we summarize our results in § 4.

Our coils and optimization scripts are available from Zenodo at https://doi.org/10.5281/
zenodo.10211349, see Wiedman, Buller & Landreman (2023).

2. Method
2.1. Stellarator configurations

The three QH stellarator configurations we will consider are all stellarator symmetric,
with ng, = 4 field periods. The configurations all have a volume-averaged magnetic field
strength B of 5.86 T and a minor radius a = 1.7m to match the ARIES-CS reactor
design (Najmabadi et al. 2008). As we only consider modular coils, scaling to the same
minor radius roughly ensures that the coils we consider are of comparable sizes. Scaling
both minor radius and magnetic field to reactor-relevant values is done for the sake of
comparing the confinement of fusion-born alpha particles (Bader ef al. 2021; Landreman
& Paul 2022).

The precise QH configuration from Landreman & Paul (2022) has an aspect ratio
A = 8.0 and mean rotational transform ¢ = 1.24, is a vacuum field, and is optimized
purely for low quasi-symmetry error and the achieved aspect ratio, without taking
magneto-hydrodynamic (MHD) stability into account.

The second configuration, from Landreman et al (2022), has A =6.5 and
volume-averaged 8 = 5 %, and was optimized to have self-consistent bootstrap current
and a rotational transform profile ¢ that avoids crossing ¢ = 1, but is otherwise not
optimized for MHD stability.

The third configuration was generated using the same optimization method as
Landreman et al. (2022), but with the addition of a Mercier stability term to the objective
function, resulting in Mercier stability throughout the plasma. It is otherwise similar to the
second configuration. This configuration has not appeared in a previous publication.

2.2. Computational tools and optimization objective

To perform an optimization, coils must be represented mathematically. Using the
SIMSOPT framework (Landreman et al. 2021), we describe coils as curves in space
determined by a Fourier series for each of the three Cartesian coordinates of the coils.
We neglect the volume of the coils and instead represent them as current-carrying
filaments. This is an often used approximation for optimizing stellarator coils, but it
neglects corrections due to the finite-build of the coils. Such corrections are expected
to be important when the width of the coils are comparable to the coil-plasma distance
(McGreivy, Hudson & Zhu 2021). Visual inspection of a CAD model of Wendelstein 7-X
suggests that this criterion may only be weakly satisfied in actual stellarators (Pedersen
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et al. 2016), but including these effects is outside the scope of the current study.
Filamentary coils are also insufficient to account for the magnetic forces on the coils,
where information about the cross-sections of the coils must be supplemented (Hurwitz,
Landreman & Antonsen 2023; Landreman, Hurwitz & Antonsen 2023).

For our filamentary coils, each Cartesian component of the curve is represented as

N N
X(p) =Y A, cosmp+ Y B,sinme, @2.1)
m=1

m=0

where ¢ is an angle-like variable parametrizing the coil and N is the number of Fourier
modes used in the representation.

We optimize the coils with the limited-memory BFGS algorithm from the scipy library
(Virtanen et al. 2020). SIMSOPT uses Python for front-end programming and C++ for
back-end calculations, resulting in a fast and user-friendly environment. This optimization
algorithm is local rather than global, so it is possible that better coils may exist.

Optimization of the coils is performed by minimizing the objective function

1 . :
Fuia = 5 f (B- ) dS + ;f 22)

where the first term corresponds to the square of the flux of the magnetic field created by
the coils through the target plasma surface. Here, B is the magnetic field created by the
coils and 7 is the unit vector normal to the target surface. The f; terms are related to various
aspect of the coils and are defined as follows:

1
Si = Wiengtn Z E(Li — Ly)?, (2.3)

where L; is the length of each coil and L, is a target coil length;

fr=weepia Y Y max(0, deco — min(d; )’ (2.4)

J

where mind,; is the closest distance between any point on coil i and any point on coil j
with a threshold value of d.. o below which the penalty applies. This penalizes coils that
are too close to one another;

£ =wespis y_ max(0, dego — min (des 1))’ (2.5)

where mind,; is the minimum distance between any point on coil i and the boundary
magnetic surface, and d., ¢ is a threshold distance. This term penalizes coils that are placed
within d, ¢ of the plasma surface;

1
ﬂ = Wecurvature Z E / maX(Ki — Ko, 0)2 di, (26)

where «; is the curvature on each coil and «; is the threshold curvature above which the
penalty applies, penalizing coils with high maximum curvature. The integral is over /, the
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arclength along the coil;

1 2
f5s = wyisc Zmax <0, (Z / Ki(l)zdl> — MSCO) , (2.7)

where «;(l) is the curvature along the length of coil i and MSCj is the threshold value,
discouraging the optimizer from considering coils with high mean-squared curvature
MSO);

2
fo = Win, max ( [Z ZLk(C,, ¢ )} ) : (2.8)

where we use Gauss’ linking number integral formula,
Lk(c;, ¢;) = ?g | |3 ————(dr; x dr)), 2.9)
ci J¢ J

where ¢; is the first curve, ¢; is the second curve, and r; and 7; are the associated position
vectors (Ricca & Nipoti 2011). This prevents interlocking coils from being considered.
Since the numerical implementation of the above integral will not be exactly zero, we
use a quadratic penalty in fg to suppress small values. The threshold value 0.1 is taken
to be much larger than the numerical errors and much smaller than 1. Even though the
discretization error is small, typically below 0.01, the total value of the objective function
typically reaches 10~® or lower. Using the ‘round’ python function has the same effect.
Suppressing the errors in the linking number thus drastically improves the performance of
the optimization.
We use a normalized form of the error in the calculated magnetic field

<|Bcoi]s ° ﬁtarget |>
([ Brarget|)

as our measurement of how successfully the coils reproduce the target surface, where (A)
is the flux surface average of A.

Another measure of success is whether energetic particle trajectories remain confined.
To this end, the guiding-centre tracing code SIMPLE (Albert, Kasilov & Kernbichler
2020a,b) is used to calculate the loss fraction of high energy « particles. For all our
configurations, we use SIMPLE to trace 5000 alpha particles with energies of 3.5 MeV
for 0.2 seconds, typical of the slowing-down time in a reactor. Particles are launched
in a uniformly random direction at the flux surfaces with normalized toroidal flux
s =0.3, s=0.5 and s =0.7, and are considered lost when they cross the s = 1.0
surface, corresponding to the last closed flux surface. SIMPLE traces the collisionless
guiding-centre orbits, so the energy of the alpha particles remains constant. To compare
fast-particle confinement across devices, we scale all configurations to have the same
minor radius and volume-averaged magnetic field.

) (2.10)

2.3. Error tolerance

Error tolerance tests are performed through the use of the CurvePerturbed class in
SIMSOPT. A set of coils has their Cartesian coordinates perturbed through a Gaussian
process that depends on the length scale ¢, a measurement of the smoothness of the
random function generated and a parameter o that scales the standard deviation of the
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L CC Distance  CS Distance K MSC
Weights 0.0156 156 1560 1.56 x 1077 1.10 x 1078
Target 35.56m 1.10m 1.64m 0.88m™! 0.06m™!
Achieved Value 35.56m 1.09m 1.62m 0.67m™! 0.07m™!
NCSX (scaled) 36.60m 0.79m 1.00 m 1.68m~! 0.40m~!
HSX (scaled) 31.39m 1.30m 2.0l m 0.82m™! 0.18m™!

TABLE 1. Weights placed on terms in objective function as described in (2.2), as well as the
target values and the achieved values averaged across the set of coils, for the coil set described
in § 3.1. The National Compact Stellarator eXperiment (NCSX) (Williamson er al. 2005) and
the Helically Symmetric eXperiment (HSX) (Anderson et al. 1995) metrics are shown as a
comparison, scaled up to the plasma minor radius of ARIES-CS (Najmabadi et al. 2008). Here,
L is the average coil length (averaged across unique coils), « is the maximum curvature and MSC
is the mean squared curvature. The target of « being greater than the achieved value means the
maximum curvature had no effect on the cost function at the end; however, the minimizer was
able to move through different values while searching for different minima and the results were
different than they would be for different target values.

perturbations. Following Wechsung et al. (2022a), ¢ is kept at a constant value of 0.4,
while o varies between 0.01 m and 0.1 m. The Gaussian process model for the perturbation
X () is described by the radial basis function kernel

—(¢1 — @2 + 27))?
242 ’

Cov(X(g1), X(g2) = Y Uzexp( @.11)

j=—00

where ¢ parametrizes the curve, and shifting by all integers j times 27w makes the
perturbation periodic with period 2m. (Note that the actual coil parametrization in
SIMSOPT goes from 0O to 1). The series can be truncated at a low number of integers
due to the fall off of the exponential function. This exact kernel was previously used by
Wechsung et al. (2022a) to describe coil errors. At £ = 0.4n,0 =0.0lmand o = 0.1 m
correspond to coil errors with with average amplitudes of approximately 3 cm and 30 cm,
respectively.

After the perturbations are applied to our coils, we recalculate the metrics used to
evaluate the quality of the coils.

3. Results
3.1. Landreman—Paul precise QH

We first optimized coils for the precise QH vacuum configuration presented in § 2.1 using
the method outlined in § 2.2, trying various weights for the objective terms f; in (2.2).
The optimizations were performed independently from one another, starting from a set of
equally spaced, circular coils with a major radius of approximately 13 m and a minor radius
of 6.5m. Weights are constant for each optimization. The target curvature is changed
between each run to induce meaningful variations in the accuracy of the coils, while still
remaining below or comparable to the curvature of NCSX and HSX. The most successful
set of coils is shown in figure 1. This set of coils was obtained using weights outlined in
table 1.

The set contains five coils per half-period, 40 coils in total. This number of coils was
chosen for the higher accuracy it was able to provide over four-coil configurations, while
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FIGURE 1. Target plasma surface of the Landreman—Paul precise QH configuration with the
associated optimized coil set. The colour scale shows the error in the B field from the target
surface as quantified by |B - f1|/B. The colour of each coil indicates the index, with blue being
coil 1, turquoise being coil 2, green being coil 3, orange being coil 4 and red being coil 5.

still being able to maintain the desired coil to coil separation, which is much more difficult
with a six-coil configuration. Metrics for the five individual coils are presented in table 2.
The coil lengths average to 35.56 m. They maintain a distance of 1.09 m between one
another at minimum, and a minimum distance of 1.62 m to the boundary surface. Each
coil has a maximum curvature between 0.6 m~! and 0.8 m~!, with coils having a range of
MSC between 0.062m~! and 0.079 m~!, averaging at 0.069 m~'. The target coil length,
coil to coil distance, coil to surface distance and curvature were all achieved or surpassed,
while the mean squared curvature was slightly higher than the target. These values are all
comparable to those of NCSX and HSX when scaled up to the same minor radius, with
the curvature and MSC metrics of our coil set being lower. Since scaling the size of a
configuration does not affect the accuracy of the normal field error for vacuum fields, we
are free to rescale our configurations arbitrarily as long as we also scale the thresholds
in curvature, plasma—coil spacing and so on; scaling to reactor size is convenient since
it allows us to set a lower bound for coil-plasma distance based on the ~1.5 m required
thickness of blanket and neutron shielding (Najmabadi et al. 2008).

The normalized flux surface average of the B field from the coils normal to the target
surface (2.10) is 6 x 10~* while the maximum B, Narget/ | Brarger| 18 3.1 X 1073, Figure 1
shows the error in B - n on the surface. Figures 2 and 3 both give clear indication of
the high degree of accuracy with which the coils recreate the target surface. There is
some coil ripple present in figure 2 which is only present in the weaker section of the
magnetic field, but the quasi-helical symmetry is largely maintained by the coils. The blue
curves in figure 4(a) show the root-mean-squared (r.m.s.) amplitude of the quasi-symmetry
breaking modes as a function of radius for the target configuration and the configuration
achieved with our coils. Figure 4(b) shows the corresponding curves for the two-term

https://doi.org/10.1017/50022377824000540 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000540

8 A. Wiedman, S. Buller and M. Landreman

L(m) «(m™') MSC@m"

Coill  35.73 0.563 0.062
Coil2  35.42 0.810 0.065
Coil3  35.15 0.743 0.067
Coil4  35.16 0.625 0.070
Coil5  36.30 0.588 0.079

TaBLE 2. Length and curvature metrics of each unique coil in the coil set presented in § 3.1.
There are five coils in the set, resulting in 40 total coils due to 4-field-period symmetry and
stellarator symmetry. See table 1 for definitions. See figure 1 for a visualization of the coils.

(a) (b) . .
Landreman-Paul QH with coils 1B|

1.0

6.75
6.45
6.15
5.85
5.55
5.25

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
¢/(2m) ¢/(2m)
FIGURE 2. Magnetic field B on the boundary in Boozer coordinates. (a) Landreman—Paul
precise QH. (b) B produced by the coils presented in § 3.1.

quasi-symmetry error (Helander & Simakov 2008), defined as

2
fos = <($[N —M\B x VB -V — [MG + NIIB - VB) > 3.1)

where (M, N) = (1, —4) corresponds to the helicity of the helical symmetry of B; 2 G/ 11
and 21/ /g are the poloidal current outside and toroidal current inside the flux surface,
respectively. Note that the factor 4 in N is due to ng, = 4.

A comparison of figure 4(b) with figure 4(a) shows that the two-term quasi-symmetry
errors exhibit much larger differences between the original stage I configurations and
the configurations reproduced by our coils, compared with the differences in their
r.m.s. values. As shown by Rodriguez, Paul & Bhattacharjee (2022), the two-term
form of quasi-symmetry can be written as a weighted version of the r.m.s. value of
symmetry-breaking Boozer modes. Specifically, for symmetry helicity (M, N) = (1, —4),

modes are weighted according to
n+4m\*
( I ) . (3.2)
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(@) (b) (c)
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=]
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8 10 12 14 16 18 0 8 10 12 14 16 18 0 ] 10 12 14 16 18 20
R [meters] R [meters) & [meters]

FIGURE 3. Poincaré plot of the flux surfaces created by the coils presented in § 3.1, at standard
toroidal angle ¢ = 0, 1/4 period, 1/2 period (from panel a—c). The red curve indicates the
Landreman—Paul precise QH boundary targeted by the coils. The black lines depict the traced
magnetic field lines within and on the boundary.

(a) (b)

—— Targets
—-—- With coils

10°

QH B=5%
Mercier crit_ -~

._.
15}
b

-
-

10_6//—/
Landreman-Paul QH —— Targets

—-=-- With coils

Two-term quasisymmetry error

-

RMS of symmetry-breaking B, [T]

1073

Landreman-Paul QH

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized toroidal flux s Normalized toroidal flux s

FIGURE 4. Quasi-symmetry metrics for our configurations. (a) Root-mean-squared value of
symmetry breaking Boozer harmonics B,, , against radius. (b) Two-term quasi-symmetry error,
as defined in (3.1), against radius. Solid curves are for the target configurations, dashed
curves for the configurations achieved by our coils. All configurations are scaled to match
the volume-averaged B and minor radius of ARIES-CS. Also included for comparison are the
quasi-symmetry metrics of NCSX and HSX.

Thus, deviations from quasi-symmetry with higher mode numbers, such as those created
by modular coil ripple, are weighted more strongly in the two-term measure, which
would explain the larger differences in figure 4(b). In general, different quasi-symmetry
metrics can be in conflict with each other, such that improving one metric degrades the
other (Rodriguez et al. 2022). This happens when it is no longer possible to reduce the
magnitude of a symmetry-breaking mode without increasing the magnitude of another
mode. It is thus useful to look at other metrics that are more directly related to the relevant
physics.

To evaluate the performance of our coils, we calculate how well the resulting
configuration confines fast particles, using the SIMPLE simulation set-up described in
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FIGURE 5. Original coils optimized for the Landreman—Paul configuration (red) compared
with a set of perturbed coils with o = 0.1 m (blue).

§2.2. For our coils, we find no fast-particle losses for particles launched at flux surfaces
with normalized toroidal flux s = 0.3 and s = 0.5, and only 1.44 % losses when launched
at s = 0.7. For reference, the original precise QH configuration loses 1.40 % of particles
launched at s = 0.7, indicating that the field is reproduced to sufficient accuracy.

To assess the error tolerance of the coil set, we generated 25 sets of coil perturbations,
using the Gaussian process model described in § 2.3. The generated perturbations were
scaled to different amplitudes by using ten different values for o. The perturbations were
then added to our optimal set of coils, resulting in a total of 250 perturbed coil sets.
Figure 5 shows a perturbed coil set, with the unperturbed coil set included for reference.
The resulting flux surface averages of the B field from the coils normal to the target surface
are shown in figure 6, while the corresponding fast-particle losses are shown in figure 7.
At o = 0.1 m, there is a perceptible difference in the shape of the coils, and between 0 %
and 5 % of particles launched from a toroidal radius of s = 0.3 are lost. Thus, there is
considerable variation in particle confinement for a given o.

To better understand the large spread in fast-particle losses, we plot the losses
for particles launched from s = 0.3 against both the error in the target field, the
flux surface average (figure 8) and the quasi-symmetry error (figure 9). In figure 9,
we sum the quasi-symmetry error defined by (3.1) for each of the flux surfaces
s =1{0,0.1,..., 1.0}, and thus obtain a scalar measure of the quasi-symmetry error in
the entire plasma volume from axis to edge.

In both figures 8 and 9, poor confinement is generally only found above certain
thresholds, for (|B - n|)/(B) above 0.5% and quasi-symmetry error above 0.003, but
configurations with good confinement are also found well above these values. As pointed
out by Rodriguez et al. (2022), decreasing the two-term quasi-symmetry error does not
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FIGURE 6. Scatter plot of the coil perturbation magnitude o versus the normalized flux surface
average of B - n (2.10), with B calculated from perturbed coils targeting the Landreman—Paul
precise QH configuration. The line indicates the least-squares regression for the discrete values
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FIGURE 7. Fraction of high energy alpha particles lost when launched from different toroidal
radii for the coils perturbed from the set optimized for the Landreman—Paul precise QH in
figure 6. Points in the plot are offset slightly in the x direction for readability.
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FIGURE 8. Scatter plot and two-dimensional (2-D) histogram of the loss fraction of high energy
alpha particles launched at s = 0.3, against the flux surface average B - n, for the coils perturbed
from the set optimized for the Landreman—Paul precise QH configuration.
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FIGURE 9. Scatter plot and 2-D histogram of the loss fraction of high energy alpha particles
launched at s = 0.3, against different values of quasi-symmetry error for the coils perturbed
from the set optimized for the Landreman—Paul precise QH configuration. The quasi-symmetry
error is defined in (3.1) and summed over the s = {0, 0.1, ...0.9, 1.0} surfaces.

necessarily lead to an increase in performance (or even a decrease in other measures of
quasi-symmetry error, as mentioned earlier). This is consistent with our findings here.

We attempt to further simplify the construction of the coils by optimizing with purely
planar coils; however, the coil sets produced from this optimization were significantly
worse than the comparative non-planar coils (see Appendix A).

3.2. Landreman—Buller—Drevlak 5 % volume-averaged  QH

We applied the optimization procedure to the 5 % volume-averaged f QH configuration of
Landreman et al. (2022). Five coils per half-period were used again for consistency. The
currents inside the plasma were accounted for using the virtual casing principle (Shafranov
& Zakharov 1972; Drevlak, Monticello & Reiman 2005), as implemented numerically
by Malhotra et al. (2019). The weights and target values in the objective function (2.2)
were varied to find the values yielding the lowest value for the quantity in (2.10). The
best weight and target values thus found are presented in table 3. These weights vary
significantly from the weights for the vacuum case, since the metrics are mostly below the
set thresholds and the objective function achieves a values significantly less than 1 (of the
order of 10~ 3). Since the weights are so high in comparison to the objective value, higher
orders of magnitude for the weights will not change the final optimization function too
much, although it may cause some differences in the path the optimization function takes
to achieve a local minimum.

For the resulting coils, the normalized flux surface average of |B - n| (equation (2.10))
is 9.7 x 10~*. Figure 10 shows the comparison between the target surface and the surface
achieved with the resulting coils, the latter of which was calculated using free-boundary
VMEC (Hirshman & Whitson 1983). Figure 11 shows the magnetic field at the boundary
in Boozer coordinates. The coils themselves are shown in figure 12, along with the target
surface. The orange curves in figures 4(a) and 4(b) compare quasi-symmetry properties of
the target configuration and the configuration achieved with the coils, displaying similar
levels of relative degradation in quasi-symmetry as the Landreman—Paul precise QH.

With the same fast-particle tracing simulation set-up as in § 3.1, we obtain alpha-particle
loss fractions of 0.0 %, 2.8 % and 10 %, for particles launched at normalized toroidal flux

https://doi.org/10.1017/50022377824000540 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824000540

Coil optimization for QH stellarator configurations 13

L CC Distance  CS Distance K MSC
Weights 1 10 10 1 5
Target 35m 0.9m 1.3m 0.8m~!  0.Im™!
Achieved Value 35.00m 0.88 m 1.29m 0.74m=! 0.11m™!

TaBLE 3. Weights placed on terms in the objective function, as well as the target values and
the achieved values averaged across the set of coils for the Landreman—Buller—Drevlak QH
configuration described in § 3.2. The terms in the objective function corresponding to the weights
are described in (2.2).

(@) (b) (c)
4 4 4
2 2 2
v
3
@ 0 0 0
E
N
-2 -2 -2
—4 -4 -4
6 8 10 12 14 16 6 8 10 12 14 16 6 8 10 12 14 16

R [meters] R [meters] R [meters]

FIGURE 10. Flux surface comparison of the Landreman—Buller—Drevlak QH 5 %
volume-averaged B configuration (red solid) and the surfaces produced by the coils (black

dotted).
(a) (b)
Landreman-Buller-Drevlak QH 5% with coils B|
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FIGURE 11. Magnetic field B on the plasma boundary in Boozer coordinates. (a)
Landreman—Buller—Drevlak QH with 5 % volume-averaged . (b) B produced by the coils
presented in § 3.2.
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FIGURE 12. Optimized coil set for the Landreman—Buller—Drevlak 5 % volume-averaged
B QH configuration (red). Coils are indexed in the same way as in figure 1.

s =0.3, s =0.5 and s = 0.7, respectively. For the original (stage I) configuration, the
corresponding loss fractions are 0.0 %, 0.1 % and 4 %.

3.3. Mercier-stable 5 % volume-averaged p QH

Finally, we optimized coils for a 5 % volume-averaged B QH configuration that was also
optimized to satisfy the Mercier criterion, again using the initial non-planar optimization
method with five coils per half-period. The weights and target values of the optimization
yielding the best coils are presented in table 4. The boundary of this configuration is
similar to the Landreman—Buller—Drevlak QH of the previous section, so the resulting
weights are the same, with some of the threshold values slightly tuned. Changing
thresholds instead of weights was found to give more predictable results. For the resulting
coils, the normalized flux surface average of |B - n| (equation (2.10)) is 3.9 x 1073,
Figure 13 shows the comparison between the target surface and the surface achieved with
the coils. Figure 14 shows the magnetic field at the boundary in Boozer coordinates. The
coils themselves are shown in figure 15, along with the target surface. The green curves
in figures 4(a) and 4(b) compare quasi-symmetry properties of the target configuration
and the configuration achieved with the coils, again displaying similar quasi-symmetry
degradation as the previous two configurations.

With the same fast-particle tracing simulation set-up as in the previous sections, we
obtain alpha-particle loss fractions of 3.7 %, 5.5 % and 42 % for particles launched at
normalized toroidal flux s = 0.3, s = 0.5 and s = 0.7, respectively. For particles launched
at the outermost radius, approximately 80 % of trapped particles are lost over the 0.2
seconds simulated, resulting in the large loss fraction. For the stage I configuration, the
corresponding loss fractions are 0.4 %, 3.7 % and 11.5 %.
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L(m) CC Distance (m) CS Distance (m) « (m~!)  MSC (m™1)

Weights (no units) 1 10 10 1 5
Target 35m 1.0m 1.3m 0.8m™! 0.1m™!
Achieved value 35.00m 0.94m 1.27m 0.82m™! 0.15m™!

TABLE 4. Weights placed on terms in the objective function as described in (2.2) as well as the
target values and the achieved values averaged across the set of coils for the coil set of the 5 %
volume-averaged B QH Mercier criterion optimized configuration described in § 3.3.
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FIGURE 13. Flux surface comparison of the QH 5% volume-averaged S configuration
optimized to satisfy the Mercier criterion (red solid), and the surfaces produced by the coils
(black dotted).

4. Conclusion

We have found a set of coils for the precise QH configuration of Landreman &
Paul (2022) that achieves an accurate reconstruction of the magnetic field with (|B -
n|)/(B) = 0.0006 while maintaining the targeted coil metrics described in § 2.2. These
metrics are compared with NCSX and HSX metrics and shown to be considerably less
complex, with this set of coils having half the maximum curvature and a quarter of the
mean-squared curvature of NCSX. When perturbing the coils, we have shown that for
o < 0.05, m, corresponding to coil perturbations of with an average amplitude of 0.13 m,
the fast-particle loss-fraction for particles launched from s = 0.3 generally stays below
1 %. The coil set is thus robust to manufacturing error as outlined in §2.3. The large
allowance in coil perturbation amplitude of approximately 15cm is partly due to the
configuration being at reactor scale and represents a small deviation in comparison to
the length of the coils, which is approximately 35 m.

We have shown that a reasonable number of planar coils alone cannot accurately
generate the precise QH magnetic surfaces. The planar coils we found performed
significantly worse than the non-planar coils for the given surface, despite having higher
curvature and being allowed to have a smaller distances between the coils and surface. It
is possible that other configurations may be more easily reproduced with planar coils.

In addition, we optimized coils for two 5 % volume-averaged 8 configurations. Table 5
summarizes the coil metrics, achieved accuracy in reproducing the target boundary,
as measured by (2.10), the two-term quasi-symmetry error and the fast-particle loss
fractions. The finite-beta configurations have lower coil—coil and coil-surface distance,
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L CCd. CSd. « MSC Eq.(2.10) fos Losses

m m m m! m! s=0.5
LP QH 3556 1.09 1.62 0.67 0.07 6 x 107*  0.00056 (0.000025) 0.0 % (0.0 %)
LBDQHS5% 3500 0.88 129 074 0.11 9.7 x10~* 0.0090 (0.00051) 2.8% (0.1 %)
+ Mercier 3500 094 127 0.82 0.15 39x1073 0.025 (0.0020) 5.5% (3.7 %)
NCSX (scaled) 36.60 0.79 1.00 1.68 0.40 — (0.069) (30 %)
HSX (scaled) 31.39 130 2.01 0.82 0.18 — (3.66) (16.8 %)

TABLE 5. Summary of coil metrics, the accuracy metric (2.10), two-term quasi-symmetry error
and fast-particle loss fraction from the s = 0.5 surface for the configurations with coils targeting
the Landreman—Paul precise QH, Landreman—Buller—Drevlak 8 = 5% QH and the 8 = 5%
QH optimized to satisfy the Mercier criterion. In parentheses are the corresponding values for
the target configurations. See table 1 for a definitions of the symbols. NCSX and HSX included
for reference.

(a) ' () . .
Fixed boundary with coils B
1.0 1.0 |
N
0.8 0.8 6.75
£ 06 0.6 6.45
< 6.15
©0.4 0.4 '
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FIGURE 14. Magnetic field B on the boundary in Boozer coordinates. (a) 5 % volume-averaged
B QH configuration optimized to satisfy the Mercier criterion. (b) B produced by the coils
presented in § 3.3.

and larger values of curvature, but still achieve a less accurate reproduction of the plasma
boundary when compared with the vacuum configuration. In particular, the coils for the
Mercier-optimized configuration have roughly seven times larger field error (2.10) than the
coils for the vacuum configuration.

Increasing beta to 5 % increases the quasi-symmetry error by approximately an order
of magnitude compared with the vacuum configuration. Further optimizing for the
Mercier criterion added another order of magnitude to the error. This increase occurs
regardless of whether the configurations are fixed-boundary or reproduced with coils,
with the coils adding roughly another order of magnitude in the quasi-symmetry error
for each configuration. The fast-particle loss fractions are more difficult to interpret, but
there is a 2% to 3 % absolute increase when comparing the finite-beta configurations
produced by coils and their target configurations. The calculated fast-particle losses are
still significantly lower than in existing stellarator devices (Landreman & Paul 2022; Bader
et al. 2021).
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FIGURE 15. Optimized coil set for the 5 % volume-averaged 8 QH Mercier criterion
optimized configuration (red).
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Appendix A. Planar coils for the Landreman-Paul configuration

To explore how well lower-complexity coils can reproduce the target magnetic field, we
also consider whether the same plasma configuration can be produced with modular coils
that are planar.

Each coil curve is taken to lie on a plane, with the distance of the coil from a central point
described using a Fourier series. The rotation of the plane is described with a quaternion
and the position of the central point is specified using Cartesian coordinates. Quaternion
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FIGURE 16. Planar coils optimized for the Landreman—Paul precise QH, with the target
surface (red).

rotation is used to prevent gimbal locking during optimization. The quaternion has four
elements gy + iq. + jg, + kq, which represent a rotation about some vector u through the
central point:

o . 0 6 6
] ; (A1)

s Gys (s = | cos —, sin —u,, sin —u,, sSin —u
[ro qx "Iy qZ] |: ) 2x 2) 21
where 0 is the rotation about u. We restrict u to be a unit vector; if it is not, the rotation
would change the length of the curve.

The position vector of a point along the coil before rotation is determined by

N N

Xo(@) = ) (remcos(me) cos(e)) + Y (rym sin(me) cos(p)), (A2)
m=0 m=1
N N

Yo(p) = Y (remcos(me) sin(@)) + ) _ (r,p sin(mep) sin()), (A3)
m=0 m=1

Zo(p) = 0. (A4)

The quaternion rotation is then performed:

X(op) 1 - 2(Q§ + CIE) 2(‘1}6‘1}' —q:90) 2(q.q;+ 61}"]0) Xo(p) Xcentre

Y(p) | = | 2(q:qy +q:90) 1= (q: +q2)  2(q,q: = qxq0) | | Yo(@) | + | Yeentre | »

Z(QO) 2(‘[ny - QZqO) 2(qy‘k + quI()) 1 - 2(‘1)2; + ‘IS) ZO(QO) Zcentre
(AS)
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FIGURE 17. Poincaré plot of the flux surfaces created by the planar coils optimized for the
Landreman—Paul precise QH. Cross-sections are taken at standard toroidal angle ¢ =0, 1/4
period, 1/2 period (from panel a—c). The solid red curves indicate the target plasma boundary.

where the matrices in (AS) represent the position vector after rotation, the quaternion
based rotation matrix as described by Shepperd (1978), the position vector before rotation
defined by (A2), (A3), (A4), and a translation of the centre.

To attempt to find an adequately low-error coil set, we performed 115 optimizations
while varying the weights and threshold values as described in (2.2). The weights and
threshold values were varied around the previously found optimum values, so that we only
consider planar coils of similar complexity to the non-planar coils.

The lowest normalized flux surface average of |B - n| (equation (2.10)) thus obtained
was 0.0382. The average length of the resulting coils is 40.2 m, the maximum curvature
and MSC were 0.397m~! and 0.577m™!, respectively, while the distance between coils
and the distance from the coils to the surface were kept above 1.39m and 0.96 m,
respectively. The coils are shown in figure 16. A Poincaré plot of the resulting magnetic
field is shown in figure 17. As seen from the Poincaré plot, the coils do a poor job of
approximating the target surface. While producing this QH configuration with only planar
modular coils does not appear possible, planar modular coils may be feasible for other
plasma configurations, or perhaps if used along with windowpane coils. These possibilities
are left for future work.
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