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ON THE MODULE STRUCTURE OF A p-EXTENSION
OVER A 5-ADIC NUMBER FIELD

YOSHIMASA MIYATA

Throughout this paper, let p be an odd prime. Let & be a p-adic
number field and o be the ring of all integers in k. Let K/k be a finite
totally ramified Galois p-extension of degree p* with the Galois group G.
Clearly the ring O of all integers in K is an o[G]-module. In the pre-
vious paper [4], we studied o[G]-module structure of © in a cyclic totally
ramified p-extension, and we have obtained the condition for © to be
an indecomposable 0o[G]-module. In the present paper, we shall prove the
following theorem.

THEOREM 1. Suppose that k contains a primitive p-th root of unity.
Let K|k be a totally ramified Galois p-extension of degree p™ such that the
extension K[k is not cyclic. Let E be a central idempotent of the group
ring k[G] such that EQ € . Then we have E = 1.

As an immediate consequence of Theorem 1, we have the next theo-
rem.

THEOREM 2. Let k and K|k be as stated in Theorem 1. In addition,
we assume that the extension K|k is abelian. Then the o[G]-module O is
indecomposable.

In §1, we shall study properties of central idempotent. In §2, re-
calling properties of ramification numbers, we shall obtain some inequali-
ties. In §3, we shall study the special case where the Galois group G
is an elementary abelian group of order p’. In §4, we shall study the
case where the Galois group G is a direct product of two cyclic groups
whose orders are p and p™ respectively. In §5, we shall prove Theorem
1 and Theorem 2.
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In this section, we shall study some properties of central idempotents.
Let G be a non-cyclic p-groups and H be a normal subgroup of order p.
The natural map from G onto the factor group G/H induces the ring
homomorphism f; from the group ring k[G] onto k[G/H]. Let C(G) denote
the center of G. First, we assume that C(G) is not cyclic. Then C(G)
contains an elementary abelian p-group C of order p?.

LEmMmA 1. Let G be a non-cyclic p-group and C be as stated in the
above. Supposethat the center C(G) of G is not cyclic. Let E be a central
idempotent of k[G] such that fy(E) = 1 for any normal subgroup H of order
pin C. Then E = 1.

Proof. Without any loss of generality of proof, we can assume that
k is the splitting field for G. Let y be an absolutely irreducible character
and E, be the central idempotent corresponding to y. Then there is

some subgroup H of C such that E,-l( 5 h) ~ E, Since fu(E)=1

z°

D \reH
from the assumption, we have E = l( >, h) + E’, where E’ is a central
p heH
idempotent such that E’ —1—<Z h) = 0. Therefore, for any absolutely ir-
p hEH

reducible character y, E,-E = E,, which implies that E = 1.

Next, we assume that C(G) is cyclic. Clearly G has the unique
normal subgroup Z of order p, and G is not abelian because G is not
cyclic. Then, since p is odd, it is well known that G contains a normal
elementary abelian subgroup B of order p*(for example, see [2] III 7.5, p.
303). From the uniqueness of Z, it follows easily that Z is contained in
B N C(G). Let b and z be fixed generators of B such that b& C(G) and
ze C(G). Let Cg(b) be the centralizer of b in G and @ be the Frattini
subgroup of G. As B is normal in G and Z is a characteristic subgroup
of B, for any ge G, we have

(1) b~'gb = gz*

for some rational integer i (0 < i < p) which depends on g. Since b & C(G),
from (1), we see easily that Cg(b) is a proper normal subgroup of G and
hence we have

(2) Ce(b)d + G .
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Now we obtain the following lemma.

LEMMA 2. Let G be a non-cyclic p-group. Suppose that the center
C(G) of G is cyclic. Let Z,B,z and b be as above. Let E be a central

idempotent of R[G] such that E- (Z z) = 0. Then E belongs to the
group ring E[C4b)D].

Proof. We can also assume that k is a splitting field for G without
loss of generality of proof. Let y be an absolutely irreducible character
and E, be the central idempotent of E[G] corresponding to y such that

EE =E, Since E- (Z z) =0, we have Exl(z z") =0. Let E,
b

= D gcq @8, Where @, is in k. In order to prove the lemma, it is sufficient
to show that if «, =¢ 0, then ge Cy(b)?. As is well known, G is an M-
group and so y is induced by a linear character « of some subgroup A
in G. Denote by |A| the order of A. Using «, we define a mapping & by

a(g) =a(g) if geA
a(g) =0 if geA.

Then we have the formula

w8 = |Tll Z a(h™'gh) (for example, see [2] p. 553).

Now, as a, % 0, x(g7*) = 0 and for some h, € G, h;'g 'h,c A. Leta = hy'g 'h,.
Immediately, y(a) = y(g™?) and so x(e) > 0. Here suppose that a & Cy(b).
Clearly b& Cg(a). Since B is normal, it follows easily that Cy(@)B is a
subgroup of G and Cy(a) is a normal subgroup of C,(e)B. Hence the set
{1,6,---,b7"} is a set of right coset representatives of C,(ez) in Cs(a)B.
Let a set {h,, - - -, h;} be a set of right representatives of Cy(e)B in G, so
the set {b°7;|0 i <p,1<j< I} are right representatives of Cy(a)B in
G. As a& Cyb), b 'ab = az® for some i, such that i, &= 0. For the sake
of simplicity, we denote by z the element z‘ again. Then b ‘ab’ = az*
for 0 < i < p. Hence we have

1(a) = '?ﬁ‘?' 3 ahyb~abthy)

- ‘(fi‘l‘” > S ahy'an,z)
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As E,~l(Z 2') = 0,2E, = 0E,, where 6 is a primitive p-th root of unity.
b

Therefore Z is contained in A, and so hj'ah,z’c A if and only if h;'ah;
€ A. Hence we obtain for any j

> a(h;'b-'abth,) = d(h;‘ahj)(pi]lﬁi) ~0.

1 1=0
Then, if a & Cg(b), y(g™*) = y(a) = 0, which is a contradiction. Hence we

conclude that if «, = 0, then ac Cg(b). As G/P is abelian, then ge a™'0.
Therefore we have ge C,(b)®, which completes the proof.

2.

Now denote by e the absolute ramification index of k. Let F/k be a
cyclic ramified extension of degree p with the first ramification number

b. Define a function m by m(b) = [g#—l)] We write b in the

form b = p[—b—] + p — A From [1] Theorem 3, we have that for (b,p) = 1,
by

(3) mb)+21—-—1=0 p—1.

Next let K, and K, be cyclic ramified extensions of degree p with
ramification numbers b, and b, respectively. Let K be the composition
field of K, and K,. According to the result of E. Maus ([3]), we can ob-
tain the first ramification number b(K/K,) for the extension K/K, as fol-
lows:

i) if b, > b, (K/K,) = b, + p(b, — b,)

i) if b, < b, b(K/K,) = b,

iii) if b, = b,, either b(K/K,) = b,, or for some ¢ such that ¢ < b,
b(K/K;) = c.

Using these equalities, we shall have the following lemma.

LemmA 3. Let K[k be a totally ramified extension such that the Galois
group of K|k is an elementary abelian p-group of order p*. Let F be a
subfield of degree p in K. Then m(b(K/F)) < pe.

Proof. There is a subfield F, of degree p such that K is the com-
position field of F' and F,. Denote by b and b, the first ramification
numbers of F and F, respectively. First, we consider the case b < b,.
From the above equality i), we have m(b(K/F)) = m(b) + (p — 1)(b, — b).
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Since b, < ¢ - (p — )b — m(b) < pe — m(b(K|F)). As is easily seen,
b

b < b, means (b,p) =1. Put b= p[—b—] + p — 2, so that (p — 1)b — m(b)
D

=(p— 1)2[}?-] + (p — 2)(p — 2). Since p is odd, then (p — 1)b — m(b) >0,

so pe — m(b(K|F)) > 0.
Next, we shall consider remaining cases. From the above equalities
ii) and iii), we have m(b(K/F)) < m(b). Then, by the well known fact
that m(b) < e, we have m(b(K/F)) < pe. Thus the proof is completed.
Now, let L/k be a cyclic totally ramified extension of degree p” with
n ramification numbers b,, b,, - - -, b,.

LEmMMmA 4. Let L/k, b, and b, be as above. Then m(b) < e if and
only if m(b,) < p™‘e.

Proof. From [4] Lemma 2, we have that if m(b,) < e, then m(d,)
< p"'e. Then, to complete the proof, we need to show that if m(b,)
< p"'e,m(b) < e. For it, as is easily seen, it suffices to prove only for
the case of n=2. From [4] Lemma 1, we can assume that %2 contains a
primitive p-th root of unity without loss of generality of proof. Then

pe or _PC 1,
p—1 p-—-1

b= P 261 — 1. From [5] Corollary 26, we have that if b, < —¢ 7
D — D —

2
p e1 —(p — )b, = b, and if b, = ¢ > b, = b, + pe. First, suppose b,
b — D —

< Then we have that P ‘e
p —

we observe that m(b,) = e if and only if b, = Hence

e
p—1
(p — b, <1, which is a contradiction. Thus we have that b, >

2
1——(p—1)blg pel_l and hence

e
p—1
2
and b, = P _ _ 1 because b, = b, — pe and b, > P€__ 1. From this
p—1 p—1
result, it clearly follows that m(b,) = e.

Throughout the rest of this paper, we assume that %k contains a
primitive p-th root of unity. Then (p — 1) divides e and so let ¢, be
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e
=21
uation of k (val, (r,) = 1). Let K/k be a totally ramified extension whose
Galois group is a elementary abelian p-group of order p* as described in
the paragraph preceding Lemma 3. Now we may divide such extensions

e, Let 7, be a prime element of 2 and denote by val, the val-

into following five types.

(1) K= k(w,, w,), where w?e k and val, (w? — 1) = 2 for i = 1, 2.

(ii) K = k(z, w), where w? e k, val, (w? — 1) = 2,27 ¢ k and val, (2 — 1)
= 1.

(iil)) K = k(z, z,), where 2?c¢ k and val, (2 — 1) = 1. Moreover, let
K|k be the extension with exactly one ramification number pe, — 1.

(iv) K = k(zr, w), where w?e k,val, (w? — 1) = 2, z? € k£ and val, (z?)
= 1.

(v) K = k(n,2), where z?ck, val, (2> — 1) = 1,z?e k and val, (z?)
= 1.

In the following, we shall prove that the ring © of all integers in
K is an indecomposable o[G]-module. Let ¢ be an o[G]-endomorphism of
O such that ¢* = ¢. Clearly, proving that the ring O is indecomposable
is equivalent to showing ¢ = 1. We shall show the latter for the exten-
sion of each type stated in the above as (ii), (iii), (iv) and (v). Now we
begin with the case of type (iii).

(I) The case of type (iii). Let /I be a prime element of K. Since
valg (z; — 1) = p because of the definition of type (iii), then there exist
units w, and o, of & such that z, — 1 = w,[1? (II**") for i = 1, 2.

LemMMA 5. Let 2, and o, be as above. For rational integers i, and i,
let L, + Lw, =0 (II). Then i, =1i,=0 (p).

Proof. From the assumption, we have ziz* = 1 (/I**"). Suppose zi2}®
&k and let b be the ramification number for the extension k(zizi)/k.
Then, from the result of B.F. Wyman ([5]), we have b < pe, — 1, which
is contrary to the fact that K/k has exactly one ramification number
pe, — 1. Hence 2z ¢ k, which implies that i, = i, = 0 (p).

LEmMmA 6. Let I, and I, be subsets of {0,1, ---,p — 1}. Moreover,
suppose that I, is a proper subset. Then

vale [{(3 #)a} - 2] - (z1- 1L =>p,

i€lo telo
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where |I,| is the number of the set I,.

Proof. Since 2t =1 + iw,[I?(II**"), we have
{(z2t)e— 3 a) - 0zl - 15D
= |L|oIT” + {(Z z) (z z)}w 7 (I17+)

i€y i€lg

By Lemma 5 and from the assumption 0 < |I,| < p, it follows that |I,|w,
+ {Cien©) — Cier, D)o, & (7,). This completes the proof.

Now we can assume that ¢(1) = 1 (replacing ¢ by 1 — ¢ if necessary).
Clearly ¢(zi'z*) = 2i2zi* or 0. Let a;, = l(l 4+ 2z + - + 2= — 1) for

T

1<j<p. Thena,—lzl_ll(g—l). As valg (2, — 1) = valg (2, — 1)

T, 2, —

= p,valg (o) = 0. Set p(e;) = ——{<Z zl>z2 > zi} and suppose that I,

i€l i€lo

is a proper subset of {0,1, ---,p — 1}. From Lemma 6, we have valg (¢(x,))
< p — p’, which is a contradiction. Hence I, = & or {0,1, ---,p — 1}
Next suppose I, = &, so ¢(a,) <0, a contradiction. Thus we conclude
I, ={0,1,-.-.,p — 1}. Now we examine the set I, and suppose 0 < |I,| < p.
Then we have (e, )= —|L| ({I?) and so valg (¢p(e,) < 0, a contradiction.
As o(1) =1,|I,| > 0 and hence I, ={0,1, ---,p — 1}. Therefore we have
o(2iz,) = 2iz, and ¢(2f) = 2i for 0 < i < p. Similarly, evaluating valg (¢(x,)),
we have that ¢(zizf) = ziz{ for any i and any j, and that ¢ = 1.

(II) The case of type (ii). Let a;, = lzf(l +w+ - +w?') for
o

Jj=01,...,p—1 and let 19=—1—(1+Z+ coo + 2 Dz, where w, is a
Ty

prime element of k(w). Using the similar arguments as in (I), we can
easily conclude ¢ = 1.
(III) The case of type (iv). Without loss of generality of proof, we

can assume z” =, Let «;, = l71-1(1 +w+ - +w??) for j=0,1, ---,
Ty

p — 1. Using the result of S. Amano ([1]), we shall define an integer p.
From his result, there exists a prime element =, of k(w) such that =z, is
a root of the following equation

(4) X? —onpX — 1+ any) =0,
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where o is a unit of k,aco and m = m(b(k(w)/k)). Clearly z? = n(1
+ wr 'zt 4+ ar,). Then chose an integer ¢ of o as follows: if m < 2,6 =0

and if m > 3, chose ¢ such that #?(1 + en,)? = =, (z}). Let u = (1 + em)
T

and g = ”p—l(u”'1 4+ uP?+4+ ... +1). Then u is a unit of K such that
T

0

w=1(). Put i=valu—1). Then it is easy to see that if i < L€
p —

7 val, (u» — 1) =i + p’e. From (3),

b

p’e

val, (w» — 1) =pi and if i>

we have that if m=1,2>2 and so i>=2. First, assume i < —Iil.
p —_—
Then val, () =pi+(p—p—i—p =@ —1)i—p. Asi=2 we have

valg (8) > 0. For the case i = p'e 1 valg (8) = p’*¢e — p. Hence fis in ©
' b

for the both cases. Also, we immediately get valg (¢;) = 0. Since ¢(a,)
and ¢(8) are in O, we have that ¢(z/w’) = r'w* and ¢ = 1 as in ().

(VI) The case of type (v). As valg (z? — 1)=1, z satisfies the fol-
lowing congruence z? = 1 + &7, (7)), where ¢, is a unit of 2. Then there

exists a unit ¢ of & such that ¢%¢, = 1 (z,). Now, let o, = l[{e(—l—l—z)}""‘
Ty

+{e(=1+2pP"r+ -+ Tfp'l] and u =E—(ﬁi). Then u,,E_s_"g_——_lip)
T

o

= 1(I1**). Put i = valg (u — 1), so clearly i = p. Then we have valg ()
>0 as in (III). We observe easily that (—1+ 2)*'=14+24 --- 4+ 227 (p).
Hence mop(wy) = e 'o(1 + 2+ -+ +22)(x). Set o1+ 24 --- + 2779
= > er 2 and suppose 1 < |I|<p. Then o1+ 2+ -+ 4 277" is a unit
of K and so valg ¢(a,) = —p?, a contradiction. Thus ¢(z¥) = 2* for i = 0,
1, ---,p — 1. Using the same arguments as in (III) with this fact, we
conclude ¢ = 1.

ProposITION 1. Suppose that k contains a primitive p-th root of unity.
Let K|k be a totally ramified extension whose Galois group is an elementary
abelian p-group of order p’. Then O is an indecomposable o[Gl-module.

Proof. We have just proved the results for the cases where the ex-
tensions K/k are not of type (i). It remains to verify for the case of type
(1). First, we note that for any subfield F of degree p in K, m(b(F/R)) < e.
From [4] Theorem 3, the ring O, of all integers in F is indecomposable.
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Hence, from Lemma 1, we obtain the desired result for the extension of
type (i).

4.

In this section, we shall treat the case where the Galois group G is
a direct product of two cyclic groups whose orders are p and p" respec-
tively. Let F and L be cyclic totally ramified extensions of degrees p
and p” respectively. Let K be a composition field of F and L, and as-
sume that K is totally ramified. Let ¢ be an o[G]-endomorphism of ©O
such that ¢* = ¢ as in the previous section. As G is abelian, we can
consider ¢ as an idempotent of k[G]. Let L, is the unique subfield of
degree p in L and S denote the subgroup of G corresponding to L,. First,
we assume that 2 contains a primitive p"th root of unity. Then there
exists an element y of L such that L = k(y) and y*" = n}"u,, where 0 < m
< n and u, is a unit of k£ such that u, = 1(x,). Denote by § a primitive
element of F' as given in § 3, i.e. § is one of w, z and =. Now, since ks’
is a k[G]-module, obviously ¢(y%’) = y%’ or 0 for 0 <i <p”" and 0 < j < p.
For 1<i<p"*' with (i,p) = 1, put ¢ = [ip™/p"]. Then ¢/z¢ is integer of
K. For the case m =1, let v=y?"""/zf""". Immediately, we have that v®

p-1 i+lpn—1 i p-1
is a unit of & such that v* = 1(r,) and that Zo(l—ﬁ)=—7—2 ovt.
=0 \gg+ir wd =0
For the case m = 0, we have } 25 oy**'?" ™' = (3 07"), where y = ¢?""(val, (y)
=1). Furthermore, we remark 7L, = > ?Z; ky**'*"~', Now, from the similar
arguments as in § 3 with the above remarks, we conclude that o(y**'*"7'%)
= "7 for any ! and any j, or all ¢(y**'*"7'§’) are simultaneously
equal to the zero element of © except the case where p = 3,e = 2,
val, (7*/z8) = p"* and the extension L. F is of type (v) such that m(b(L,/k))
= 2 and m(b(F/k)) = 3. In the following, we consider the remaining case.
Let 7, be a prime element of L, which satisfies the equation (4) as given
in §3. As is easily seen, {1,v,v*} is an integral base. Then x, is written
in the form =, = @, + a,v + a,V%, where a;€0. As tr,,, =, = 0, we see that
o, =0 and @, = —a, = 0(x,). Denote 7!z by y’and let i, be the minimal
integer i’ such that 3"%' + val, (y/) = 8". As 3""! < val,y < 3", we have
0<i,<2 First, we consider the case i,=1. Let ¢, = z;—’(l + v+ 1Y)
_r= D

and @, = (1 + v+ v*). Then, evaluating valg (p(ay)) and valg (¢(e)),
Ty
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we have o(y/v)) = ¢v! and ¢(yviz?) = y'viz* for 0 < i< 3. Next let «,

=11+ u+ u), where u = % asin §3. Asu=1(x), weseevalya, =0.
o T

Clearly %o, = 12-(7:0 + m7* + #in). Let ofy(1 + v + ¥z} = ya(D e, V9 and
o o

suppose 1 <|I| < 3. Then zjp(a) = r(—adn(yr,), which is contrary to
¢(a,) = 0 since @, is a unit of & and valg (yr) <2-3"*'. Thus we conclude
I=1{0,1,2} or &. Similarly, for the case i, = 2, we have the desired
result. This completes the proof of the above statement for this case.
Now, according to the same arguments as used in [4] with the above
statement, we have that the idempotent ¢ is an element of Z[S]. Next,
we assume that & does not contains a primitive p"th root of unity. Then
it follows from [4] Lemma 4 that ¢ € k[S]. Therefore, clearly by the induc-
tive arguments, we obtain the following proposition.

ProposiTiON 2. Let K[k be a totally ramified extension whose Galois
group is a direct product of two cyclic groups of orders p and p™ respec-
tively. Suppose that k contains a primitive p-th root of unity. Then O is
indecomposable.

5.

In this section, we shall give the proofs of Theorem 1 and Theorem
2. First, we shall prove Theorem 1 and use the same notations as in
the previous sections. Let G be a non-cyclic p-group of order p* and let
E be a central idempotent of E[G] such that EO € ©. We use induc-
tion on n of p-power p”. From Proposition 1, we obtain the result for
n = 2. Assume the result holds for n << r. Let G be a non-cyclic p-group
of order p”. First, we assume that the center C(G) of G is not cyclic as
in Lemma 1. Now, if there exists a subgroup H of order p in C such
that the factor group G/H is cyclic, then G is of type (p,p""") and so
the desired result follows from Proposition 2. Thus we consider the case
where for any subgroup H of order p in C, the factor group G/H is not
cyclic. By our inductive assumption, f(E) = 1. Then, from Lemma 1,
we obtain E = 1, which completes the proof of Theorem 1 for the first
case. Next, we assume that C(G) is cyclic. As G is not cyclic, G is
not abelian and hence G/Z is not cyclic. By our inductive assumption,

-1
we have f(E) =1 and so we can write £ = 1 pZ 2 + E,, where E, is a
p i=0
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central idempotent such that Eo-l(Z{?;& 2)=0. From Lemma 2, we
p

have E, e Cyb)® and Ee Cy(b)?. Denote by K, the subfield correspond-
ing to Z. Then, from Lemma 3, m(b(K/K,)) < e;, where e, is the absolute
ramification index of K,, since K, contains a subfield K, corresponding
to B. Therefore, if Cyb)® is cyclic, it follows from Lemma 4 and [4]
Theorem 3 that £ = 1. Thus we now consider the case where C,(b)® is
not cyclic. Now, by (2), we note |Cyb)®?| < |G|. Hence we can apply
our inductive assumption to this case and conclude E = 1. The proof of
Theorem 1 is completed.

Next, we shall prove Theorem 2. Let ¢ be an 0[G]-endomorphism of
© such that ¢* = ¢. To prove Theorem 2 it is sufficient to show ¢ = 1.
As the extension Kk is abelian, we can consider ¢ as an idempotent of
k[G]. Then, from Theorem 1, we have obtained ¢ = 1 and the proof of
Theorem 2.
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