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ON THE MODULE STRUCTURE OF A p-EXTENSION

OVER A P-ADIC NUMBER FIELD

YOSHIMASA MIYATA

Throughout this paper, let p be an odd prime. Let έ be a p-adic

number field and o be the ring of all integers in k. Let K/k be a finite

totally ramified Galois p-extension of degree pn with the Galois group G.

Clearly the ring D of all integers in K is an o[G]-module. In the pre-

vious paper [4], we studied o[G]-module structure of D in a cyclic totally

ramified p-extension, and we have obtained the condition for O to be

an indecomposable o[G]-module. In the present paper, we shall prove the

following theorem.

THEOREM 1. Suppose that k contains a primitive p-th root of unity.

Let Kjk be a totally ramified Galois p-extensίon of degree pn such that the

extension Kjk is not cyclic. Let E be a central idempotent of the group

ring k[G] such that EG c O. Then we have E = 1.

As an immediate consequence of Theorem 1, we have the next theo-

rem.

THEOREM 2. Let k and Kjk be as stated in Theorem 1. In addition,

we assume that the extension Kjk is abelίan. Then the o[G]-module £) is

indecomposable.

In § 1, we shall study properties of central idempotent. In § 2, re-

calling properties of ramification numbers, we shall obtain some inequali-

ties. In § 3, we shall study the special case where the Galois group G

is an elementary abelian group of order p2. In § 4, we shall study the

case where the Galois group G is a direct product of two cyclic groups

whose orders are p and pn respectively. In § 5, we shall prove Theorem

1 and Theorem 2.
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14 YOSHIMASA MIYATA

1.

In this section, we shall study some properties of central idempotents.

Let G be a non-cyclic p-groups and H be a normal subgroup of order p.

The natural map from G onto the factor group G/H induces the ring

homomorphism fH from the group ring k[G] onto k[G/H]. Let C(G) denote

the center of G. First, we assume that C(G) is not cyclic. Then C(G)

contains an elementary abelian p-group C of order p2.

LEMMA 1. Let G be α non-cyclic p-group and C be as stated in the

above. Suppose that the center C(G) of G is not cyclic. Let E be a central

idempotent of k[G] such that fH(E) = 1 for any normal subgroup H of order

p in C. Then E = 1.

Proof. Without any loss of generality of proof, we can assume that

k is the splitting field for G. Let χ be an absolutely irreducible character

and Eχ be the central idempotent corresponding to χ. Then there is

some subgroup H of C such that Ez-—(^h) = Ez. Since fH(E) = 1
P \hSH /

from the assumption, we have E = — ( J] h) + E\ where Ef is a central
p \heH }

idempotent such that Ef >—( 2 h) = 0. Therefore, for any absolutely ir-
p \heH /

reducible character χ, Eχ E = Eχi which implies that E = 1.

Next, we assume that C(G) is cyclic. Clearly G has the unique

normal subgroup Z of order p, and G is not abelian because G is not

cyclic. Then, since p is odd, it is well known that G contains a normal

elementary abelian subgroup B of order p2(for example, see [2] III 7.5, p.

303). From the uniqueness of Z, it follows easily that Z is contained in

B Π C(G). Let b and z be fixed generators of B such that 6 $ C(G) and

z e C(G). Let CG(b) be the centralizer of b in G and Φ be the Frattini

subgroup of G. As B is normal in G and Z is a characteristic subgroup

of B, for any g e G, we have

(1) b-'gb^gz1

for some rational integer i(0<^i<p) which depends on g. Since b e C(G),,

from (1), we see easily that CG(b) is a proper normal subgroup of G and

hence we have

(2) CG(b)ΦφG.

https://doi.org/10.1017/S0027763000018614 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018614


p-ADIC NUMBER FIELD 15

Now we obtain the following lemma.

LEMMA 2. Let G be a non-cyclic p-group. Suppose that the center

C(G) of G is cyclic. Let Z, B, z and b be as above. Let E be a central

ίdempotent of k[G] such that E — ( 2 z1) = 0. Then E belongs to the
p V=o /

group ring k[CG(b)Φ].

Proof We can also assume that k is a splitting field for G without

loss of generality of proof. Let χ be an absolutely irreducible character

and Eχ be the central idempotent of k[G] corresponding to χ such that

EχE = Eχ. Since E>—(^zi) = 0, we have Eχ — 6ϊ] 2A = 0. Let Eχ

p \ί=o ) p \ 1

= Σgeo agg> where ag is in k. In order to prove the lemma, it is sufficient

to show that if ag ^ 0, then g e CG(b)Φ. As is well known, G is an M-

group and so χ is induced by a linear character a of some subgroup A

in G. Denote by |A| the order of A. Using a, we define a mapping a by

ά(g) = <x(g) iΐ geA

ά(g) = 0 if geA.

Then we have the formula

χ(g) = ri-7 Σ όc{h-ιgh) (for example, see [2] p. 553).
\A\ h£G

Now, as ag ^ 0, χ(g~ι) = 0 and for some h0 e G, h^g'1^ e A. Let a = hόιg'ιh^

Immediately, χ(α) = χ(g~ι) and so χ(a) ̂  0. Here suppose that αe CG{b).

Clearly b e CG{a). Since B is normal, it follows easily that CG(a)B is a

subgroup of G and CG(α) is a normal subgroup of CG(a)B. Hence the set

{1, 6, , bv~1} is a set of right coset representatives of CG(a) in CG{a)B.

Let a set {hl9 , hJ be a set of right representatives of CG(a)B in G, so

the set {Vhj \ 0 <; i < p, 1 <̂  j <I /} are right representatives of CG(a)B in

G. As α$ CG(6), b~ιab — azίo for some ί0 such that i0 ^ 0. For the sake

of simplicity, we denote by z the element z* again. Then b~labl = azt

for 0 5j i < p. Hence we have
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1 6 YOSHIMASA MIYATA

As Eχ—(2 zι) = 0, zEχ — ΘEX, where θ is a primitive p-th root of unity.
P

Therefore Z is contained in A, and so h'^ah^z1 e A if and only if h]xahό

e A. Hence we obtain for any j

fSV) = 0 .

Then, if a § CG(6), χίg"1) = χ(α) = 0, which is a contradiction. Hence we
conclude that j£ag ^ 0, then αe CG(6). As GjΦ is abelian, then ge a~ιΦ.
Therefore we have g e CG(b)Φ, which completes the proof.

2.

Now denote by e the absolute ramification index of k. Let Fjk be a
cyclic ramified extension of degree p with the first ramification number

6. Define a function m by m(6) = [ ( P J Z J ^ J L ^ . ! . We write b in the
L p J

form 6 = p — + P ~ ~ ^ From [1] Theorem 3, we have that for (b,p) = 1,
LpJ

(3) m(b) + λ-1 = 0 (p-ϊ).

Next let Kx and ii2 be cyclic ramified extensions of degree p with
xamification numbers bx and 62 respectively. Let if be the composition
field of Kx and K2. According to the result of E. Maus ([3]), we can ob-
tain the first ramification number b{KjK^) for the extension K\Kγ as fol-
lows:

i) if b2 > bu b(KIKx) = bx + p(b2 - 6,)

ii) if b2 < bu biK/Kd = 62

iii) if 62 = 6j, either biK/K^ = bu or for some c such that c < 61?

b(KIKd = c.
Using these equalities, we shall have the following lemma.

LEMMA 3. Let Kjk be a totally ramified extension such that the Galois
group of Kjk is an elementary abelian p-group of order p2. Let F be a
subfield of degree p in K. Then m(b(K/F)) < pe.

Proof. There is a subfield Fx of degree p such that K is the com-
position field of F and Fx. Denote by 6 and bt the first ramification
numbers of F and Fλ respectively. First, we consider the case b < bx.
Prom the above equality i), we have m(b(KIF)) = m(b) •+- (p — ΐ)(bί — b).
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Since 6j <̂  p e , (p — 1)6 — m(b) <Lpe — m(b(KIF)). As is easily seen,
P ~ 1

b <bx means (6,p) = 1. Put b = p — + p — λ, so that (p — 1)6 — m(b)
LpJ

= (p - 1)2[—1 + (p - 2)(p - X). Since p is odd, then (p - 1)6 - m(6) > 0rLpJ

so pe - m(b(K/F)) > 0.

Next, we shall consider remaining cases. From the above equalities

ii) and iii), we have m{b{K\F)) <, m(b). Then, by the well known fact

that m(b) ^ e, we have m(b(KIF)) < pe. Thus the proof is completed.

Now, let Ljk be a cyclic totally ramified extension of degree pn with

n ramification numbers 6^ 62, , 6W.

LEMMA 4. Let L/k, bί and bn be as above. Then m{b^) < e if and

only if m(bn) < pn~ιe.

Proof. From [4] Lemma 2, we have that if mφϊ) < e, then m(bn)

< pn~ιe. Then, to complete the proof, we need to show that if m(bn)

< pn~ιe, 771(60 < e. For it, as is easily seen, it suffices to prove only for

the case of n = 2. From [4] Lemma 1, we can assume that k contains a

primitive p-th root of unity without loss of generality of proof. Then

we observe that m(b^) = e if and only if b1 = -^-— or ——— — 1. Hence
p - 1 p - 1

62 ;> _ϋ!?_ _ i. From [5] Corollary 26, we have that if b, < —^— r
p - 1 p - 1

2

—(p — l)&i ^ &2 and if 6j ^ , 62 = 6j + pe. First, suppose
p 1

(p l)&i ^ &2 and if 6j ^
p - 1 p - 1

< —e—~. Then we have that _ϋ!i_ - (p - l)6j ^ - ^ - - 1 and hence
p - 1 p - 1 p - 1

(p — 1)&! ^ 1, which is a contradiction. Thus we have that bx ^ —-—

2
and bx ^ -J-— — 1 because bt = 62 — pe and 62 ^ —-— — 1. From this

p - 1 p - 1
result, it clearly follows that m{b^) — e.

4.

Throughout the rest of this paper, we assume that k contains a

primitive p-th root of unity. Then (p — 1) divides e and so let e0 be
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e0 = —-—. Let τr0 be a prime element of k and denote by valfc the val-
p - 1

nation of k (valfc (;r0) = 1). Let K/k be a totally ramified extension whose

Galois group is a elementary abelian p-group of order p 2 as described in

the paragraph preceding Lemma 3. Now we may divide such extensions

into following five types.

( i ) K = k(wu w2), where wf ek and valfc (wP — 1) :> 2 for ί = 1, 2.

(ii) K = k(z, w), where wp e k, valfc (wp -l)^2,zpek and valfc (zp - 1)

= 1.

(iii) K = k(zu z2), where zfek and valfc (zf — 1) = 1. Moreover, let

K\k be the extension with exactly one ramification number pe0 — 1.

(iv) K = k(π, w), where ιυp e ̂ , valfc (w;p — 1) :> 2, ττp e k and valfc (^p)
— i#

( v) if = k(π, z), where zp e k, valfc (2ip — 1) = 1, πp e k and valA (πp)
-1

In the following, we shall prove that the ring O of all integers in

K is an indecomposable o[G]-module. Let φ be an o[G]-endomorphism of

£) such that φ2 — φ. Clearly, proving that the ring © is indecomposable

is equivalent to showing ψ = 1. We shall show the latter for the exten-

sion of each type stated in the above as (ii), (iii), (iv) and (v). Now we

begin with the case of type (iii).

( I ) The case of type (iii). Let Π be a prime element of K. Since

val* (zt — 1) = p because of the definition of type (iii), then there exist

units ωi and ω2 of k such that zt — 1 = α>ί/7p (Πp+1) for i = 1, 2.

LEMMA 5. Let zt and ωt be as above. For rational integers ίx and i29

let i^ + i2ω2 = 0 (77). Then it Ξ Ϊ 2 Ξ 0 (p).

Proof. From the assumption, we have z^zl2 = 1(ΠP+1). Suppose z\xzi*

•§ k and let b be the ramification number for the extension kiz^zt^/k.

Then, from the result of B. F. Wyman ([5]), we have b < pe0 — 1, which

is contrary to the fact that Kjk has exactly one ramification number

pe0 — 1. Hence z^zί2 e k, which implies that it Ξ i2 Ξ 0 (p).

LEMMA 6. Let Io and Ix be subsets of {0,1, , p — 1}. Moreover,

suppose that Ix is a proper subset. Then
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where \I3\ is the number of the set I3.

Proof. Since z) = 1 + ίω3Π
p(Πp+1\ we have

- Σ 4 - <|Jil - 1-ΓoD
ίei )

Σ
e/o

By Lemma 5 and from the assumption 0 < |7i| < p, it follows that |iΊ|ω2

+ {(Σte/i 0 — (Σie/o OH e (ττ0). This completes the proof.
Now we can assume that φ(ΐ) = 1 (replacing φ by 1 — φ if necessary).

Clearly ψ{z{^) = sfrzj? or 0. Let a, =—(1 + *, + + ^ Γ 1 ) ^ - 1) for

1 ^ j < p. Then α, = — z* ~ 1 ( ^ - 1). As val^ (^ - 1) = val^ (z2 - 1)
π 0 2?i — 1

= p , val^ (ccj) = 0. Set ̂ (^) = — \ \ Σ zύz2 — Σ sir a n d suppose t h a t Ix

π0 l\ieii I ίeio J

is a proper subset of {0,1, , p — 1}. From Lemma 6, we have val^ (φ(aj)

<Lp — p2, which is a contradiction. Hence ii = 0 or {0,1, , p — 1}.

Next suppose Ix = 0 , so (̂α )̂ < 0, a contradiction. Thus we conclude

7j == {0,1, ,p — 1}. Now we examine the set IQ and suppose 0 < |/0 | < P

Then we have πQψ{ax)= — \IQ\(ΠP) and so valK{<p(a$) < 0, a contradiction.

As ^(1) = 1, |J0 | > 0 and hence IQ = {0,1, -,p — 1}. Therefore we have

<p(z\z2) = 2:*^ and ^(zj) = ̂  for 0 <̂  ί < p. Similarly, evaluating val^ (φ(aj)),

we have that φ{z\zξ) = 2:*^ for any j and any j , and that φ = 1.

(II) The case of type (ii). Let as = -1^(1 + w + + w*'1) for

j = 0,1, >,p — 1 and let β = —(1 + z + + ZP~X)KU where πx is a

prime element of k(w). Using the similar arguments as in (I), we can

easily conclude φ = 1.

(III) The case of type (iv). Without loss of generality of proof, we

can assume πp = τr0. Let as = —πj(l + w + + to*'1) for j = 0, 1, ,

p — 1. Using the result of S. Amano ([1]), we shall define an integer β.

From his result, there exists a prime element πx of k(w) such that π1 is

a root of the following equation

( 4 ) X* - ωπ?X- πo(l + aπ0) = 0 ,
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where ω is a unit of k, a e o and m = m(b(k(w)lk)). Clearly π\ — πo(l

+ ωπ^~ιπ{ + aπ0). Then chose an integer ε of o as follows: if m <ί 2, ε — 0

and if m ^ 3, chose ε such that πζfl + eπλ)
p = τr0 (;r

3

0). Let w = ^ + επJ
π

and β = ^-(u^1 + up~2 + + 1). Then u is a unit of K such that

u = 1 (77). Put ί = val*(w — 1). Then it is easy to see that if i <P- 1

val* (up - 1) = pi and if ΐ ^ _ ^ _ , val* (up - 1) = i + p2e. From (3),
p — 1

we have that if m = 1, Λ > 2 and so i > 2. First, assume / < ^ e .
p - 1

Then val^ (̂ 3) = pi + (p — l)p — i — P2 = (p — ϊ)i —p. As ί ^ 2, we have

val* (β) > 0. For the case ί ^ p e , vsίκ (β) = p2e - p. Hence β is in D
. P — 1

for the both cases. Also, we immediately get val* {aό) >̂ 0. Since φ{aj)

and φ(β) are in D, we have that ψ^w1) = π3wι and φ = 1 as in (I).

(VI) The case of type (v). As VSL\K(ZP - 1)=1, Z satisfies the fol-

lowing congruence zp = 1 + εo7ro (TΓQ), where ε0 is a unit of A. Then there

exists a unit ε of & such that εpε0 = 1 (τr0). Now, let α0 = —|{e(—l+z)}p~1

{ ε (_i + )̂}p-2π + . . . + πv-λ
J

and w = ε ^"" 1 + z\ Then αp =
π πQ

= 1 (Πp2). Put i = val x (w — 1), so clearly i >̂ p. Then we have val x (aQ)

> 0 as in (III). We observe easily that ( - 1 + z)p-χ = 1 + z + h ̂ ( p ) .

Hence τr o ^ o ) = εp''φ{l + £ + • • • + z*'1)^)- Set p(l + 2 + + z*'1)

= Σ<6J ^ a n ^ suppose 1 ^ 11| < p. Then ^(1 + z + + zp~x) is a unit

of K and so val^ >̂(α0) = —p2, a contradiction. Thus φ(zi) = 2* for i = 0,

1> * 9 P — l Using the same arguments as in (III) with this fact, we

conclude ψ = 1.

PROPOSITION 1. Suppose that k contains a primitive p-th root of unity.

Let K/k be a totally ramified extension whose Galois group is an elementary

abelίan p-group of order p2. Then £> is an indecomposable o[G\-module.

Proof. We have just proved the results for the cases where the ex-

tensions K/k are not of type (i). It remains to verify for the case of type

(i). First, we note that for any subfield F of degree p in K, m{b{Fjkj) < e.

From [4] Theorem 3, the ring £>F of all integers in JP is indecomposable.
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Hence, from Lemma 1, we obtain the desired result for the extension of

type (i).

4.

In this section, we shall treat the case where the Galois group G is

a direct product of two cyclic groups whose orders are p and pn respec-

tively. Let F and L be cyclic totally ramified extensions of degrees p

and pn respectively. Let K be a composition field of F and L, and as-

sume that K is totally ramified. Let φ be an o[G]-endomorphism of D

such that ψ2 = ψ as in the previous section. As G is abelian, we can

consider φ as an idempotent of k[G\. Let Lx is the unique subfield of

degree p in L and S denote the subgroup of G corresponding to Lx. First,

we assume that k contains a primitive pn-th root of unity. Then there

exists an element γ of L such that L = k(γ) and γpn = π$mu0, where 0 <L m

<L n and u0 is a unit of k such that u0 = 1 (7r0). Denote by d a primitive

element of F as given in § 3, i.e. δ is one of w9 z and π. Now, since A^d*

is a &[G]-module, obviously pft^O = r*8J o r 0 for 0 <Li <pn and 0 ^j <p.

For 1 <: ί < p w - 1 with (i,p) = 1, put g = [ipm/pn]. Then 7-*/̂  is integer of

K. For the case m ^ 1, let υ = γ^'1^'1. Immediately, we have that υp

is a unit of k such that vp = l(ττ0) and that

For the case m — 0, we have 2]?=o oγί+lpn * = γ*(Σ oηι), where η = γpn Xval^ (η)

= 1). Furthermore, we remark γιLx — Σ?=o kγί+lvn~1. Now, from the similar

arguments as in § 3 with the above remarks, we conclude that p(pi+ipn~15')

_ γi+ipn-i$3 for a n y i a n ( j a n y j^ o r an φ(γi+ιvn-χ&) are simultaneously

equal to the zero element of D except the case where p = 3, e = 2,

valz, (fV ô) ^ j ^ " 1 and the extension L ^ is of type (v) such that m(b(LJky)

= 2 and m(b(Fjk)) = 3. In the following, we consider the remaining case.

Let TΓJ be a prime element of Lx which satisfies the equation (4) as given

in § 3. As is easily seen, {1, v, v2} is an integral base. Then πx is written

in the form πx = a0 + axv + a2v
2, where at e o. As trLl/fc πt = 0, we see that

α0 = 0 and aλ = — a2 ^ O(τro). Denote yl\nl by /and let ί0 be the minimal

integer V such that 37*-1;' + val z (/) ^ 3n. As 371-1 ^ val^/ < 3n, we have
r'0 < J'O ̂  2. First, we consider the case iQ = 1. Let a0 = -^-(1 + υ + v2)

f 2

and <x2 = r~{l + v + u2). Then, evaluating valκ (<p(α0)) and val* (φ(α2)),
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we have φ{γ'vι) = fυ* and φifvV) = fvιπ2 for 0 <̂  i < 3. Next let a,

= ϊ-(l + u + u2), where u = — as in § 3. A S M Ξ I (T^), we see val^i >̂ 0.

Clearly — α̂  = -~{^Q + τtxπ
2 + π\π). Let φ{γ(l + v + v2)π] = ^ττ(2]ie7 ι/) and

7Γ O π 0

suppose 1 ^ |/| < 3. Then TΓ^O^) = γ{—a\)π(γπ0), which is contrary to
φi&i) ^ 0 since at is a unit of k and valRΓ(τ7r)<2 3w+1. Thus we conclude
I = {0,1, 2} or 0. Similarly, for the case i0 = 2, we have the desired
result. This completes the proof of the above statement for this case.
Now, according to the same arguments as used in [4] with the above
statement, we have that the idempotent ψ is an element of k[S], Next,
we assume that k does not contains a primitive pπ-th root of unity. Then
it follows from [4] Lemma 4 that <pe k[S]. Therefore, clearly by the induc-
tive arguments, we obtain the following proposition.

PROPOSITION 2. Let Kjk be a totally ramified extension whose Galois
group is a direct product of two cyclic groups of orders p and pn respec-
tively. Suppose that k contains a primitive p-th root of unity. Then O is
indecomposable.

5.

In this section, we shall give the proofs of Theorem 1 and Theorem
2. First, we shall prove Theorem 1 and use the same notations as in
the previous sections. Let G be a non-cyclic p-group of order pn and let
£ be a central idempotent of k[G] such that E£> c D. We use induc-
tion on n of p-power p \ From Proposition 1, we obtain the result for
n = 2. Assume the result holds for n < r. Let G be a non-cyclic p-group
of order pr. First, we assume that the center C(G) of G is not cyclic as
in Lemma 1. Now, if there exists a subgroup H of order p in C such
that the factor group GjH is cyclic, then G is of type {p,pr~1) and so
the desired result follows from Proposition 2. Thus we consider the case
where for any subgroup H of order p in C, the factor group G/H is not
cyclic. By our inductive assumption, fH{E) = 1. Then, from Lemma 1,
we obtain E = 1, which completes the proof of Theorem 1 for the first
case. Next, we assume that C(G) is cyclic. As G is not cyclic, G is
not abelian and hence GjZ is not cyclic. By our inductive assumption,

1 p

we have fz(E) = 1 and so we can write E = — Σ zl + EQ, where EQ is a
P

https://doi.org/10.1017/S0027763000018614 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018614


p-ADIC NUMBER FIELD 23

central idempotent such that EQ — (Σi=o £*) = 0. From Lemma 2, we

have Eo e CG(b)Φ and E e CG{b)Φ. Denote by Kz the subfield correspond-

ing to Z. Then, from Lemma 3, m(b(KIKz))<Cez, where ez is the absolute

ramification index of KZ1 since Kz contains a subfield KB corresponding

to B. Therefore, if CG{b)Φ is cyclic, it follows from Lemma 4 and [4]

Theorem 3 that E = 1. Thus we now consider the case where CG(b)Φ is

not cyclic. Now, by (2), we note \CG(b)Φ\ < [G|. Hence we can apply

our inductive assumption to this case and conclude E — 1. The proof of

Theorem 1 is completed.

Next, we shall prove Theorem 2. Let ψ be an o[G]-endomorphism of

O such that ψ2 = >̂. To prove Theorem 2 it is sufficient to show ψ — 1.

As the extension ίΓ/A is abelian, we can consider ψ as an idempotent of

k[G]. Then, from Theorem 1, we have obtained ψ = 1 and the proof of

Theorem 2.
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