ON THE MODULE STRUCTURE OF A p-EXTENSION OVER A p.ADIC NUMBER FIELD

YOSHIMASA MIYATA

Throughout this paper, let p be an odd prime. Let k be a p-adic number field and \mathfrak{o} be the ring of all integers in k. Let K / k be a finite totally ramified Galois p-extension of degree p^{n} with the Galois group G. Clearly the ring \mathfrak{O} of all integers in K is an $\mathfrak{o}[G]$-module. In the previous paper [4], we studied $\mathfrak{o}[G]$-module structure of \mathfrak{D} in a cyclic totally ramified p-extension, and we have obtained the condition for \mathfrak{D} to be an indecomposable $\mathfrak{o}[G]$-module. In the present paper, we shall prove the following theorem.

Theorem 1. Suppose that k contains a primitive p-th root of unity. Let K / k be a totally ramified Galois p-extension of degree p^{n} such that the extension K / k is not cyclic. Let E be a central idempotent of the group ring $k[G]$ such that $E \subseteq \subseteq \subseteq$. Then we have $E=1$.

As an immediate consequence of Theorem 1, we have the next theorem.

Theorem 2. Let k and K / k be as stated in Theorem 1. In addition, we assume that the extension K / k is abelian. Then the $\mathrm{o}[G]$-module \mathfrak{D} is indecomposable.

In § 1, we shall study properties of central idempotent. In $\S 2$, recalling properties of ramification numbers, we shall obtain some inequalities. In § 3, we shall study the special case where the Galois group G is an elementary abelian group of order p^{2}. In §4, we shall study the case where the Galois group G is a direct product of two cyclic groups whose orders are p and p^{n} respectively. In §5, we shall prove Theorem 1 and Theorem 2.

1.

In this section, we shall study some properties of central idempotents. Let G be a non-cyclic p-groups and H be a normal subgroup of order p. The natural map from G onto the factor group G / H induces the ring homomorphism f_{H} from the group ring $k[G]$ onto $k[G / H]$. Let $C(G)$ denote the center of G. First, we assume that $C(G)$ is not cyclic. Then $C(G)$ contains an elementary abelian p-group C of order p^{2}.

Lemma 1. Let G be a non-cyclic p-group and C be as stated in the above. Suppose that the center $C(G)$ of G is not cyclic. Let E be a central idempotent of $k[G]$ such that $f_{H}(E)=1$ for any normal subgroup H of order p in C. Then $E=1$.

Proof. Without any loss of generality of proof, we can assume that k is the splitting field for G. Let χ be an absolutely irreducible character and E_{χ} be the central idempotent corresponding to χ. Then there is some subgroup H of C such that $E_{\chi} \cdot \frac{1}{p}\left(\sum_{h \in H} h\right)=E_{\chi}$. Since $f_{H}(E)=1$ from the assumption, we have $E=\frac{1}{p}\left(\sum_{h \in H} h\right)+E^{\prime}$, where E^{\prime} is a central idempotent such that $E^{\prime} \cdot \frac{1}{p}\left(\sum_{h \in H} h\right)=0$. Therefore, for any absolutely irreducible character $\chi, E_{\chi} \cdot E=E_{\chi}$, which implies that $E=1$.

Next, we assume that $C(G)$ is cyclic. Clearly G has the unique normal subgroup Z of order p, and G is not abelian because G is not cyclic. Then, since p is odd, it is well known that G contains a normal elementary abelian subgroup B of order p^{2} (for example, see [2] III 7.5, p. 303). From the uniqueness of Z, it follows easily that Z is contained in $B \cap C(G)$. Let b and z be fixed generators of B such that $b \oplus C(G)$ and $z \in C(G)$. Let $C_{G}(b)$ be the centralizer of b in G and Φ be the Frattini subgroup of G. As B is normal in G and Z is a characteristic subgroup. of B, for any $g \in G$, we have

$$
\begin{equation*}
b^{-1} g b=g z^{i} \tag{1}
\end{equation*}
$$

for some rational integer $i(0 \leqq i<p)$ which depends on g. Since $b \oplus C(G)$, from (1), we see easily that $C_{G}(b)$ is a proper normal subgroup of G and hence we have

$$
\begin{equation*}
C_{G}(b) \Phi \neq G . \tag{2}
\end{equation*}
$$

Now we obtain the following lemma.
Lemma 2. Let G be a non-cyclic p-group. Suppose that the center $C(G)$ of G is cyclic. Let Z, B, z and b be as above. Let E be a central idempotent of $k[G]$ such that $E \cdot \frac{1}{p}\left(\sum_{i=0}^{p-1} z^{i}\right)=0$. Then E belongs to the group ring $k\left[C_{G}(b) \Phi\right]$.

Proof. We can also assume that k is a splitting field for G without loss of generality of proof. Let χ be an absolutely irreducible character and E_{χ} be the central idempotent of $k[G]$ corresponding to χ such that $E_{x} E=E_{x}$. Since $E \cdot \frac{1}{p}\left(\sum_{i=0}^{p-1} z^{i}\right)=0$, we have $E_{x} \cdot \frac{1}{p}\left(\sum z^{i}\right)=0$. Let E_{x} $=\sum_{g \in G} \alpha_{g} g$, where α_{g} is in k. In order to prove the lemma, it is sufficient to show that if $\alpha_{g} \neq 0$, then $g \in C_{G}(b) \Phi$. As is well known, G is an M group and so χ is induced by a linear character α of some subgroup A in G. Denote by $|A|$ the order of A. Using α, we define a mapping $\dot{\alpha}$ by

$$
\begin{array}{ll}
\dot{\alpha}(g)=\alpha(g) & \text { if } g \in A \\
\dot{\alpha}(g)=0 & \text { if } g \notin A
\end{array}
$$

Then we have the formula

$$
\chi(g)=\frac{1}{|A|} \sum_{h \in G} \dot{\alpha}\left(h^{-1} g h\right) \quad \text { (for example, see [2] p. 553). }
$$

Now, as $\alpha_{g} \neq 0, \chi\left(g^{-1}\right)=0$ and for some $h_{0} \in G, h_{0}^{-1} g^{-1} h_{0} \in A$. Let $a=h_{0}^{-1} g^{-1} h_{0}$. Immediately, $\chi(a)=\chi\left(g^{-1}\right)$ and so $\chi(a) \neq 0$. Here suppose that $a \notin C_{G}(b)$. Clearly $b \oplus C_{G}(a)$. Since B is normal, it follows easily that $C_{G}(a) B$ is a subgroup of G and $C_{G}(a)$ is a normal subgroup of $C_{G}(a) B$. Hence the set $\left\{1, b, \cdots, b^{p-1}\right\}$ is a set of right coset representatives of $C_{G}(a)$ in $C_{G}(a) B$. Let a set $\left\{h_{1}, \cdots, h_{l}\right\}$ be a set of right representatives of $C_{G}(a) B$ in G, so the set $\left\{b^{i} h_{j} \mid 0 \leqq i<p, 1 \leqq j \leqq l\right\}$ are right representatives of $C_{G}(a) B$ in G. As $a \notin C_{G}(b), b^{-1} a b=a z^{i_{0}}$ for some i_{0} such that $i_{0} \neq 0$. For the sake of simplicity, we denote by z the element z^{i} again. Then $b^{-i} a b^{i}=a z^{i}$ for $0 \leqq i<p$. Hence we have

$$
\begin{aligned}
\chi(a) & =\frac{\left|C_{G}(a)\right|}{|A|} \sum_{i, j} \dot{\alpha}\left(h_{j}^{-1} b^{-i} a b^{i} h_{j}\right) \\
& =\frac{\left|C_{G}(a)\right|}{|A|} \sum_{j} \sum_{i} \dot{\alpha}\left(h_{j}^{-1} a h_{j} z^{i}\right) .
\end{aligned}
$$

As $E_{x} \cdot \frac{1}{p}\left(\sum z^{i}\right)=0, z E_{x}=\theta E_{x}$, where θ is a primitive p-th root of unity. Therefore Z is contained in A, and so $h_{j}^{-1} a h_{j} z^{i} \in A$ if and only if $h_{j}^{-1} a h_{j}$ $\in A$. Hence we obtain for any j

$$
\sum_{i} \dot{\alpha}\left(h_{j}^{-1} b^{-i} a b^{i} h_{j}\right)=\dot{\alpha}\left(h_{j}^{-1} a h_{j}\right)\left(\sum_{i=0}^{p-1} \theta^{i}\right)=0 .
$$

Then, if $a \notin C_{G}(b), \chi\left(g^{-1}\right)=\chi(a)=0$, which is a contradiction. Hence we conclude that if $\alpha_{g} \neq 0$, then $a \in C_{G}(b)$. As G / Φ is abelian, then $g \in a^{-1} \Phi$. Therefore we have $g \in C_{G}(b) \Phi$, which completes the proof.
2.

Now denote by e the absolute ramification index of k. Let F / k be a cyclic ramified extension of degree p with the first ramification number b. Define a function m by $m(b)=\left[\frac{(p-1)(b+1)}{p}\right]$. We write b in the form $b=p\left[\frac{b}{p}\right]+p-\lambda$. From [1] Theorem 3, we have that for $(b, p)=1$,

$$
\begin{equation*}
m(b)+\lambda-1 \equiv 0 \quad(p-1) . \tag{3}
\end{equation*}
$$

Next let K_{1} and K_{2} be cyclic ramified extensions of degree p with ramification numbers b_{1} and b_{2} respectively. Let K be the composition field of K_{1} and K_{2}. According to the result of E. Maus ([3]), we can obtain the first ramification number $b\left(K / K_{1}\right)$ for the extension K / K_{1} as follows:
i) if $b_{2}>b_{1}, b\left(K / K_{1}\right)=b_{1}+p\left(b_{2}-b_{1}\right)$
ii) if $b_{2}<b_{1}, b\left(K / K_{1}\right)=b_{2}$
iii) if $b_{2}=b_{1}$, either $b\left(K / K_{1}\right)=b_{1}$, or for some c such that $c<b_{1}$, $b\left(K / K_{i}\right)=c$.
Using these equalities, we shall have the following lemma.
Lemma 3. Let K / k be a totally ramified extension such that the Galois group of K / k is an elementary abelian p-group of order p^{2}. Let F be a subfield of degree p in K. Then $m(b(K / F))<p e$.

Proof. There is a subfield F_{1} of degree p such that K is the composition field of F and F_{1}. Denote by b and b_{1} the first ramification numbers of F and F_{1} respectively. First, we consider the case $b<b_{1}$. From the above equality i), we have $m(b(K / F))=m(b)+(p-1)\left(b_{1}-b\right)$.

Since $b_{1} \leqq \frac{p e}{p-1},(p-1) b-m(b) \leqq p e-m(b(K / F))$. As is easily seen, $b<b_{1}$ means $(b, p)=1$. Put $b=p\left[\frac{b}{p}\right]+p-\lambda$, so that $(p-1) b-m(b)$ $=(p-1)^{2}\left[\frac{b}{p}\right]+(p-2)(p-\lambda)$. Since p is odd, then $(p-1) b-m(b)>0$, so $p e-m(b(K / F))>0$.

Next, we shall consider remaining cases. From the above equalities ii) and iii), we have $m(b(K / F)) \leqq m(b)$. Then, by the well known fact that $m(b) \leqq e$, we have $m(b(K / F))<p e$. Thus the proof is completed.

Now, let L / k be a cyclic totally ramified extension of degree p^{n} with n ramification numbers $b_{1}, b_{2}, \cdots, b_{n}$.

Lemma 4. Let $L / k, b_{1}$ and b_{n} be as above. Then $m\left(b_{1}\right)<e$ if and only if $m\left(b_{n}\right)<p^{n-1} e$.

Proof. From [4] Lemma 2, we have that if $m\left(b_{1}\right)<e$, then $m\left(b_{n}\right)$ $<p^{n-1} e$. Then, to complete the proof, we need to show that if $m\left(b_{n}\right)$ $<p^{n-1} e, m\left(b_{1}\right)<e$. For it, as is easily seen, it suffices to prove only for the case of $n=2$. From [4] Lemma 1, we can assume that k contains a primitive p-th root of unity without loss of generality of proof. Then we observe that $m\left(b_{1}\right)=e$ if and only if $b_{1}=\frac{p e}{p-1}$ or $\frac{p e}{p-1}-1$. Hence $b_{2} \geqq \frac{p^{2} e}{p-1}-1$. From [5] Corollary 26, we have that if $b_{1}<\frac{e}{p-1}$, $\frac{p^{2} e}{p-1}-(p-1) b_{1} \geqq b_{2}$ and if $b_{1} \geqq \frac{e}{p-1}, b_{2}=b_{1}+p e . \quad$ First, suppose b_{1} $<\frac{e}{p-1}$. Then we have that $\frac{p^{2} e}{p-1}-(p-1) b_{1} \geqq \frac{p^{2} e}{p-1}-1$ and hence $(p-1) b_{1} \leqq 1$, which is a contradiction. Thus we have that $b_{1} \geqq \frac{e}{p-1}$ and $b_{1} \geqq \frac{p e}{p-1}-1$ because $b_{1}=b_{2}-p e$ and $b_{2} \geqq \frac{p^{2} e}{p-1}-1$. From this result, it clearly follows that $m\left(b_{1}\right)=e$.
4.

Throughout the rest of this paper, we assume that k contains a primitive p-th root of unity. Then $(p-1)$ divides e and so let e_{0} be
$e_{0}=\frac{e}{p-1}$. Let π_{0} be a prime element of k and denote by val ${ }_{k}$ the valuation of $k\left(\operatorname{val}_{k}\left(\pi_{0}\right)=1\right)$. Let K / k be a totally ramified extension whose Galois group is a elementary abelian p-group of order p^{2} as described in the paragraph preceding Lemma 3. Now we may divide such extensions into following five types.
(i) $K=k\left(w_{1}, w_{2}\right)$, where $w_{i}^{p} \in k$ and $\operatorname{val}_{k}\left(w_{i}^{p}-1\right) \geqq 2$ for $i=1,2$.
(ii) $K=k(z, w)$, where $w^{p} \in k, \operatorname{val}_{k}\left(w^{p}-1\right) \geqq 2, z^{p} \in k$ and $\operatorname{val}_{k}\left(z^{p}-1\right)$ $=1$.
(iii) $K=k\left(z_{1}, z_{2}\right)$, where $z_{i}^{p} \in k$ and $\operatorname{val}_{k}\left(z_{i}^{p}-1\right)=1$. Moreover, let K / k be the extension with exactly one ramification number $p e_{0}-1$.
(iv) $K=k(\pi, w)$, where $w^{p} \in k, \operatorname{val}_{k}\left(w^{p}-1\right) \geqq 2, \pi^{p} \in k$ and $\operatorname{val}_{k}\left(\pi^{p}\right)$ $=1$.
(v) $K=k(\pi, z)$, where $z^{p} \in k, \operatorname{val}_{k}\left(z^{p}-1\right)=1, \pi^{p} \in k$ and $\operatorname{val}_{k}\left(\pi^{p}\right)$ $=1$.

In the following, we shall prove that the ring \mathfrak{D} of all integers in K is an indecomposable $\mathfrak{o}[G]$-module. Let φ be an $\mathfrak{o}[G]$-endomorphism of \mathfrak{D} such that $\varphi^{2}=\varphi$. Clearly, proving that the ring \mathfrak{D} is indecomposable is equivalent to showing $\varphi=1$. We shall show the latter for the extension of each type stated in the above as (ii), (iii), (iv) and (v). Now we begin with the case of type (iii).
(I) The case of type (iii). Let Π be a prime element of K. Since $\operatorname{val}_{K}\left(z_{i}-1\right)=p$ because of the definition of type (iii), then there exist units ω_{1} and ω_{2} of k such that $z_{i}-1 \equiv \omega_{i} \Pi^{p}\left(\Pi^{p+1}\right)$ for $i=1,2$.

Lemma 5. Let z_{i} and ω_{i} be as above. For rational integers i_{1} and i_{2}, let $i_{1} \omega_{1}+i_{2} \omega_{2} \equiv 0(\Pi) . \quad$ Then $i_{1} \equiv i_{2} \equiv 0(p)$.

Proof. From the assumption, we have $z_{1}^{i_{1}} z_{2}^{i_{2}} \equiv 1\left(\Pi^{p+1}\right)$. Suppose $z_{1}^{i_{1}} z_{2}^{i_{2}}$ $\& k$ and let b be the ramification number for the extension $k\left(z_{1}^{i_{1}} z_{2}^{i_{2}}\right) / k$. Then, from the result of B. F. Wyman ([5]), we have $b<p e_{0}-1$, which is contrary to the fact that K / k has exactly one ramification number $p e_{0}-1$. Hence $z_{1}^{i_{1}} z_{2}^{i_{2}} \in k$, which implies that $i_{1} \equiv i_{2} \equiv 0(p)$.

Lemma 6. Let I_{0} and I_{1} be subsets of $\{0,1, \cdots, p-1\}$. Moreover, suppose that I_{1} is a proper subset. Then

$$
\operatorname{val}_{K}\left[\left\{\left(\sum_{i \in I_{0}} z_{1}^{i}\right) z_{2}\right\}-\sum_{i \in I_{0}} z_{1}^{i}\right]-\left(\left|I_{1}\right|-\left|I_{0}\right|\right)=p
$$

where $\left|I_{j}\right|$ is the number of the set I_{j}.
Proof. Since $z_{j}^{i} \equiv 1+i \omega_{j} \Pi^{p}\left(\Pi^{p+1}\right)$, we have

$$
\begin{aligned}
& \left\{\left(\sum_{i \in I_{1}} z_{1}^{i}\right) z_{2}-\sum_{i \in I_{0}} z_{1}^{i}\right\}-\left(\left|I_{1}\right|-\left|I_{0}\right|\right) \\
& \quad \equiv\left|I_{1}\right| \omega_{2} \Pi^{p}+\left\{\left(\sum_{i \in I_{1}} i\right)-\left(\sum_{i \in I_{0}} i\right)\right\} \omega_{1} \Pi^{p}\left(\Pi^{p+1}\right) .
\end{aligned}
$$

By Lemma 5 and from the assumption $0<\left|I_{1}\right|<p$, it follows that $\left|I_{1}\right| \omega_{2}$ $+\left\{\left(\sum_{i \in I_{1}} i\right)-\left(\sum_{i \in I_{0}} i\right)\right\} \omega_{1} \notin\left(\pi_{0}\right)$. This completes the proof.

Now we can assume that $\varphi(1)=1$ (replacing φ by $1-\varphi$ if necessary). Clearly $\varphi\left(z_{1}^{i_{1}} z_{2}^{i_{2}}\right)=z_{1}^{i_{1}} z_{2}^{i_{2}}$ or 0 . Let $\alpha_{j}=\frac{1}{\pi_{0}}\left(1+z_{1}+\cdots+z_{1}^{p-1}\right)\left(z_{2}^{j}-1\right)$ for $1 \leqq j<p$. Then $\alpha_{j}=\frac{1}{\pi_{0}} \cdot \frac{z_{1}^{p}-1}{z_{1}-1}\left(z_{2}^{j}-1\right) . \quad$ As $\operatorname{val}_{K}\left(z_{1}-1\right)=\operatorname{val}_{K}\left(z_{2}-1\right)$ $=p, \operatorname{val}_{K}\left(\alpha_{j}\right)=0$. Set $\varphi\left(\alpha_{1}\right)=\frac{1}{\pi_{0}}\left\{\left(\sum_{i \in I_{1}} z_{1}^{i}\right) z_{2}-\sum_{i \in I_{0}} z_{1}^{i}\right\}$ and suppose that I_{1} is a proper subset of $\{0,1, \cdots, p-1\}$. From Lemma 6, we have $\operatorname{val}_{k}\left(\varphi\left(\alpha_{1}\right)\right)$ $\leqq p-p^{2}$, which is a contradiction. Hence $I_{1}=\varnothing$ or $\{0,1, \cdots, p-1\}$. Next suppose $I_{1}=\varnothing$, so $\varphi\left(\alpha_{1}\right)<0$, a contradiction. Thus we conclude $I_{1}=\{0,1, \cdots, p-1\}$. Now we examine the set I_{0} and suppose $0<\left|I_{0}\right|<p$. Then we have $\pi_{0} \varphi\left(\alpha_{1}\right) \equiv-\left|I_{0}\right|\left(\Pi^{p}\right)$ and so $\operatorname{val}_{K}\left(\varphi\left(\alpha_{1}\right)\right)<0$, a contradiction. As $\varphi(1)=1,\left|I_{0}\right|>0$ and hence $I_{0}=\{0,1, \cdots, p-1\}$. Therefore we have $\varphi\left(z_{1}^{i} z_{2}\right)=z_{1}^{i} z_{2}$ and $\varphi\left(z_{1}^{i}\right)=z_{1}^{i}$ for $0 \leqq i<p$. Similarly, evaluating $\operatorname{val}_{K}\left(\varphi\left(\alpha_{j}\right)\right)$, we have that $\varphi\left(z_{1}^{i} z_{2}^{j}\right)=z_{1}^{i} z_{2}^{j}$ for any i and any j, and that $\varphi=1$.
(II) The case of type (ii). Let $\alpha_{j}=\frac{1}{\pi_{0}} z^{j}\left(1+w+\cdots+w^{p-1}\right.$) for $j=0,1, \cdots, p-1$ and let $\beta=\frac{1}{\pi_{0}}\left(1+z+\cdots+z^{p-1}\right) \pi_{1}$, where π_{1} is a prime element of $k(w)$. Using the similar arguments as in (I), we can easily conclude $\varphi=1$.
(III) The case of type (iv). Without loss of generality of proof, we can assume $\pi^{p}=\pi_{0}$. Let $\alpha_{j}=\frac{1}{\pi_{0}} \pi^{j}\left(1+w+\cdots+w^{p-1}\right)$ for $j=0,1, \cdots$, $p-1$. Using the result of S . Amano ([1]), we shall define an integer β. From his result, there exists a prime element π_{1} of $k(w)$ such that π_{1} is a root of the following equation

$$
\begin{equation*}
X^{p}-\omega \pi_{0}^{m} X-\pi_{0}\left(1+a \pi_{0}\right)=0 \tag{4}
\end{equation*}
$$

where ω is a unit of $k, a \in \mathfrak{0}$ and $m=m(b(k(w) / k))$. Clearly $\pi_{1}^{p}=\pi_{0}(1$ $+\omega \pi_{0}^{m-1} \pi_{1}^{2}+a \pi_{0}$). Then chose an integer ε of 0 as follows: if $m \leqq 2, \varepsilon=0$ and if $m \geqq 3$, chose ε such that $\pi_{1 .}^{p}\left(1+\varepsilon \pi_{1}\right)^{p} \equiv \pi_{0}\left(\pi_{0}^{3}\right) . \quad$ Let $u=\frac{\pi_{1}\left(1+\varepsilon \pi_{1}\right)}{\pi}$ and $\beta=\frac{\pi^{p-1}}{\pi_{0}}\left(u^{p-1}+u^{p-2}+\cdots+1\right)$. Then u is a unit of K such that $u \equiv 1(\Pi) . \quad$ Put $i=\operatorname{val}_{K}(u-1) . \quad$ Then it is easy to see that if $i<\frac{p^{2} e}{p-1}$, $\operatorname{val}_{K}\left(u^{p}-1\right)=p i$ and if $i \geqq \frac{p^{2} e}{p-1}, \operatorname{val}_{K}\left(u^{p}-1\right)=i+p^{2} e . \quad$ From (3), we have that if $m=1, \lambda \geqq 2$ and so $i \geqq 2$. First, assume $i<\frac{p^{2} e}{p-1}$. Then $\operatorname{val}_{K}(\beta)=p i+(p-1) p-i-p^{2}=(p-1) i-p . \quad$ As $i \geqq 2$, we have $\operatorname{val}_{K}(\beta)>0$. For the case $i \geqq \frac{p^{2} e}{p-1}, \operatorname{val}_{K}(\beta)=p^{2} e-p$. Hence β is in \emptyset for the both cases. Also, we immediately get $\operatorname{val}_{K}\left(\alpha_{j}\right) \geqq 0$. Since $\varphi\left(\alpha_{j}\right)$ and $\varphi(\beta)$ are in \mathfrak{O}, we have that $\varphi\left(\pi^{j} w^{i}\right)=\pi^{j} w^{i}$ and $\varphi=1$ as in (I).
(VI) The case of type (v). As $\operatorname{val}_{k}\left(z^{p}-1\right)=1, z$ satisfies the following congruence $z^{p} \equiv 1+\varepsilon_{0} \pi_{0}\left(\pi_{0}^{2}\right)$, where ε_{0} is a unit of k. Then there exists a unit ε of k such that $\varepsilon^{p} \varepsilon_{0} \equiv 1\left(\pi_{0}\right)$. Now, let $\alpha_{0}=\frac{1}{\pi_{0}}\left[\{\varepsilon(-1+z)\}^{p-1}\right.$ $\left.+\{\varepsilon(-1+z)\}^{p-2} \pi+\cdots+\pi^{p-1}\right]$ and $u=\frac{\varepsilon(-1+z)}{\pi}$. Then $u^{p} \equiv \frac{\varepsilon^{p}\left(-1+z^{p}\right)}{\pi_{0}}$ $\equiv 1\left(\Pi^{p^{2}}\right)$. Put $i=\operatorname{val}_{K}(u-1)$, so clearly $i \geqq p$. Then we have $\operatorname{val}_{K}\left(\alpha_{0}\right)$ >0 as in (III). We observe easily that $(-1+z)^{p-1} \equiv 1+z+\cdots+z^{p-1}(p)$. Hence $\pi_{0} \varphi\left(\alpha_{0}\right) \equiv \varepsilon^{p-1} \varphi\left(1+z+\cdots+z^{p-1}\right)(\pi)$. Set $\varphi\left(1+z+\cdots+z^{p-1}\right)$ $=\sum_{i \in I} z^{i}$ and suppose $1 \leqq|I|<p$. Then $\varphi\left(1+z+\cdots+z^{p-1}\right)$ is a unit of K and so $\operatorname{val}_{K} \varphi\left(\alpha_{0}\right)=-p^{2}$, a contradiction. Thus $\varphi\left(z^{i}\right)=z^{i}$ for $i=0$, $1, \cdots, p-1$. Using the same arguments as in (III) with this fact, we conclude $\varphi=1$.

Proposition 1. Suppose that k contains a primitive p-th root of unity. Let K / k be a totally ramified extension whose Galois group is an elementary abelian p-group of order p^{2}. Then \mathfrak{D} is an indecomposable $\mathfrak{o}[G]$-module.

Proof. We have just proved the results for the cases where the extensions K / k are not of type (i). It remains to verify for the case of type (i). First, we note that for any subfield F of degree p in $K, m(b(F / k))<e$. From [4] Theorem 3, the ring \mathfrak{D}_{F} of all integers in F is indecomposable.

Hence, from Lemma 1, we obtain the desired result for the extension of type (i).
4.

In this section, we shall treat the case where the Galois group G is a direct product of two cyclic groups whose orders are p and p^{n} respectively. Let F and L be cyclic totally ramified extensions of degrees p and p^{n} respectively. Let K be a composition field of F and L, and assume that K is totally ramified. Let φ be an $\mathfrak{o}[G]$-endomorphism of \mathfrak{D} such that $\varphi^{2}=\varphi$ as in the previous section. As G is abelian, we can consider φ as an idempotent of $k[G]$. Let L_{1} is the unique subfield of degree p in L and S denote the subgroup of G corresponding to L_{1}. First, we assume that k contains a primitive p^{n}-th root of unity. Then there exists an element γ of L such that $L=k(\gamma)$ and $\gamma^{p^{n}}=\pi_{0}^{p^{m}} u_{0}$, where $0 \leqq m$ $\leqq n$ and u_{0} is a unit of k such that $u_{0} \equiv 1\left(\pi_{0}\right)$. Denote by δ a primitive element of F as given in \S 3, i.e. δ is one of w, z and π. Now, since $k \gamma^{i} \delta^{j}$ is a $k[G]$-module, obviously $\varphi\left(\gamma^{i} \delta^{j}\right)=\gamma^{i} \delta^{j}$ or 0 for $0 \leqq i<p^{n}$ and $0 \leqq j<p$. For $1 \leqq i<p^{n-1}$ with $(i, p)=1$, put $q=\left[i p^{m} / p^{n}\right]$. Then γ^{i} / π_{0}^{q} is integer of K. For the case $m \geqq 1$, let $v=\gamma^{p^{n-1}} / \pi_{0}^{p m-1}$. Immediately, we have that v^{p} is a unit of k such that $v^{p} \equiv 1\left(\pi_{0}\right)$ and that $\sum_{i=0}^{p-1} \mathfrak{o}\left(\frac{\gamma^{i+l p^{n-1}}}{\pi_{0}^{q+l p^{m-1}}}\right)=\frac{\gamma^{i}}{\pi_{0}^{q}} \sum_{l=0}^{p-1} \mathfrak{D} v^{l}$. For the case $m=0$, we have $\sum_{i=0}^{p-1} \mathfrak{D} \gamma^{i+l p^{n-1}}=\gamma^{i}\left(\sum \mathrm{o} \eta^{l}\right)$, where $\eta=\gamma^{p^{n-1}}\left(\operatorname{val}_{L_{1}}(\eta)\right.$ $=1$). Furthermore, we remark $\gamma^{i} L_{1}=\sum_{l=0}^{p-1} k \gamma^{i+l p^{n-1}}$. Now, from the similar arguments as in § 3 with the above remarks, we conclude that $\varphi\left(\gamma^{i+l p^{n-1}} \delta^{j}\right)$ $=\gamma^{i+l p^{n-1}} \delta^{j}$ for any l and any j, or all $\varphi\left(\gamma^{i+l p^{n-1}} \delta^{j}\right)$ are simultaneously equal to the zero element of \mathfrak{D} except the case where $p=3, e=2$, $\operatorname{val}_{L}\left(\gamma^{i} / \pi_{0}^{q}\right) \geqq p^{n-1}$ and the extension $L_{1} F$ is of type (v) such that $m\left(b\left(L_{1} / k\right)\right)$ $=2$ and $m(b(F / k))=3$. In the following, we consider the remaining case. Let π_{1} be a prime element of L_{1} which satisfies the equation (4) as given in $\S 3$. As is easily seen, $\left\{1, v, v^{2}\right\}$ is an integral base. Then π_{1} is written in the form $\pi_{1}=a_{0}+a_{1} v+a_{2} v^{2}$, where $a_{i} \in 0$. As $\operatorname{tr}_{L_{1} / k} \pi_{1}=0$, we see that $a_{0}=0$ and $a_{1} \equiv-a_{2} \neq 0\left(\pi_{0}\right)$. Denote γ^{i} / π_{0}^{q} by γ^{\prime} and let i_{0} be the minimal integer i^{\prime} such that $3^{n-1} i^{\prime}+\operatorname{val}_{L}\left(\gamma^{\prime}\right) \geqq 3^{n}$. As $3^{n-1} \leqq \operatorname{val}_{L} \gamma^{\prime}<3^{n}$, we have $0<i_{0} \leqq 2$. First, we consider the case $i_{0}=1$. Let $\alpha_{0}=\frac{r^{\prime}}{\pi_{0}}\left(1+v+v^{2}\right)$ and $\alpha_{2}=\frac{\gamma^{\prime} \pi^{2}}{\pi_{0}^{2}}\left(1+v+v^{2}\right)$. Then, evaluating $\operatorname{val}_{K}\left(\varphi\left(\alpha_{0}\right)\right)$ and $\operatorname{val}_{K}\left(\varphi\left(\alpha_{2}\right)\right)$,
we have $\varphi\left(\gamma^{\prime} v^{i}\right)=\gamma^{\prime} v^{i}$ and $\varphi\left(\gamma^{\prime} v^{i} \pi^{2}\right)=\gamma^{\prime} v^{i} \pi^{2}$ for $0 \leqq i<3$. Next let α_{1} $=\frac{\gamma}{\pi_{0}}\left(1+u+u^{2}\right)$, where $u=\frac{\pi_{1}}{\pi}$ as in §3. As $u \equiv 1\left(\pi_{1}\right)$, we see $\operatorname{val}_{K} \alpha_{1} \geqq 0$. Clearly $\frac{\pi_{0}}{\pi_{0}} \alpha_{1}=\frac{\gamma}{\pi_{0}^{2}}\left(\pi_{0}+\pi_{1} \pi^{2}+\pi_{1}^{2} \pi\right)$. Let $\varphi\left\{\gamma\left(1+v+v^{2}\right) \pi\right\}=\gamma \pi\left(\sum_{i \in I} v^{i}\right)$ and suppose $1 \leqq|I|<3$. Then $\pi_{0}^{2} \varphi\left(\alpha_{1}\right) \equiv \gamma\left(-a_{1}^{2}\right) \pi\left(\gamma \pi_{0}\right)$, which is contrary to $\varphi\left(\alpha_{1}\right) \geqq 0$ since a_{1} is a unit of k and $\operatorname{val}_{K}(\gamma \pi)<2 \cdot 3^{n+1}$. Thus we conclude $I=\{0,1,2\}$ or \varnothing. Similarly, for the case $i_{0}=2$, we have the desired result. This completes the proof of the above statement for this case. Now, according to the same arguments as used in [4] with the above statement, we have that the idempotent φ is an element of $k[S]$. Next, we assume that k does not contains a primitive p^{n}-th root of unity. Then it follows from [4] Lemma 4 that $\varphi \in k[S]$. Therefore, clearly by the inductive arguments, we obtain the following proposition.

Proposition 2. Let K / k be a totally ramified extension whose Galois group is a direct product of two cyclic groups of orders p and p^{n} respectively. Suppose that k contains a primitive p-th root of unity. Then \mathfrak{D} is indecomposable.

5.

In this section, we shall give the proofs of Theorem 1 and Theorem 2. First, we shall prove Theorem 1 and use the same notations as in the previous sections. Let G be a non-cyclic p-group of order p^{n} and let E be a central idempotent of $k[G]$ such that $E \subseteq \subseteq \subseteq$. We use induction on n of p-power p^{n}. From Proposition 1, we obtain the result for $n=2$. Assume the result holds for $n<r$. Let G be a non-cyclic p-group of order p^{r}. First, we assume that the center $C(G)$ of G is not cyclic as in Lemma 1. Now, if there exists a subgroup H of order p in C such that the factor group G / H is cyclic, then G is of type (p, p^{r-1}) and so the desired result follows from Proposition 2. Thus we consider the case where for any subgroup H of order p in C, the factor group G / H is not cyclic. By our inductive assumption, $f_{H}(E)=1$. Then, from Lemma 1, we obtain $E=1$, which completes the proof of Theorem 1 for the first case. Next, we assume that $C(G)$ is cyclic. As G is not cyclic, G is not abelian and hence G / Z is not cyclic. By our inductive assumption, we have $f_{z}(E)=1$ and so we can write $E=\frac{1}{p} \sum_{i=0}^{p-1} z^{i}+E_{0}$, where E_{0} is a
central idempotent such that $E_{0} \cdot \frac{1}{p}\left(\sum_{i=0}^{p-1} z^{i}\right)=0$. From Lemma 2, we have $E_{0} \in C_{G}(b) \Phi$ and $E \in C_{G}(b) \Phi$. Denote by K_{Z} the subfield corresponding to Z. Then, from Lemma 3, $m\left(b\left(K / K_{Z}\right)\right)<e_{Z}$, where e_{Z} is the absolute ramification index of K_{Z}, since K_{Z} contains a subfield K_{B} corresponding to B. Therefore, if $C_{G}(b) \Phi$ is cyclic, it follows from Lemma 4 and [4] Theorem 3 that $E=1$. Thus we now consider the case where $C_{G}(b) \Phi$ is not cyclic. Now, by (2), we note $\left|C_{G}(b) \Phi\right|<|G|$. Hence we can apply our inductive assumption to this case and conclude $E=1$. The proof of Theorem 1 is completed.

Next, we shall prove Theorem 2. Let φ be an $\mathrm{o}[G]$-endomorphism of \mathfrak{D} such that $\varphi^{2}=\varphi$. To prove Theorem 2 it is sufficient to show $\varphi=1$. As the extension K / k is abelian, we can consider φ as an idempotent of $k[G]$. Then, from Theorem 1, we have obtained $\varphi=1$ and the proof of Theorem 2.

References

[1] S. Amano, Eisenstein equations of degree p in a \mathfrak{p}-adic field, J. Fac. Sci. Univ. Tokyo 18, No. 1 (1971), 1-21.
[2] B. Huppert, Endlich Gruppen I, Die Grundlehren der math. Wissenshaften, Band 134, Springer-Verlag, Berlin and New York 1967.
[3] E. Maus, Arithmetish disjucte Körper, J. reine angew. Math. 226 (1967), 184203.
[4] Y. Miyata, On the module of a cyclic extension over a \mathfrak{p}-adic number field, Nagoya Math. J. 73 (1979), 61-68.
[5] B. F. Wyman, Wildly ramified gamma extension, Amer. J. of Math. 91 (1969), 135-152.

Faculty of Education
Shizuoka University

