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Abstract

Let M, N be, Riemannian manifolds, / : M -*• N a harmonic map with potential H, namely, a smooth
critical point of the functional EH(/) = JM [e(f) — H if)], where e(f) is the energy density of/. Some
results concerning the stability of these maps between spheres and any Riemannian manifold are given.
For a general class of M, this paper also gives a result on the constant boundary-value problem which
generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied
to the static Landau-Lifshitz equations.
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Let / : (M, g) -> (N, h) be a map between Riemannian manifolds, H a smooth
function on N. Consider the following functional

(1) E(f)= / [e(f)-H(f)]t
JM

where e(J) = \ Traceg / *h is the energy density of/. The Euler-Lagrange equation
of£«(/) is

(2) r(f) + VH(f) = 0,

where x(f) is the tension field of/ , and V// is the gradient of H on N. We call
a smooth solution / of (2) a harmonic map with potential H. This is a new kind
of generalized harmonic maps recently introduced by Fardoun and Ratto in [FR].
Besides the usual harmonic maps, this kind of maps also includes the Landau-Lifshitz
equations as a special case. Consider the following static Landau-Lifshitz equation

(3) A/ + / | V / 1 2 - (Ho • / ) / + Ho = 0,
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fo=f
df,
dt = w

(=0
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where \f (x)\2 — 1, x e Q c Rm, Ho ^ 0 is a constant vector in R\ and • denotes the
inner product in R3. In fact, the solution / of (3) can be seen as a harmonic map with
potential: fi -> S2 with the potential H(y) = HQ • y, y e 52.

Fardoun and Ratto considered harmonic maps with potential of spheres and tori. In
the author's previous papers [Cl, C2, C3], some general properties such as maximum
principles, uniqueness, existence and Liouville type results were obtained, also some
direct applications to Landau-Lifshitz equation were given. In this paper, we will
consider the stability and constant boundary-value problems of harmonic maps with
potential. Here the stability is defined in the following sense.

Let / : M -» N be a smooth map, then for any w e F(f ~x TN), there is a family
of maps f,:M^-N such that

(4)

for t € [0, e], s > 0. Let Wbea smooth function on N, f a harmonic map with
potential H. Denote

(5) EH(f,)= I [e{f,)-H(f,)l
JM

We say the map/ is stable if for all w e r(f~lTN), d2EH(f,)/dt2\,=0 > 0. Let us
first state our results.

THEOREM 1. If n > 2, then all stable harmonic maps with potential from S" into
any Riemannian manifold N must be constant.

THEOREM 2. Let M be a compact Riemannian manifold, H e C°°(S").

(1) Ifn>2,W2H>0, then any nonconstant harmonic map with potential H from
M into S" is unstable.
(2) Ifn>2,V2H>0, then any nonconstant harmonic map with potential H from

M into S" is unstable.

Here V2// denotes the Hessian of H.

REMARK 1. For the usual harmonic maps, Xin [Xinl] proved a well-known result:

(A) If n > 2, then all stable harmonic maps from 5" into any Riemannian manifold
must be constant.

By a similar method, Leung [Lg] obtained:

(B) If n > 2, then all stable harmonic maps from any compact Riemannian manifold
into S" must be constant.
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Since in genera], the properties of harmonic maps with potential H depend heavily
on H, the conclusion of Theorem 1 is surprising. It means that the result (A) is
essential.

REMARK 2. In [FR], by ar-join method, Fardoun and Ratto constructed a family of
harmonic maps with potential: Sp+r~l ->• Sq+S~l, p , r > 2. From Theorem 1, those
maps are all unstable.

As for the constant boundary-value problems, in the case of the usual harmonic
maps, Karcher and Wood [KW] proved that any harmonic map / : Bm -> N (m > 3)
which is constant on dBm must be constant in Bm. On the other hand, Hong [Ho]
asserted that the static Landau-Lifshitz equation (3) with constant boundary-value
f\dn — H0/\HQ\ has only constant solution, if £2 = B3. In fact, these two kinds of
problems can be treated simultaneously in the more general frame of harmonic maps
with potential.

We consider rather general cases and obtain the following theorem.

THEOREM 3. Let M be an m-dimensional complete, simply connected and nonpos-
itive curved Riemannian manifold, m > 2. Suppose its sectional curvature satisfies
one of the following conditions:

(1) -a2 <KM< -b2, (m - \)b/2 > a;
(2) -A/(\ + r2(x))<KM(x)<0, A < m(m - 2)/4,

where a, b, A are positive constants, r(x) denotes the distance from x to a fixed
point p 6 M. Let BP(R) be the geodesic ball of radius R centered at p, N be any
Riemannian manifold, H € C°°(N), f : M -± N be a harmonic map with potential
H such that f I^B^R) = P e N. IfH(P) = max>eAf H(y), then f must be constant in
BP(R).

REMARK 3. Let H = 0, then Theorem 3 gives a result for the usual harmonic maps
which generalizes the above mentioned result of Karcher and Wood. If we choose
M = Km (m > 2), N = S2, H(y) = H0-y, y € S2, then Theorem 3 leads to a
conclusion for the static Landau-Lifshitz equation, in particular, when m = 3, it is
just the result of Hong. Our result also generalizes Theorem 3 in [FR].

REMARK 4. If M satisfies -a2 < KM < 0 and RicM < -b2 < 0 with b > 2a,
then the same conclusion as in Theorem 3 also holds. This kind of M concludes the
bounded symmetric domains and complex hyperbolic spaces discussed in [Xin4].

Now let us prove the above theorems. To prove Theorem 1 and Theorem 2, we first
establish the second variation formula.
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LEMMA 1. Letf : M —> N be a harmonic map with potential H,f,, w and EH(ft)
be as in (4) and (5), then

d2EH(f,)
dt2 = - f [(V2u) + RN(f,e,, w)f,e,, w) + V2H(w, w)],

t=0 JM

where [et,i — 1 , 2 , . . . , m] are local orthonormal frames around the considered

points x in M such that Ve.e7 = Ofor i,j=l,2,...,m.

PROOF. It is easy to see that

dE(f,)
dt

So,

dEH(f.)
dt

but V3,H(f.) = dH of,/dt = (WH, df./dt), hence,

dt j M

Noting that at t = 0, z(f) + VH = 0, we have

d2 EH{f.)

/=0

(6)
dt1

(=0

At any point x 6 M, we choose local orthonormal frame fields {et, i = 1 ,2 , .

such that at x,

. . , m]

Then,

so,

(7)

V3,r(/,) - V3,[(V
l,¥/r)(e,) + (V,,V8/d/,)(e,)

'*e" Tt

V3,T(/,)|,=0 = V2u; + RN(f,.eh w)fne,.
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On the other hand,

hence,

(8)

Boundary-value problems of harmonic maps 149

dt
= V2H(w, w).

/ = 0

Putting (7) and (8) into (6), we get the desired conclusion. •
REMARK 5. [FR] also mentioned a second variation formula without proof (but

missed the integral of the Hessian of potential).

PROOF (of Theorem 1). Following [Xinl], we use the conformal vector fields on
5". Let a 6 K"+1, define h(x) = (a, x), x e S" C IRn+1, where {•, •> denotes the inner
product in K"+1. Construct v = grad h. At any x e 5", we choose local orthonormal
frame fields {e,} such that V .̂e, (x) = 0. It is known that

v = {a, d) e,, Vxv - -hX, V2u = -v(9)

for all X € r(TS"). Suppose / : M -> iV is a harmonic map with potential H.
Denote

d2E(f,)
, I(w,w) = ———

,=o dt ,=o
IH{w,w) —

d2EH{ft)

where w and / , satisfy (4). Then Lemma 1 implies

(10) IH(w, w) = I(w, w)- I V2H(w, w),
Js»

and

(11) I(w, w) = - [ (V2w + RN(f,eh w)f.et, w).

Choose w = ftv and compute ///(/*u,/*u). Firstly,

(12) I(f.v,f,v) = - f (V2./> + RN{f,ei,f.v)f.ehf.v).
JS"

Since

- df (VeiVei

- df(V2v),
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by (9) we have

(13) -V2./> = -(W2df)(v) + 2hx(J) +f,v,

and using the Weitzenbok formula [EL, (1.30)] we obtain

-(V2df)(v) = (Adf)(v) + RN(f*e,,f.v)f.et -/*Ricj. v.

Note that A(df) = -dz(f) — d(VH) and consequently,

(Arf/)(w) = (d(VH))(v) = VB(Vtf),

we then have

(14) -(V2df)(v) = V,(VH) + RN(fte,,ftv)fte, - (n - l)/,w.

Substituting (14) into (13) yields

- V 2 / . u = VB(Vff) + RN(ftehftv)ftei -(n- \)ftv + 2hr(f) + / , « ,

putting this into (12) we get

I(f.v,f.v)= f {Wv(VH),ftv) + 2 f h(x(f),ftv) + (2-n) I \ftv\2

JS" JS" Jsn

= f V2H(ftv,f*v) + (2-n) f \f*v\2 + 2 f h(r(f),ftv).
JS" J S" JS"

By (10),

(15) IH(ftv,ftv) = (2-n) f [/>|2 + 2 / h{r(f),f.v),

but

2 I h(r(f),f.v)= f (z(f),df(2hv))
JS" JS"

= f ( r ( / M / ( g r a d / * * ) ) = I (x(f), df (grad (a,x)2)),
JS" JS"

so,

(16) IH(ftv,f*v) = (2-n) I \fM2+ f {r(f),df(gmd(a,x}2)).
JS" JS"
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Denote {sA, A = 1,2,... , n + 1} the standard orthonormal basis in K"+1. In (16) we
choose a = eA, and v = vA = <£A, e,-) e,, A = 1, 2 , . . . , n + 1, and compute the sum

n+1 n+1 /. pi I n+1 \ \

/ / (

= 2(2-n) [ e(f)+ f (r(f), d/(gradl))[
S"

f
= 2 ( 2 - n ) / e( / ) = 2(2 -n)E(f).

If/ is stable, then 2(2 - n ) £ ( / ) > 0, thus / must be constant. •

PROOF (of Theorem 2). At any x e M, we choose local orthonormal frame fields
{«,-, / = 1, 2 , . . . , m] such that Ve.e, (x) = 0. Also choose orthonormal frame fields
{es, s = 1, 2 , . . . , «} in 5". Let a e K"+1. Similar to the proof of Theorem 1, we set
My) = ( f f j ) j e 5", and v = grad In, then t> = J]"= 1 (a, es) es.

By Lemma 1,

(17) IH(v, v) = - [ (V2v + Rs"(fteh v)f.ehf.v) - f V2H(v, v).
JM JM

Note that

- I [Vv,v)= I |Vu|2 = f IV/.^p,
JM JM JM

but from (9), V/<e.u = —hfteh so,

(18) - / (V2i,,t;)= [ /i2|/^,|2 = 2 f e(f)(a,f(x))2.
JM JM JM

On the other hand,

(Rs"(ftet, v)fteh v) = 2e{f)\v\2 - (fteh v)2.

Substituting this and (18) into (17), we obtain

IH(v,v) = 2 [ e(f){a,f(x))2-2 [ e(f)\v\2+ I (f*ehv)2- [ V2H(v,v)
JM JM JM JM

= 2 f e(f) \{a,f(x))2-T(ct,es)
2 \+ f (f*ehv)2 - I V2H(v,v).

JM \_ s=i J JM JM

Hence,

T IH(VA, VA) = 2(2-n) [ e(f)-J2f ^2H{vA, vA).
^ JM A=I JM

Then the conclusions follow from the above equality. •
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To prove Theorem 3, we introduce the following useful formula.

LEMMA 2 ([Xin2]). Letf : (M, g) -> (N, h) be a smooth map, D c M a compact
domain such that dD is a smooth hypersurface in M. Let n denotes the outer unit
normal vector of 3D. Let X be any vector field in M. Then

(19) I e(f){X,n)= I tf.X,f.n)+ [ divSf(X) + [ (Sf,VX),
JdD JdD JD JD

where Sf = e(f)g — f*h.

PROOF (of Theorem 3). Choose the geodesic polar coordinates (6, r) in BP(R). In
Lemma 2 we set D = BP(R), X - rd/dr, and n = d/dr.

It is known that (see [BE])

&vSf=-(r(f),df),

so,

/ 9 \ / d \ dHof
div5/(X) = - r</), r/. —) = r(VH,ft—) = r—-^-.

\ orj \ or] or

From Lemma 2,

(20) R[ e(f) = Rf / A +[ r^^-+[ (Sf,VX).
JdBp{R) JdBp(R) a r JBP{R) Or JBP(R)

By the computation in [Xin3], there is a number 8 > 0 such that

(21) (Sf,VX)>8e(f).

Noting that/ is constant at dBp(R), and using (20) and (21), we have

(22) f rdH°f +8 f e(f)<0.
JBP(R) °r JBP(R)

Now let us estimate the integral

• / .<BP(R) o r

Denote J(6,r)d0dr the volume element in BP(R). Recall that ([Li])

,r) 1
(23) Ar =

3r J{0,r)
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Since KM < 0, by a new Laplacian comparison theorem [Xin4, Di],

From this and (23), we have

1 3/(0, r) l_

J(0, r) dr ~ r

Hence,

(24) ^-(rJ(9,r))>2J(e,r)>0.
dr

Write

/ =

and note that the integrand

[
Jo

dHof
r J J(9, r)dr

or

= RJ(9,R)H(P)- / Hof(6,r) — (rJ(8,r))dr
Jo dr

f ^-
Jo dr

> RJ(8, R)H(P) - H(P) I — (r/(0, r))dr

= 0.

Therefore, / > 0. From (22), we conclude e(f) = 0 in Bp (/?), namely, / is constant
in BP(R). D
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