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AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS

MICHAEL SHULMAN

Abstract. We show that numerous distinctive concepts of constructive mathematics arise
automatically from an “antithesis” translation of affine logic into intuitionistic logic via a
Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-
subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness
spaces. We also explain the constructive bifurcation of some classical concepts using the
choice between multiplicative and additive affine connectives. Affine logic and the antithesis
construction thus systematically “constructivize” classical definitions, handling the resulting
bookkeeping automatically.

§1. Introduction. One of the explicit motivations of Girard’s linear logic
[19] was to recover an involutory “classical” negation while retaining
“constructive content™:

...the linear negation ...is a constructive and involutive negation; by
the way, linear logic works in a classical framework, while being more
constructive than intuitionistic logic. [19, p. 3]

One might therefore expect that over the past three decades some practicing
constructive mathematicians would have adopted linear logic instead of
intuitionistic logic;' but this does not seem to be the case. One might
conjecture many reasons for this. However, I will instead argue that linear
logic has nevertheless been present implicitly in constructive mathematics,
going back all the way to Brouwer.

Specifically, I will show that there are aspects of constructive mathematical
practice that are better explained by linear logic than by intuitionistic
logic. The non-involutory intuitionistic negation often leads constructive
mathematicians to study both a classical concept and its formal De
Morgan dual, such as equality and apartness, subgroups and antisubgroups,
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'T will use “intuitionistic” to refer to the formal logic codified by Heyting, and
“constructive” for the programme of doing mathematics with “constructive content.” This
is unfaithful to the original philosophical meaning of “intuitionistic,” but for better or for
worse the phrase “intuitionistic logic” has come to refer to Heyting’s logic, and I have been
unable to think of a satisfactory alternative. I will use “classical” for classical mathematics
and classical nonlinear logic, and “linear” (resp. “affine”) for the “classical” form of linear
(resp. affine) logic that has an involutive negation.
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328 MICHAEL SHULMAN

topological spaces and apartness spaces, and so on. We will show that such
“dual pairs of propositions” can be regarded as single propositions in a
model of linear logic, or more specifically affine logic, which we call the
antithesis model. Notions such as apartness relations then arise by writing a
classical definition in affine logic and interpreting it in this model.

The antithesis model is a special case of a Chu or Dialectica construction
[13, 41, 46] (the two constructions coincide in this special case), applied
to the algebra of intuitionistic propositions. It is well-known that Chu and
Dialectica constructions yield models of linear and affine logic (see for
instance [7, 38, 39]): the novelty here is in how the logic of this particular
special case relates to constructive mathematics.

Since it constructs a model of affine logic from any model of intuitionistic
logic in a functorial way, the antithesis model can also be used as a purely
syntactic translation, transforming any definition, theorem, or proofin affine
logic into one in intuitionistic logic; we call this the antithesis translation.
This is analogous to other translations such as the Godel-Gentzen double-
negation translation, which constructs a model of classical logic from a
model of intuitionistic logic, and therefore transforms classical theorems
into intuitionistic ones; or the Girard translation, which constructs a model
of intuitionistic logic from a model of linear logic, and therefore transforms
intuitionistic theorems into linear ones.

Importantly, however, unlike the Godel-Gentzen and Girard translations,
the antithesis translation is not conservative. Indeed, to a linear logician,
the antithesis model looks quite degenerate, particularly in the behavior of
its exponentials. Thus, we should not view the antithesis translation as an
“explanation” or “embedding” of affine logic into intuitionistic logic. Rather,
we view it as giving a way to treat affine logic as a “high-level” or “domain-
specific” language that can be “compiled” into intuitionistic logic. (Because
the antithesis translation is a one-sided inverse of the Girard translation, we
can in fact view affine logic as a strict extension of intuitionistic logic: the
high-level language includes an “escape to assembler.”) In other words, the
antithesis translation is a tool primarily for the intuitionistic mathematician,
not the linear one.

This tool has several possible uses. Firstly, it formalizes a technique for
“constructivizing” classical definitions: write them in affine logic and apply
the antithesis translation. This method often yields a better result than
the usual one of simply regarding the classical connectives as having their
intuitionistic meanings; the latter frequently requires manual “tweaking” to
become intuitionistically sensible.

We also obtain a uniform explanation for some instances of the fact that
“constructivizing” is multi-valued. Namely, in affine logic the connectives
“and” and “or” bifurcate into “additive” and “multiplicative” versions.
Thus, many classical definitions can be written in affine logic in more than
one way, by making different choices about whether to interpret the classical
connectives as additive or multiplicative affine ones. Under the antithesis
translation, this then leads to different intuitionistic versions of a classical
definition, many of which occur naturally in examples and have been already
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written down “manually” by constructive mathematicians. (There are, of
course, also other reasons for the constructive multifurcation of concepts.)

Roughly speaking, the additive disjunction “P or Q7 corresponds,
under the antithesis translation, to the intuitionistic disjunction, while the
multiplicative disjunction “P par Q” corresponds to the intuitionistic pattern
“if not P, then Q; and if not Q, then P” that is often used constructively when
the intuitionistic disjunction is too strong. For instance, in intuitionistic logic
the rational numbers are a field in the strong “geometric” sense that every
element is either zero or invertible. The real numbers are not a field in this
sense, but they are a field in the weaker “Heyting” sense that every nonzero’
element is invertible and every noninvertible element is zero. This condition
is the image under the antithesis translation of the affine statement that
every element is either zero par invertible. Similarly, for real numbers x < y
is not equivalent to “x = y or x < y,” but it is equivalent to the antithesis
translation of “x =y par x < y.” In Sections 9 and 10 we will see that
a systematic use of par can solve a few tricky problems in intuitionistic
constructive mathematics, such as defining a notion of “metric space” that
includes the Hausdorff metric, or a union axiom for a “closure space” that
is not unreasonably strong.

Secondly, we can also apply the antithesis translation to proofs. Many
classical proofs are also affinely valid with little change; surprisingly
often, the lack of contraction is not a problem when definitions are
formulated appropriately. Hence, the antithesis translation turns such
proofs into intuitionistic proofs of theorems involving apartness relations,
antisubgroups, and so on: the process of “turning everything around” to
deal with such concepts can be automated. This tends to work for classical
proofs that may use proof by contradiction (or equivalently the law of double
negation) as long as they avoid the law of excluded middle. In intuitionistic
logic, the laws of double negation and excluded middle are equivalent, but
linear and affine logic disentangle (some versions of) them.

Having an automatic way to produce intuitionistic definitions and proofs
is more than just a convenience: it can prevent or correct mistakes. Working
explicitly with apartness relations and their ilk is tedious and error-prone:
it’s easy to omit one of the contrapositive conditions, or forget to check that
a function is strongly continuous or that a subset is strongly extensional.
Moreover, it’s not always obvious exactly what the axioms on an apartness
structure should be, but the antithesis translation always seems to give the
right answer (or at least a right answer).

A third possible use of the antithesis translation is more speculative.
Rather than viewing affine logic and the antithesis translation as tools
for doing intuitionistic constructive mathematics, one might imagine
instead a constructive mathematics (in the informal sense of “mathematics
with constructive content”) that uses only affine logic. The antithesis
interpretation would then be a guide to the correct way to formulate concepts

2Here “nonzero” means “apart from zero.”
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in affine constructive mathematics. It is not yet clear how feasible this idea
is.” but we will make some remarks about it in Section 11.

In this paper, we will mainly focus on the first use: translating definitions.
We include a few proofs, but for the most part we leave the development of
“affine constructive mathematics” for future work.

1.1. Outline. In Section 2 we describe our viewpoint on affine logic
informally, analogously to the BHK interpretation of intuitionistic logic;
no prior familiarity with affine or linear logic is required. Then in
Sections 3 and 4 we formalize this interpretation both semantically, as a
Chu or Dialectica construction, and syntactically, as a translation between
propositional, first-order, and higher-order logics. Many introductions to
linear logic present it as a logic of “resources” or “games”; we view it as
a logic of mathematics, like intuitionistic logic and classical logic, which is
designed to be “constructive” in a different way than intuitionistic logic.

The rest of the paper consists of “case studies,” showing that rewriting
classical definitions directly in affine logic and passing across this antithesis
translation yields well-known notions in intuitionistic constructive math-
ematics. In Sections 5 and 6 we treat sets and functions, then algebra
in Section 7, order relations in Section 8, real numbers in Section 9, and
topology in Section 10. Finally, in Section 11 we speculate a bit about how
one might motivate and explain an “affine constructive mathematics” on
purely philosophical grounds.

§2. A meaning explanation. Intuitionistic logic is often explained infor-
mally (e.g.. in [49]) by the so-called Brouwer-Heyting-Kolmogorov (BHK)
interpretation, which explains the meaning of the logical connectives and
quantifiers “pragmatically” in terms of what counts as a proof of them. For
instance, a few of the rules are:

e A proof of P — Q is a method converting any proof of P into a proof
of 0.

e A proof of PV Q is either a proof of P or a proof of Q.

e A proof of =P is a method converting any proof of P into a proof of an
absurdity.

This leads to the rules of intuitionistic logic; for instance, we cannot prove
P Vv =P in general since we cannot decide whether to give a proof of P or a
proof of = P.

Practicing constructive mathematicians, however, have found that it is
often not sufficient to know what counts as a proof of a statement: it is often
just as important, if not more so, to know what counts as a refutation of
a statement. For instance, while it is of course essential to know that two
real numbers are equal if they agree to any desired degree of approximation,

3For instance, can one really formulate mathematics sufficiently carefully that it can al// be
done in affine logic, without contraction? Is there a form of affine dependent type theory that
would be appropriate for such a mathematics?
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it is also essential to know that they are umequal if there is some finite
degree of approximation at which they disagree. If real numbers are defined
using Cauchy sequences x,y : N — Q with specified rate of convergence
|Xn — Xm| < % + n% then we want to separately define

(x =) EVnlx, - ya| <
(x #£y) = In.|x, — yu| >

SN I

In classical logic, a refutation of P means a proof of =P, and these two
definitions are each other’s negations. But intuitionistic negation is not
involutive, and this “x # y” is not the logical negation of x = y. Thus,
when constructive mathematics is done in intuitionistic logic—as it usually
is—we must define inequality as a new apartness relation with which the set
of reals is equipped. In Bishop’s words:

It is natural to want to replace this negativistic definition [the
logical negation of equality] by something more affirmative...Brouwer
himself does just this for the real number system, introducing an
affirmative and stronger relation of inequality...Experience shows that
it is not necessary to define inequality in terms of negation. For those
cases in which an inequality relation is needed, it is better to introduce
it affirmatively...[10, p. 10]

Similar things happen all throughout constructive mathematics. In
addition to knowing when an element is in a subgroup, we need to know
when an element is not in a subgroup: thus we introduce antisubgroups (and
similarly anti-ideals, etc.). In addition to knowing when a point is in the
interior of a set, we need to know when it is in the exterior of a set; thus we
introduce apartness spaces [11].

To repeat, the problem is that the BHK interpretation and resulting
intuitionistic logic privilege proofs over refutations. In the words of Patterson
[42]:

Once we take on the Brouwerian view that proofs should be con-
structions, both negation and “falsity” disappear because absurdity
is not the same thing as demonstratively false. This is because a
construction leading to a contradiction does not mean that we can
provide a counterexample....

In intuitionistic logic we have taken “true” to be primitive as well
as “absurdity”....Thus, a “proof leading to absurdity” is a derived
notion of falsity and the only one afforded to us in intuitionistic logic.

Negative information can be just as constructive as positive
information....The correct way to use negative information in a
constructive setting would be to do the “opposite” or “backward”
construction in some way. [42, pp. 8-9]

This suggests a BHK-like explanation of logical connectives in terms of
both what counts as a proof and what counts as a refutation. We now explore
what such an explanation might look like. The only requirement we impose is
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that no formula should be both provable and refutable (but see Remarks 3.9
and 3.13).

We start with the following explanations of conjunction and disjunction,
which we denote M and U rather than A and Vv as a warning that they will
not behave quite like the usual intuitionistic or classical connectives.

e A proof of P11 Q is a proof of P together with a proof of Q.

e A refutation of P M Q is either a refutation of P or a refutation of Q.

e A proof of P U Q is either a proof of P or a proof of Q.

e A refutation of P LI Q is a refutation of P together with a refutation

of 0.

These “proof” clauses are the usual BHK ones, while the “refutation” clauses
are natural-seeming De Morgan duals. The most natural clauses for negation
are:

e A proof of P is a refutation of P.
e A refutation of P is a proof of P.

This negation is involutive, P+ = P, with strict De Morgan dual-
: 1L _ pl 1 1L _ pl 1 (= ;
ity: (PN Q)" =P+uUQ"t and (PUQ)” =P+ Q. (= denotes inter-
derivability.)

A little thought suggests that one natural explanation of implication
(which we indulge in some foreshadowing by writing as —o) is:

e A proof of P —o Q is a method converting any proof of P into a proof
of Q, together with a method converting any refutation of Q into a
refutation of P.

e A refutation of P — Q is a proof of P together with a refutation of Q.

REMARK 2.1. This does not mean that when we prove an implication
we must also prove its contrapositive explicitly. The “proofs” in these
explanations, like those in the BHK interpretation, are not the “proofs”
that a mathematician writes in a paper (or even formalizes on a computer).
Rather they are “verifications,” “fully normalized proofs,” or “data that
must be extractable from a proof.” Not every intuitionistic proof (in the
ordinary sense) of PV Q begins by deciding whether to prove P or Q. but
intuitionistic logic satisfies the “disjunction property” that from any proof
of P Vv Q in the empty context we can extract either a proof of P or a proof
of Q. Similarly, any proof of P — Q in the empty context must contain
enough information to transform refutations of Q into refutations of P as
well as proofs of P into proofs of Q.

Building contraposition into the definition of implication makes it
unsurprising that we get (P — Q) = (Q+ — P1). So it might seem that
we are going to fall into classical logic, but this is not the case. For
instance, classically we have (P — Q) = P A —Q: but despite the apparent
presence of this law in the “refutation” clause for —, we do not have
(P — Q)" = P QL. Instead we have (P — Q)" = PR O, where Kisa
different kind of conjunction:
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e A proof of P X Q is a proof of P together with a proof of Q.

e A refutation of P X Q is a method converting any proof of P into a
refutation of Q, together with a method converting any proof of Q into
a refutation of P.

Note that P M Q and P X Q have the same proofs, but different refutations.
Both refutation clauses are based on the idea that P and Q cannot both
be true, but to refute P M Q we must specify which of them fails to be true,
whereas to refute P XI Q we simply have to show that if one of them is true
then the other cannot be.

This suggests that P X Q is stronger than P M Q, and in fact we can justify
(PX Q) —o (P 11Q) on the basis of our informal explanations. Since P X Q
and P 11 Q have the same proofs, it suffices to transform any refutation of
P 11 Q into a refutation of P X Q. The former is either a refutation of P
or of Q; without loss of generality assume the latter. Then we can certainly
produce a refutation of Q that doesn’t even need to use a proof of P. On the
other hand, given a refutation of Q it is impossible that we could also have
a proof of Q: so by ex contradictione quodlibet from any proof of Q we can
vacuously produce a refutation of P.

It follows that the De Morgan dual P& Q £ (PL R QL) of K is a
different kind of disjunction that is weaker than L. (For a discussion of
notation, see Notation 2.2.) Its explanation is:

e A proof of P <% Q is a method converting any refutation of P into a
proof of Q, together with a method converting any refutation of Q into
a proof of P.

e A refutation of P ¢ Q is a refutation of P together with a refutation

of 0.

Thus P & Q has the same refutations as P LI Q, but more proofs: while P LI Q
supports proof by cases, P & Q supports only the disjunctive syllogism. As
noted in Section 1, P ¢ Q encapsulates a common constructive pattern for
weakening definitions when the intuitionistic “or” is too strong: rather than
asserting that one of two conditions holds, we assert that if either one of two
conditions fails then the other must hold. We have (P — Q) = (P-4 Q),
a version of the classical law (P — Q) = (=P V Q).

A reader familiar with linear logic may recognize X and <& as its
multiplicatives, while M and U are its additives,* with —o as its linear
implication. Indeed, this explanation is similar to the “game semantics”
of linear logic, in which a “proposition” is regarded as a game or interaction
between a “prover” and a “refuter.”

Actually, our explanation justifies not fully general linear logic but affine
logic. because in the nullary case (“true” and “false”) the distinctions
collapse:

e There is exactly one proof of T.

“The origin of the terminology is apparently the fact that the distributive law in linear logic
isPR(QUR)=(PXQ)U(PKXR), ie. “multiplication distributes over addition.”
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e There is no refutation of T.
e There is no proof of L.
e There is exactly one refutation of |.

These are units for both additive and multiplicative connectives: P11 T =
PXT=Pand Pl 1 =P L = P. The most nontrivial part of this is the
refutations of P X T (or dually the proofs of P 4 1), which by definition
consist of a method transforming any proof of T into a refutation of P,
together with a method transforming any proof of P into a refutation of T.
The former is essentially just a refutation of P; but given this, there can be
no proof of P, so the latter method is vacuous.

The quantifiers are essentially additive; we write them as |_|/[ ] instead of
3/v.

e A proof of |_|x.P(x) is a value a together with a proof of P(a).

e A refutation of | |x.P(x) consists of a refutation of P(a) for an
arbitrary a.

e A proof of [|x.P(x) consists of a proof of P(a) for an arbitrary a.

e A refutation of [ |x.P(x) is a value a together with a refutation of P(a).

The most novel of these clauses is the one for refutations of [ ]x.P(x): just as
a constructive proof of an existence statement should supply a witness, we
stipulate that a constructive disproof of a universal statement should supply
a counterexample. This yields De Morgan dualities

1 i
(|_|x.P(x)> = |_|x.P(x)J‘ <|—|x.P(x)) = |_|x.P(x)L
and also “Frobenius” laws involving the multiplicative connectives:

PR x.Qx) = |x.(PRQO(x)) P&[|x.0(x)=[|x.(P & O(x)).

But P 1| |x.Q(x) = |_|x.(P 11 Q(x)) fails: a refutation of | |x.(P M Q(x))
consists of, for every a, either a refutation of P or a refutation of Q(a). while
a refutation of P M|_|x.Q(x) must decide at the outset whether to refute P
or to refute all Q(a)’s.

This explanation of the connectives and quantifiers solves the problem
mentioned above with equality and inequality of real numbers. If we define

(x =) E[Tnlxn = yal < 2,
then we find that (assuming that (p < ¢)* = (p > ¢) for p.q € Q)

€1
(x =)~ = Unlxu = yal > 7.

Thus, the correct notions of equality and inequality for real numbers are
each other’s negations, relieving us of the need for a separate “apartness
relation.”

The names linear and affine logic refer to the fact that X and < are
not idempotent: P X P#£P and P & P#P. (More precisely, what fails are
P — (PXP)and (P4 P) — P.) A proof of P & P consists of a method
(well, technically two methods) for converting any refutation of P into a
proof of P. Since P cannot be both provable and refutable, this is equivalently
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a method showing that P cannot be refuted—which is, of course, different
from saying that it can be proven. Note that linear logic always satisfies the
“multiplicative law of excluded middle” P ¢ P' and the “multiplicative
law of non-contradiction” (P X PL)* (in fact, they are essentially the
same statement). We call a proposition decidable if it satisfies the additive
law of excluded middle P LI P+, or equivalently the additive law of non-
contradiction (P 1 PL)L. According to the above informal explanations,
decidability means that we have either a proof of P or a refutation of P.

It may help to understand X if we write out the meaning of (P X Q) — R,
which the reader can verify is equivalent to P — (Q — R):

e A proof of (P X Q) —o R consists of methods for:
— converting any proofs of P and Q into a proof of R,
— converting any proof of P and refutation of R into a refutation of
0, and
— converting any proof of P and refutation of Q into a refutation
of R.
e A refutation of (P X Q) — R consists of a proof of P, a proof of Q,
and a refutation of R.

More generally, a proof of (P} X P, X --- X P,)) — R consists of “all possible
direct or by-contrapositive proofs” that contradict one of the hypotheses.
By contrast:

e A proof of (P M Q) — R consists of:
— a method converting any proofs of P and Q into a proof of R, and
— a method converting any refutation of R into either a refutation of
P or a refutation of Q.
e A refutation of (P Q) — R consists of a proof of P, a proof of Q,
and a refutation of R.

That is, when proving the (stronger) statement (P Q) — R, the by-
contrapositive direction must use R to determine which of P or Q fails,
whereas when proving (P X Q) — R we are allowed to assume one of P
and Q and contradict tfie; other.

We define (P oo Q) = (P — Q)M (Q — P), with the following mean-
ing:

e A proof of P oo Q consists of methods for converting:

— any proof of P into a proof of Q, and vice versa, plus

— any refutation of P into a refutation of Q, and vice versa.
o A refutation of P oo Q consists of either:

— a proof of P and a refutation of Q, or

— a refutation of P and a proof of Q.

Often in linear logic one defines P oo Q tobe (P — Q) X (Q — P) instead.
However, for us (P — Q) M (Q —o P) is preferable, due in part to its more
informative disjunctive notion of refutation; see also Examples 6.7 and 6.14
and Section 8.
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Finally, following Girard [19] we introduce two unary connectives ! and ?
called exponential modalities, with the following meanings:

e A proof of ! P is a proof of P.

e A refutation of !P is a method converting any proof of P into an
absurdity.

o A refutation of ?P is a refutation of P.

e A proof of ?P is a method converting any refutation of P into an
absurdity.

These exponentials deal with the potential objection that not every
constructive proposition has a “strong dual.” For instance, not every
set has an apartness relation. But there is always the Heyting negation
—P £ (P — 0), and the propositions ! P are those whose refutations are the
“tautological” ones of this form. We will call a proposition in affine logic
P affirmative if P = !P. For instance, a set in the antithesis model whose
affine equality is affirmative will correspond to a set in intuitionistic logic
equipped with the denial inequality, (x # y) = —(x = y).

Itis also common to encounter propositions that are the Heyting negation
of their strong dual. For instance, while real numbers do not satisfy (x #
y) = =(x = y). they do satisfy (x = y) = —(x # y) (the inequality is tight).
In the antithesis model these are the propositions with P = 7P, which we
call refutative.

We can also understand ! by considering !P — Q. Since Q cannot be both
provable and refutable, if we can transform proofs of P into proofs of Q,
then any refutation of Q already entails the impossibility of a proof of P.
Thus, in proving !P — Q the contrapositive direction is subsumed by the
forwards direction, giving:

e A proof of |P —o Q is a method converting any proof of P into a proof

of 0.
e A refutation of |P —o Q is a proof of P together with a refutation of Q.

Unlike (P — Q)" = (0+ — P1), we only have (1P — Q)" = (0+ —
?2(P1)). Thus !P is “usable multiple times” (since !P = !P X !P) but “not
contraposable.”

Note the proofs of |P — Q are just the ordinary BHK interpretation of
P — Q. This foreshadows the Girard translation of intuitionistic logic into
linear logic.

NotaTION 2.2. Since we will be passing back and forth between intu-
itionistic and affine logic frequently, to minimize confusion I have tried not
to duplicate any notations between the two contexts. As a mnemonic, our
notations for affine connectives generally involve perpendicular lines; thus
we have X, M, 1,4, [],|]. T. L° in place of the intuitionistic A, V,V, 3, 1,0.

SThere is no uniformity in notation for linear logic. The most common notation for X
is ®, but ®, @, o, & are also used, whereas < has been denoted by %, @, ||, e, ©. @, O, f, *.
Notations for M/U include &/@®. A/V. and x /+. Our X /< and M/U visually represent De
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We carry this principle over to non-logical symbols as well, writing C, C, E,
and so on in place of the intuitionistic <, <, €.

The main exceptions are the affine implication —o, the exponentials !, ?, and
equality. The symbols —o, !, ? are associated strongly with linear logic, and
sufficiently visually distinctive to need no mnemonic. And the intuitionistic
= can’t be made any more perpendicular, so we instead write = for affine
equality to evoke —o.

In the intuitionistic context, will always use “slashed” symbols such as
#.¢,%, and so on to denote strong “affirmative” negations, rather than
the weak logical negations such as —(x = y). In the affine context, the
corresponding slashed symbols #, Z, [Z will refer to the involutive affine

negation: (x£y) £ (x = y)™.

§3. The antithesis translation for propositional logic. Like the BHK inter-
pretation of intuitionistic logic, the explanation of the affine connectives and
quantifiers in Section 2 is informal, and nonspecific about what constitutes a
“method.” However, the relationship between the two interpretations can be
made precise, in the form of a “translation” of affine logic into intuitionistic
logic. This is analogous to the Godel-Gentzen double-negation translation
of classical logic into intuitionistic logic and the Girard translations of
intuitionistic logic into linear logic, and like them it has both a semantic and
a syntactic side.

Consider the Godel-Gentzen translation, restricted to propositional logic
for simplicity. On the semantic side, this constructs a Boolean algebra from
a Heyting algebra. More generally, let H be any bicartesian closed category,
meaning a cartesian closed category with finite coproducts; a Heyting
algebra is the special case of a bicartesian closed poset. We regard the objects
of H as intuitionistic propositions, and hence use logical notations for its
structure: A for cartesian products, V for coproducts, 1 and 0 for terminal
and initial object, and — for exponentials.

REMARK 3.1. Constructive logics must always deal with the question
of proof relevance: whether we interpret a proposition to belong to a
poset, such as a Heyting algebra (the proof-irrelevant version), or a
more general category (the proof-relevant version). Of course, a proof-
relevant interpretation retains more information, including the algorithms
implicitly defined by a constructive proof. But the natural proof-irrelevance
of some models can be important, such as when defining the Dedekind real
numbers in a topos. Similarly, some axioms cannot be stated consistently
in the naturally proof-relevant logic of dependent type theory, such
as Brouwer’s continuity principle [17], or the combination of excluded
middle and univalence [52]. (A referee has pointed out that this doesn’t
necessarily mandate full proof-irrelevance either; one might be able to use
an intermediate modality instead.) Fortunately, as we will see in this section

Morgan duality, do not clash with other standard notations that I know of, and are easily
distinguishable.
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and the next, the antithesis translation is insensitive to this question: it works
just as well for categories as for posets.’

Returning to the Godel-Gentzen translation, any bicartesian closed
category H is distributive [12], so its initial object is strict, meaning
any morphism with codomain 0 is an isomorphism. In particular, 0 is
subterminal, and thus so is the Heyting negation =P £ (P — 0) of any
object. Thus the full subcategory

H ¥ {P € HIP = —-—-P}

consists of subterminal objects, and hence is a preorder. It is closed in
H under A and —, and contains 1 and 0; it is not closed under Vv but it
does have binary joins defined in H by =—(P Vv Q). With these operations
it (or more precisely its skeleton) is a Boolean algebra. Moreover, this
construction defines a left adjoint, in a suitable sense, to the forgetful functor
from Boolean algebras to bicartesian closed categories. This is the semantic
side of the (propositional) Godel-Gentzen translation: it makes a model of
intuitionistic logic into a model of classical logic.

The syntactic side goes in reverse, translating any formula in classical
logic into a formula in intuitionistic logic. It can be obtained automatically
from the semantic side, by considering the free bicartesian closed category
H[X] generated by some signature X, whose objects and morphisms are
formulas and proofs in intuitionistic logic, and its resulting Boolean algebra
H[X]--. Then if B[X] is the free Boolean algebra generated by the same
signature, whose elements and inequalities are formulas and entailments
in classical logic, its universality means there is a unique Boolean algebra
homomorphism (—)N : B[Z] — H[X]--.

This is the syntactic side of the Godel-Gentzen translation, which maps
formulas and entailments in classical logic into formulas and proofs in
intuitionistic logic. Its usual explicit definition can be read off from the
Boolean algebra structure of H[X]-- above, e.g.. (P A Q)N = PN A QN
and (PV Q)N =—-=(PNv QON). In particular, deriving these formulas
semantically in this way means that the translation is automatically sound,
i.e., maps proofs to proofs.

The situation with the Girard translation is similar. We recall the relevant
category-theoretic models of (propositional) linear logic.

DEerFINITION 3.2. A x-autonomous category [6] is a closed symmetric
monoidal category (L. X, —) equipped with an object L such that for any P
the double-dualization map from P to (P — 1) —o L is an isomorphism. If
L has finite products, a Seely comonad [34, 44] on it is a comonad ! such that
the Kleisli category Ly has finite products and the forgetful functor L, — L
is strong symmetric monoidal (where L, is regarded as cartesian monoidal).

SUnivalent type theory [52] combines proof-relevance and proof-irrelevance in one
framework, relating them by propositional truncation; thus one can choose between the
two case-by-case rather than globally. But it is not clear to me how to incorporate this
flexibility into the antithesis model.
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In a s-autonomous category we write P~ = (P — 1) and P4 Q =
(PL® Q1) and if it has a Seely comonad we write 2P = (!(P)")". Since
(7)l is a self-duality, if a x-autonomous category has products then it also
has coproducts; as in Section 2 we write its products as M and its coproducts
as L.

If we identify the objects of L, with objects of L as usual, with Li(P, Q) =
L(!P. Q) and the forgetful functor L; — L acting on objects by !, then the
cartesian product in L, must take objects P and Q to P 1 Q; hence we have
(PN Q) =!PX!Q in L.’ It follows that L, is a cartesian closed category,
with exponential (P — Q) = (IP — Q).

This is the semantic side of the Girard translation. Its syntactic side can
be deduced as before, as a map (-)° : H'[Z] — L[Z], from the free cartesian
closed category H'[Z] on some signature to the cartesian closed category
L[X]; underlying the free x-autonomous category with finite products and
Seely comonad on the same signature. This yields a map from formulas and
proofs in intuitionistic logic® to those in linear logic, whose syntactic rules
can be read off of the cartesian closed structure of L[X]. e.g.. (P A Q)¢ =
PSS QSand (P — Q)% = (1PC — 09).

The semantic side of the antithesis translation, therefore, will be a
construction of a model of affine logic from a model of intuitionistic logic.
By a model of affine logic we mean a x-autonomous category with finite
products and Seely comonad that is semicartesian, meaning that its monoidal
unit is also its terminal object (and hence the dualizing object L is also the
initial object).

The semantic antithesis translation is actually an instance of both the
Chu construction [13, 14] and the Dialectica construction in the form of [41].
We will not describe these constructions in general, but only the specific
case of interest to us, in which they coincide. On the side of subsets rather
than predicates, a similar notion was already introduced by [10, Chapter 3,
Section 2] under the name complemented subset; see Theorem 6.11.

DeriNiTION 3.3. For a bicartesian closed category H, let Hy be the full
subcategory of H x H°P determined by the pairs P = (P, P~) such that
PT A P isinitial (equivalently, such that there is a morphism P™ A P~ — 0;
such a morphism is unique when it exists because 0 is subterminal).

Thus, a morphism f : P — Q in Hy. consists of maps /™ : P™ — Q" and
f~: 0 — P in H. In general, Chu and Dialectica constructions impose
additional constraints on such morphisms—the difference between the two

"The definition of Seely comonad is usually expanded out more explicitly in terms of
coherent isomorphisms such as these, but we will not need that. This is also apparently the
origin of the sobriquet “exponential” for the modalities such as !, since “exponentials turn
additives into multiplicatives” is akin to exp(a + b) = exp(a) - exp(b).

8We do not actually get a translation of all of intuitionistic logic, because L[], may not
have coproducts. Thus, there is no obvious way to interpret (P V Q): as noted already by Seely
[44] it is hard to semantically justify Girard’s formula (P V Q)G =1PY U !QG. However, as
we will see, in our case of interest these coproducts exist automatically.
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being in the constraints—but since 0 is subterminal, those constraints are
vacuous for us.

LemMa 3.4. Hy has finite products and coproducts.
Proor. They are inherited from H x H°P, with the following definitions:

T=(10. PNQ=({P"AQ" P VQ),
1 =(0.1), PUQ=(PtVvOr.P ANO).

Note that we use Notation 2.2 for these. -
LemMA 3.5. Hy is a semicartesian x-autonomous category.

Proor. The monoidal structure is defined by
def

PRQ=(PTAQT.(PT = Q)A(QT = P)).

A general Chu construction requires a pullback rather than a product in the
refutations of P X Q, but subterminality of 0 makes that unnecessary here.
We leave associativity and symmetry to the reader (or standard references
on the Chu and Dialectica constructions). For the unit, since T = (1,0) we
have

PRT=(PTALPT=0A(1—P))
=~ (P (Pt = 0)AP)
~ (Pt pP).

Here the final isomorphism is because P — 0 is subterminal and there is a
morphism P~ — (P™ — 0). The closed structure is defined by

def

P—oQ=(P"=>Q)AN(Q = P).P AQ).
We leave the verification of adjointness to the reader. Now since L = (0,1),
we have
Pol2(Pt=0A01—=P).P"AL
= (P, P")
from which it follows immediately that P = (P — 1) —o L. =

LeEMMA 3.6. H. has a Seely comonad. Moreover:

o The Seely comonad )\ is idempotent.

o Its Kleisli category (Hi), is equivalent to H, and in particular has
coproducts.

o The right adjoint Hy. — (H4.), is strong monoidal:; thus in addition to the
Seely conditions we have |(P X Q) = \P X !Q and?(P ¢ Q) = 7P $ ?0.

PrOOF. The forgetful map (-)* : Hy — H has a fully faithful left adjoint
sending P to (P,—P), where =P = (P — 0) is the Heyting negation. The
induced comonad and monad are

def def

1P E (Pt -P") Y (-P . P).
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(P =P rO" (PNQ) =P VO
(PuQ)t=pPtvo" (PUQ) =P AOQ
(PL)+ - p (PLY _ P+
(P—-Q) =P "50)A(Q -P) (P—=Q) =P AQ
(PRQ)" =P AQ" (PRQ) =(PT =0 )A(Q" = P)
(PO =P - 0")A(Q = P") (P&Q) =P AQ
Th =1 T =0
17=0 L =1
(tP)" =p* (1P) = —~(P")
(P)" =~(P) (P) =P,

FIGURE 1. The syntactic antithesis translation for propositional logic.

Since the left adjoint is fully faithful, this comonad and monad are
idempotent, and their Kleisli (and also Eilenberg-Moore) adjunctions
coincide with the adjunction we started with. The definition of X makes
it clear that the right adjoint (-)" is strong symmetric monoidal, while for
the left adjoint F we have

PAQ.(P— =0)N(Q — —P))
PANOQ.(P—-0Q0—=0)A(Q—P—0)
PANO.(PANQ —=0)A(PAQ —0))
PAQ.~(PAQ))

using that since P A Q — 01is subterminal, it is its own cartesian square. -

Lemmas 3.4-3.6 define the semantic antithesis translation, which in factis a
right adjoint to a suitable forgetful functor. As before, we obtain the syntactic
antithesis translation as the unique morphism (-)* : A[Z] — H[Z].. where
A[X] is the free semicartesian x-autonomous category with products and a
Seely comonad on the signature X. This is a translation that maps formulas
and proofs in affine logic to pairs of formulas and proofs in intuitionistic
logic. It is given by explicit formulas that can be read off of the structure
of Hy, and which are shown in Figure 1. As with the Godel-Gentzen and
Girard translations, the semantic derivation of these formulas automatically
ensures soundness: any proof in affine logic automatically translates to a pair
of proofs in intuitionistic logic.

Of course, all the definitions in Figure | match our informal explanations
of the connectives in Section 2. Thus any rigorous version of the BHK inter-
pretation, yielding a bicartesian closed category that models propositional
intuitionistic logic, can be enhanced to a model of propositional affine logic
matching our meaning explanation.
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Moreover, since the Kleisli category of Hy recovers H again, the Girard
translation undoes the antithesis translation:

intuitionistic logic linear/affine logic intuitionistic logic
(bicartesian antithesis (*-autonomous cat. Girard (bicartesian
closed cat.) w/ Seely comonad) closed cat.)
H Hi (Hy) ~H

In other words, we can regard affine logic as an extension of intuitionistic
logic.

A very important point, however, is that unlike the Gédel-Gentzen and
Girard translation, the antithesis translation is not conservative in the logical
sense. That is, there are statements in affine logic that always hold under the
antithesis translation (i.e., in categories of the form H4. ), but are not provable
in general affine logic. Some such statements include:

PR(QUR)=(PNQ)U(PNR) PRPRP=PRP !P=IP IP=PKXP
2P — IP) NP 12P \PUQ)=!PU!Q WLx.P(x)) = |_|x.!P(x).

To a linear logician, this makes the logic look quite degenerate: much of the
potential richness of the exponentials is invisible to the antithesis translation.
Therefore, unlike the Godel-Gentzen and Girard translations, we should not
view the antithesis translation as a way to study affine logic by “embedding”
it into intuitionistic logic. Instead, we view it as a way to use affine logic as a
tool for stating and proving definitions and theorems in intuitionistic logic.
(But we will return to this in Section 11.)

REMARK 3.7. As noted above, the antithesis translation is sound for
proofs. We will not make very extensive use of proofs in affine logic, but
it is worth briefly summarizing the relevant rules (see, e.g., [19] for more
detail).

Informally, affine logic looks like classical logic except that each hypothesis
may only be used at most once (except for those with a ! on them). Put
differently, the hypotheses of a theorem are implicitly combined with X,
and since PZP X P they cannot be “duplicated.” If we have P X Q we can
use both P and Q (at most once each), whereas if we have P 1 Q we can
choose to use P or to use Q, but not both. Similarly, []x.P(x) can only be
instantiated at one value of x. And dually, to prove P X Q we prove P and Q
with each hypothesis used only in one sub-proof, while to prove P M Q we
can use each hypothesis in both sub-proofs (once in each).

A hypothesis of P LI Q can be case-split, while a hypothesis of P <& Q
is used by disjunctive syllogism (e.g., proving P+ to conclude Q). To
prove P LI Q we prove P or prove Q, while to prove P <& Q we can
assume P to prove Q or vice versa. Implication P — Q behaves as
classically, including contraposition; proof by contradiction is universally
valid. (Intuitionistically, proof by contradiction implies excluded middle
PV —P since -(PV-P)=(-PAP) is a contradiction; but affinely
(PuPHt =(PLNP) is no contradiction since we can’t use both Pt
and P.)
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REMARK 3.8. Notations such as M/U and X/<¢ are fine for writing
logical formulas explicitly, but for talking about mathematics it is useful
to also represent each connective by an English word. Girard suggested to
pronounce M as “with,” Ll as “plus,” X as “tensor,” and <> as “par”; but most
of these words have other meanings in mathematics and everyday English,
leading to potential confusion.

When itis understood that the ambient logic is linear or affine (so that there
is no danger of confusion with A and V), I prefer to pronounce X as simply
“and,” since this conjunction implicitly combines multiple hypotheses, is left
adjoint to implication, and is very often used where both intuitionistic and
classical mathematics use A. Similarly, I prefer to pronounce LI as simply
“or,” since this is the disjunction that supports proof by cases, is almost
always’ what an intuitionistic constructive mathematician means by “or.”
and about half the time is what a classical mathematician means by “or” as
well. The other half of the time the classical mathematician means <, for
which Girard’s word “par” is at least unlikely to lead to confusion; but two
less awkward-sounding possibilities are “unless” and “or else,” since P & Q
is equivalent to both 9+ — P and P+ — Q. Pronouncing M s trickier, but
Noah Snyder has suggested “exclusive and” (“xand” for short)—there is no
formal relationship to the “exclusive or,” but the word “exclusive” conveys
the intuition of “exactly one of the two,” which is how a hypothesis of P 1 Q
can be used in a linear proof: as P or as Q, but not both.

REMARK 3.9. One might argue that Hy is too large, as it contains
propositions like (0,0) which are very far from being either provable
or refutable. We cannot constructively expect every proposition to be
either provable or refutable, but we might try some weaker restriction like
—(=PT A —=P"). However, while propositions satisfying =(=P* A =P~) are
closed under finitary connectives, their closure under quantifiers is equivalent
to the non-constructive law of “double-negation shift” (Vx.——P(x)) —
(==Vx.P(x)). For a dramatic counterexample, let H = O(R) be the open-set

lattice of the real numbers, with x : Rand P(x)" £ R\ {x}and P(x) = 0;
then —(=P(x)" A =P(x)") for all x, but [x.(P(x)". P(x)") = (0.0).

REMARK 3.10. In fact, already Vickers [53] explicitly suggested consider-
ing separately for each proposition its affirmations and refutations:

Given an assertion, we can therefore ask:

e Under what circumstances could it be affirmed?
e Under what circumstances could it be refuted? [53, p. 6]

It is thus natural to imagine propositions that can never be affirmed (i.e.,
proven) and also never refuted. The antithesis construction can thus be

9We will see in the rest of the paper that M and <> do often appear in affine representations
of concepts from intuitionistic constructive mathematics. But the mathematician using
intuitionistic logic has to write out the corresponding more complicated statement using
A, V, and —, and hence is not used to using the words “and” and “or” for M and <$
respectively.
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viewed as an intensional theory of the proofs and refutations of propositions
without regard to “truth.” Ignoring truth is constructively sensible since we
can never directly observe it (we can only affirm or refute propositions),
and intensionality is sensible since two propositions that happen to have the
same extension (truth circumstances) might have different affirmations or
refutations depending on how they are phrased.

Vickers defines a proposition to be affirmative if it is true exactly when
it can be affirmed (i.e.. proven), and refutative if it is false exactly when
it can be refuted. Our definition is a bit stronger, and more intensional:
roughly speaking, we call a proposition affirmative if we know, by virtue
of its definition, that whenever it is true it can be affirmed, so that we can
refute by showing that it cannot be affirmed. Similarly, we call a proposition
refutative if we know that whenever it is false it can be refuted, so that we
can affirm it by showing that it cannot be refuted.

If intuitionistic logic is the logic of affirmative propositions, and co-
intuitionistic logic [45, 48] is the logic of refutative propositions, then we
can view affine logic as a logic of propositions that are subject to either
affirmation or refutation.

REMARK 3.11. Even if H is a Boolean algebra, H. is larger than H. For
instance, {0,1}+ = {(0,1) < (0,0) < (1,0)} coincides with three-valued
Lukasiewicz logic, where (0, 0) is called “unknown” or “undefined.”

REMARK 3.12. Dan Licata has pointed out that the antithesis translation
has certain parallels with the natural deduction of [30] for classical (linear)
logic that uses two judgments P frue and P false.

REMARK 3.13. There are other ways to add “constructive negation” to
intuitionistic logic. We have already noted that the antithesis construction
1s both a Chu construction and a Dialectica construction, and both of
these constructions have more general versions that also model linear logic.
For instance, it is shown in [42] that the “constructible falsity” logic of
[36] is modeled by the Chu construction Chu(H,1). Compared to H.
(which is Chu(H. 0)). this drops even the requirement —(P* A P-), allowing
propositions like (1,1) that are both provable and refutable. The lattice
Chu(H, 1) is *-autonomous but not semicartesian, so the units of X and ¢
no longer coincide with those of M and LI. Instead we have the MIX rule [15],
i.e., the units of X and < coincide with each other; indeed they are precisely
(1.1).

§4. The antithesis translation for predicate logic. To do substantial
mathematics we require not just propositional logic, but at least first-
order logic, and often higher-order logic or even dependent types. While
attempting not to get bogged down by detail, in this section we describe
antithesis translations for these richer theories. I encourage a reader who is
not already an afficionado of categorical semantics to skim this section on
a first reading.
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4.1. First-order logic. This corresponds semantically to the following
notion, due essentially to Lawvere [29].

DeriNiTION 4.1.1. Let K be a 2-category with a forgetful functor U : K —
Cat. A K-valued hyperdoctrine consists of:

e A category T with finite products.
e A pseudofunctor P: TP — K.
e For any product projection 7 : A x B — A4 in T, the functor

Un*: UP(B) — UP(4 x B)

has both a left adjoint X5 and a right adjoint I1p.
e The Beck—Chevalley condition holds, meaning that for any f : 4’ — A4
in T the induced maps are isomorphisms:

ZBO(fXB)*%f*OZB f*OHBl)HBO(fXB)*.

We think of the objects of T as representing zypes and its morphisms
as terms. with the objects of P(A) being predicates on A. The morphism
f*:P(4) — P(A") of K induced by f : A’ — A represents substitution into
a predicate, while the adjoints £ and Il act like existential and universal
quantification. Note that £ and [ are not in general morphisms of .

If IC = Int is the 2-category of bicartesian closed categories, with functors
preserving finite products, coproducts, and exponentials, and natural
isomorphisms between them, we speak of an intuitionistic hyperdoctrine,
and write £z = dp and Il = V. Similarly, if K = Aff is the 2-category
of semicartesian *-autonomous categories with finite products and a Seely
comonad, with functors that preserve all this structure up to isomorphism,
and natural isomorphisms between them, we speak of an affine hyperdoctrine,
and write X3 = | |z and 1z =[];.

ExampLE 4.1.2. If H is a complete and cocomplete cartesian closed
category, then there is an intuitionistic hyperdoctrine with T = Set and
P(A) = H. The adjoints ITz and X are given by products and coproducts.
Similarly, if L is a complete and cocomplete semicartesian *-autonomous
category with a Seely comonad, then T = Set and P(4) = L defines an
affine hyperdoctrine.

ExampLES 4.1.3. Suppose T is a category with finite limits. Then there
is a pseudofunctor P : T°P — Cat sending A4 to the poset of subobjects of
A, which is an intuitionistic hyperdoctrine if and only if T is a Heyting
category. There is also such a pseudofunctor sending A4 to the slice category
T/A, which is an intuitionistic hyperdoctrine if and only if T is locally
cartesian closed with finite coproducts.

More generally, any full comprehension category having X-types, I1-types
(with function extensionality), and finite sum types is an intuitionistic
hyperdoctrine. If it also has propositional truncations, in the sense of [52],
then its “h-propositions” (types with at most one element) also form an
intuitionistic hyperdoctrine. If it has universe objects closed under the
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relevant type formers, the elements of any particular universe also form
an intuitionistic hyperdoctrine.

REMARK 4.1.4. Even in an affine hyperdoctrine, the base category T is still
cartesian monoidal. We could allow T to be semicartesian monoidal, as then
it would still have “projections” whose adjoints would supply quantifiers;
something similar appears in first-order Bunched Implication [37]. But since
the antithesis translation leaves the base category T unchanged, we have no
need for this generality, although we will mention it again in Remark 6.18.

We now extend the antithesis translation to hyperdoctrines.

LEMMA 4.1.5. The semantic antithesis translation from Section 3 defines a
2-functor

(f)i :Int — Aff.

Proor. Immediate. Note that since Hy, like its substrate H x H°P, is
partly covariant and partly contravariant, it can only be 2-functorial on
natural isomorphisms; this is why we defined Znt and Aff to contain only
these. |

THEOREM 4.6. If P : T — Int is an intuitionistic hyperdoctrine, the
composite

T By 7o D% ap
is an affine hyperdoctrine P+.

PrOOF. It remains to show that if z* : P(4) — P(A4 x B) is a bicartesian
closed functor with left and right adjoints 33 and V. then (7*)1 : P(4)1 —
P(A4 x B). also has left and right adjoints satisfying the Beck—Chevalley
condition. We define these by the expected formulas:

Llz(PT. P) E (3pPt.VeP) [1z(PH.P) = (VpPt,3P).
We leave it to the reader to verify that this works. -

This defines the semantic antithesis interpretation for first-order logic.

Moving now to syntax, we consider a formal system of first-order
logic with types, each containing terms or elements t : A that may involve
variables belonging to other types, and a class of propositions that may also
involve variables belonging to types. We assume finite product types A x B,
whose elements are ordered pairs, and a unit type 1 that has one element.
Propositions are related by entailments

P: Q }_X:A,y:B R>

where P, Q, R are propositions involving only the variables x (of type 4) and
y (of type B). In intuitionistic first-order logic, we equip the propositions with
the usual intuitionistic logical operations:

AV,1L,0,—, -0V, 3
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(Lx.P(x))" = 3x.PH(x) (L]x.P(x)) =Vx.P (x)
(Mx.P(x))" = Vx.PT(x) ([Mx.P(x)) = Ix.P (x).

F1GURE 2. The syntactic antithesis translation for first-order logic.

and the usual intuitionistic rules of deduction. Similarly, in affine first-order
logic, we equip the propositions with the affine logical operations:

ga $9 |—|a I—la Ts J—: —0, (7)J_= |_|: I_la !a?

together with the usual affine rules of deduction (that is, the rules of [19] for
linear logic, plus weakening).

NortatioN 4.1.7. For clarity, we sometimes annotate a quantified variable
by the type to which it belongs, e.g., Ix?.P(x) if x : A.

By standard arguments (see, e.g., [25]), the syntax of either kind of
first-order logic, starting from some signature of base types, terms, and
propositions, presents a free hyperdoctrine of the appropriate sort. (We
gloss over coherence questions here, which can be resolved as in [22, 31],
and are automatic in the proof-irrelevant case when the categories P(A)
are posets.) Thus, as in the propositional case, by applying the semantic
antithesis translation to the syntactic intuitionistic hyperdoctrine, we obtain
a syntactic antithesis translation of affine first-order logic into intuitionistic
first-order logic. This translation leaves the types unchanged, acts on the
propositional connectives as in Figure 1, and acts on the quantifiers as
shown in Figure 2. As before, the derivation of this translation from the
semantic version means that it is automatically sound for proofs (though
not complete).

We now consider various additional structure that can be added to a
hyperdoctrine, and their corresponding operations in syntax.

4.2. Comprehension. Let Cat, be the 2-category of categories with a
terminal object.'” We denote such terminal objects generically by 1.

DerINITION 4.2.1 [28]. Suppose U : K — Cat factors through Cat,. A K-
valued hyperdoctrine P : T°? — K has comprehension if for all A € T and
P € P(A), the following functor is representable:

(T/A) — Set,
(f :B— A4) = P(B)(L, f*(P)).

We denote a representing object by ip : { P} — P: it can be thought of as
the subtype of 4 consisting of those elements that satisfy P.

107f we wanted to define comprehension for /inear hyperdoctrines in addition to affine
ones, we would need to replace the terminal object 1 by the monoidal unit.
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EXAMPLE 4.2.2. The intuitionistic hyperdoctrine P(4) = H has compre-
hension, with { P} the set of pairs (a, p) where a € A and p € H(1, P,). The
same is true for the affine hyperdoctrine P(4) = L4.

ExampLE 4.2.3. Examples 4.1.3 all have comprehension. The compre-
hension of a subobject or object of a slice category is itself, while a
comprehension category includes as data a comprehension operation.

PROPOSITION 4.2.4. If P is an intuitionistic hyperdoctrine with comprehen-
sion, then P is an affine hyperdoctrine with comprehension.

ProoF. Since T = (1,0) in P(A4), a morphism T — P in P(A4) consists of
morphisms 1 — P* and P~ — 0. But the latter is unique if it exists, which it

does if there is a morphism 1 — P since P* A P~ — 0. Thus, we can define
{Py={P}. 5

Note that comprehension in the antithesis model discards all information
about refutations; hence in particular { P} = {!P}. More generally, we have:

PROPOSITION 4.2.5. For P € P(A) in any affine hyperdoctrine with compre-
hension, there is a morphism from T to i,(!P) in P({P}).

PrROOF. By definition, there is a morphism from T to i5(P) in P({P}).
Now we apply the functor ! and use the fact that !T = T. -

Since ! is not in general idempotent (though it is in the antithesis
model), this does not imply {P} = {!P}. But it does make P arbitrarily
duplicable over { P}, i.e., we have P — P X P over { P}. Thus, we have to be
careful to avoid comprehension whenever we want to retain “refutational”
information. This leads in particular to a wider gap between “subsets of 4”
and “sets that inject into 4.” We will return to this point in Remark 4.7.1
and Section 5.

Nevertheless, we cannot really do mathematics without comprehension.
Fortunately, it is a fairly harmless assumption: even if we start from a
hyperdoctrine without comprehension, we can add comprehensions “freely,”
replacing the types by “formal comprehensions” or “pre-sets” (types with
an “existence predicate”).

ProroSITION 4.2.6. For any intuitionistic hyperdoctrine P : T’ — Int,
there is an intuitionistic hyperdoctrine with comprehension PU : (TU)r —
Int in which:

o The objects of T} are pairs (A. P) with A € T and P € P(A).

e The morphisms (A, P) — (B. Q) are pairs of f : A— B and g : P —
e The objects of PV (A, P) are those of P(A).

e Themorphisms Q — R inPY (A, P) are morphisms P A Q — RinP(A).

def

Proor. The product in T{} is (4, P) x (B.Q) = (4 x B.7niP A750Q).
and the terminal object is (1,1). It is straightforward to show that
P (4, P) is bicartesian closed and that P is a functor. The quantifiers are
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def def

J.0)(R) =3(Q AR) and V(p 9)(R) = Vp(Q — R). The comprehension
of 0 € PU(4,P) =P(4)is (4. P A Q). =

REMARK 4.2.7. The construction of Proposition 4.2.6 appears in many
places with many names. Categorically, TU is the “Grothendieck construc-

tion” of the composite TP 2 e Y Cat; for the Calculus of Constructions
it is the “first-order deliverables” of [33]. The general construction has a
universal property of adding comprehensions “freely”; see, e.g., [51] for the
posetal version.

ProPOSITION 4.2.8. For any affine hyperdoctrine P : T? — Aff there is an
affine hyperdoctrine with comprehension Pl (Ther - Aff in which:

e The objects of T} are pairs (A, P) with A € T and P € P(A).
e The morphisms (A, P) — (B. Q) are pairs of f : A — B and g :'P —
/0.
e The objects of PU (A, P) are those of P(A).
e The morphisms Q — R in P (A4, P) are morphisms \PR Q — R in
P(A).
def

Proor. The product in Tt is (4, P) x (B.Q) = (4 x B,n; PN =3Q).
and the terminal object is (1, T). Note that !(zf P M7 Q) = nf!P K 7n3!0.
The same operations as in P(A4) lift to make PU(A4, P) semicartesian
x-autonomous with products and a Seely comonad. The quantifiers are

Ll(BsQ)(R) = I—lB(!Q I R) and |_|(3~Q)(R) « |—|B(!Q —0 R)_ 4

Syntactically, comprehension corresponds to an operation taking a
proposition P in the context of a variable x : 4 to a type {x : 4|P(x)}. In
the intuitionistic case, rules for this operation can be found in [25, Section
4.6]; note that P cannot contain any variables other than x. (It is possible to
formulate a more general kind of comprehension without this restriction, at
the expense of introducing dependent types.) The affine case is essentially
identical, but due to Proposition 4.2.5 we will emphasize the essentially
affirmative nature of affine comprehension by writing it as

Hx:4|P(x)}.

4.3. Leibniz—Lawvere equality. This operation will not be very useful for
us, but we sketch it briefly to explain why.

DEFINITION 4.3.1 ([28], [25, Section 3.4].). A K-valued hyperdoctrine P :
TP — K has Leibniz—Lawvere equality if for any diagonal A4 : 4 — A x A
and object B, the functor (13 x A 4)* has a partial left adjoint defined at the
terminal object and satisfying the Beck—Chevalley condition.

We denote the value of this left adjoint by eq, € P(B x 4 x A).

ProrosITION 4.3.2. If P is an intuitionistic hyperdoctrine with Leibniz—
Lawvere equality, then P+ also has Leibniz—Lawvere equality with eqj[ =

(qu> _‘qu)'
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Note that (eq,, —eq,) is always affirmative. In fact, more generally we
have:

ProroSITION 4.3.3. In any affine hyperdoctrine with Leibniz—Lawvere
equality, the predicate eq, is affirmative, i.e., we have a map eq, — leq,
inP(BxAxA).

Proor. By the universal property of eq . such a morphism is determined
by a map T — A*leq, = !A*eq, in P(B x A). But |T = T, so it suffices
to give a morphism T — A*eq,, and this is just the unit of the partial
adjunction. -

See [21] for a more syntactic argument. Unlike the analogous Proposi-
tion 4.2.5 for comprehension, this result makes Leibniz—Lawvere equality
unsuitable for us. Indeed, equality was our primary example in Section |
of a non-affirmative proposition (with nontrivial refutations). Thus, instead
of using Leibniz—Lawvere equality, we will follow [9, 24] in equipping types
with equality relations (see Sections 5 and 6).

4.4. Higher-order structures. Many higher-order structures are properties
of the base category T that don’t affect the hyperdoctrine over it; these are
automatically preserved by the antithesis construction. For instance, we can
ask that T be cartesian closed; this corresponds syntactically to enhancing
the base type theory of our first-order logic to a simply typed A-calculus,
with operation types B* whose canonical elements are abstractions Ax.z,
satisfying f# and # conversion rules.'' (These are usually called function
types, but for us “functions” will be defined to be operations that respect a
given equality relation; see Sections 5 and 6.) We observe:

PROPOSITION 4.4.1. If T is cartesian closed, then so is the TV defined in
Propositions 4.2.6 and 4.2 8.

Proor. The exponentials in the two cases are
(B, Q)P £ (B4 V4 (m3 P — ev* Q)
(B.Q)"" = (B[, (13 P — ev*0)).
where ev : B4 x A — B is the evaluation in T. .

Similarly, we can ask that T be equipped with a comprehension category
or category with families, unrelatedly to the hyperdoctrine. This corresponds
syntactically (again, modulo coherence issues that can be addressed as in
[22, 31]) to enhancing the base type theory with dependent types, possibly
with any desired type formers such as X-types, Il-types, identity types,
etc. (which are, at least a priori, unrelated to the hyperdoctrine and its
quantifiers). Put differently, this results in a logic-enriched dependent type
theory in the sense of [3] in which the logic is that of the hyperdoctrine. Since
this structure is likewise undisturbed by the antithesis construction on the

" These rules must hold up to a judgmental equality of terms, the syntactic counterpart of
equality of morphisms in T. This is distinct from the equality propositions of Section 4.3.
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hyperdoctrine, we have an antithesis translation from affine-logic-enriched
type theory into intuitionistic-logic-enriched type theory. We leave it to the
reader to extend Proposition 4.4.1 to such cases.

EXAMPLE 4.4.2. In particular, as in Examples 4.1.3, we can regard a
comprehension category with X- and Il-types as itself an intuitionistic
hyperdoctrine with comprehension. That is, any type theory admits an
intuitionistic-logic enrichment given by propositions-as-types. Applying the
antithesis construction, we obtain a translation from affine-logic-enriched
dependent type theory into ordinary intuitionistic dependent type theory.
Similarly, we can apply the antithesis construction to the hyperdoctrine of
h-propositions, or the elements of some fixed universe.

REMARK 4.4.3. This way of applying the antithesis construction to
dependent type theory acts only on the “top level” of type dependency, and
we will not attempt to extend it further in this paper (although see Remark
6.18). In particular, there are by now many different approaches to “linear
dependent type theory,” and it is unclear which, if any, of them would be
appropriate for such an extended translation. The lack of a definite answer
to this question is one obstacle to a native “affine constructive mathematics,”
since dependent type theory has definite advantages over higher-order logic
as a foundational system for all of mathematics. But we can still use affine
logic, by way of the antithesis translation, to say useful things about the
top-level logic of intuitionistic dependent type theory.

4.5. Generic predicates. This is the primary higher-order structure that
does interact with a hyperdoctrine.

DEFINITION 4.5.1. A generic predicate'” in a hyperdoctrine P : T? — K is
an object Q € T with an element 1 € P(Q) such that forany 4 € Tand P €
P(A). there exists a (not necessarily unique) f : 4 — Q and isomorphism

P f(1).

ExampLE4.5.2. If His a small complete Heyting algebra, the intuitionistic
hyperdoctrine P(4) = H* has a generic predicate with Q the underlying set
of H and 1 € H? the identity function. A similar argument applies to the
affine hyperdoctrine P(A4) = L4, if L. is a small *-autonomous complete
lattice with a Seely comonad.

ExampLE4.5.3. The subobject classifier of an elementary toposis a generic
predicate for the hyperdoctrine of subobjects. More generally, a preorder-
valued intuitionistic hyperdoctrine with cartesian closed base and a generic
predicate is a tripos [24].

ExamPLE 4.5.4. A comprehension category, regarded as an intuitionistic
hyperdoctrine, does not generally have a generic predicate. However, its
restricted hyperdoctrine of elements of some universe does have one, namely
the universe.

12Called a “weak generic object” in [25, Section 5.2].
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PROPOSITION 4.5.5. If Q is a generic predicate for P, then (Q. 1) is a generic
predicate for the PU defined in Propositions 4.2.6 and 4.2.8, where 1 is the
terminal object of P(Q).

PROPOSITION 4.5.6. If P is an intuitionistic hyperdoctrine with comprehen-
sion and a generic predicate, then P+ also has a generic predicate.

Proor. Over Q x Q we have two canonical predicates 7j1 and n;1. Let
Q. be the comprehension of —(n{1 A=z51). Then to give a morphism
f:A4— Q4 is the same as to give two morphisms f*:4 — Q and
f~: A — Q. corresponding to predicates (f+)*(1) and (f)*(1) over 4.
such that (f7)*(1) A (f7)*(1) is initial in P(A). Thus, Q4 is a generic
predicate for Py. .

ExaMpPLE 4.5.7. In the hyperdoctrine of subobjects in a topos, Q. is
the subobject of Q x Q consisting internally of pairs of incompatible
propositions.

Syntactically, a generic predicate corresponds to having an (impredicative)
type Q of all propositions. The usual way of presenting a higher-order type
theory of this sort is to define the propositions to be the terms of type €,
or at least bijective to them. In a hyperdoctrine with a generic predicate,
we have only an essentially surjective function T(A4,Q) — P(A), but as in
[24] we can use this to replace P(A4) by an equivalent category whose set of
objects is precisely T(A4, Q).

Thus, with Proposition 4.5.6 we can translate affine higher-order logic
into intuitionistic higher-order logic, where both have comprehensions and
a type of propositions. The syntactic expression of the type of propositions
derived from Proposition 4.5.6 is

Q= {(p".p):QxQ=(pT Ap)}

Note that unlike the syntactic antithesis translations for propositional and
first-order logic in Figures 1 and 2, this is a definition of a zype, not a
proposition or predicate. The antithesis translation does not modify the
collection of types or most of the operations on them, but it does change the
type of propositions.

4.6. Infinity. Finally, as a starting point for concrete mathematics, we
require at least a type of natural numbers that permits definitions by
recursion and proofs by induction. The intuitionistic version of this is
straightforward.

DEFINITION 4.6.1. In an intuitionistic hyperdoctrine, a natural numbers
typeis an object N € T together with morphismso : 1 — Nands: N — N
such that:

(i) For any objects A,B €T with f: 4 — B and g: Ax N x B —
B, there exists a morphism /4 : A x N — B making the following
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diagrams commute:

1A0 l4xs

A— AxN AxN —— AxN

\ l (1A><N~h)l/ lh

AxNxBT>B.

(ii) For any predicate P € P(4 x N ), the following entailment holds:
P,(0) A Vk.(Py(k) — Py(k+1)) Fau Vn.Py(n). (4.2)

Syntactically, the diagramsin (i) say that 4(a.0) = f(a)andh(a.n +1) =
gla.n, h(a.n)), as we expect for an operation defined recursively. We have
expressed the induction rule (4.2) in syntax already: the reader is free to
re-express it in more semantic language. Note that /4 in (i) is not required
to be unique; thus N is only a “weak natural numbers object” in T. Such
uniqueness is irrelevant for us, as with a defined equality on the codomain
(see Sections 5 and 6) operations defined by recursion will always be unique
as functions.

The affine version of induction is somewhat less obvious, but the following
will be appropriate for us.

DErINITION 4.6.3. In an affine hyperdoctrine, a natural numbers type is
(N.o.s) satisfying (i) of Definition 4.6.1 and such that for any predicate
P € P(A x N), the following entailment holds:

P(0) X !Tk.(P(k) — P(k + 1)) Fpav [n.P(n). (4.4)

Note that the induction step is marked with the modality !. This is natural
if we think of ! as denoting a hypothesis that can be used more than once,
as the induction step must certainly be “used” n times in order to conclude
P(n). But it is also mandated by the antithesis translation.

LEMMA 4.6.5. If an intuitionistic hyperdoctrine P contains a natural numbers
type, so does its antithesis translation P..

PrOOF. The antithesis translation of (4.4) consists of the following two
entailments:

PH(0) AVE((PT(k) = PT(k+ D)) A (P (k+1) = P (k) Fpon VP (n),
In.P (n) AVE((PT(k) = PY(k+ 1)) A (P (k+1) = P (k) Fpan P (0).
Both can be proven easily from (4.2). =

On the other hand, if we drop the ! in (4.4), then its antithesis translation
would also include a third entailment
PT(0) A In.P (n) Fpon Ik.(PT(k) AP (k+1)), (4.6)

which is equivalent to excluded middle. Specifically, let P(0) = (T, L) and
P(n) = (L, T)forn > 2,while P(1) = (Q. —0Q) for some arbitrary statement
Q: then by (4.6) we have either —=Q (if k = 0) or Q (if k = 1). Thus, we are
forced to formulate affine induction as in (4.4).
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PROPOSITION 4.6.7. If P has a natural numbers type, so does the P defined
in Propositions 4.2.6 and 4.2.8.

4.7. Conclusions. In the rest of the paper, we will apply the antithesis
translation to recover well-known intuitionistic definitions from naturally
defined affine ones. On both intuitionistic and affine sides we will use higher-
order logic with comprehension, operation types, a generic predicate, and
a natural numbers type. We have seen that this combination is preserved
by the antithesis translation, and that nearly all naturally occurring models
of intuitionistic logic satisfy it. (One exception is that a tripos need not
have comprehension, but we can add comprehensions to it as in Proposition
4.2.6.) If necessary to disambiguate between affine and intuitionistic notions,
we will use the annotations 2 for affine and J for intuitionistic; e.g.,
“Q-predicate” and “J-predicate.” or Q% and Q7.

REMARK 4.7.1. We will frequently be discussing structured types such
as groups, rings, posets, topological spaces, and even sets (types with an
equality predicate). Since ordinary first-order and higher-order logic do
not allow quantification over types (i.e., “for all types 4™ internally to the
logic), theorems relating to structured types are technically metatheorems.
In particular, the axioms of such structures are assumed entailments P = Q,
or equivalently - (P — Q). and hence imply - !(P — Q). In other words,
axioms are affirmative.

Another take on this is possible if we use a base theory with dependent
types and type universes. In this case, we can quantify over all small types
(those belonging to some universe {), and so it would be possible to assume
non-affirmative axioms about a structured small type. However, if we also
have comprehension, we can define types of small structured types (e.g.. the
type of small groups), and in this case by Propositions 4.2.4 and 4.2.5 the
axioms will again be affirmative, or at least arbitrarily duplicable.

§5. Intuitionistic sets and functions. In most of the rest of the paper, we will
first state definitions in affine logic and then translate them into intuitionistic
logic. But for sets and equality, we begin with the intuitionistic context to
fix conventions.

As mentioned after Proposition 4.3.3, we follow Bishop’s dictum:

The totality of all mathematical objects constructed in accordance
with certain requirements is called a set. The requirements of the
construction, which vary with the set under consideration, determine
the set.... Each set will be endowed with a binary relation = of equality.
This relation is a matter of convention, except that it must be an
equivalence relation... [10, Section 2.1]

Thus a “Bishop set” has two ingredients: the “requirements,” which we
regard as the specification of a type, and the equality, which is an equivalence
relation.
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DEFINITION 5.1. A set is a type A with a predicate = on 4 x A such that

Fya X =x
X =Yy }_x.y:A y=x
(X = y) A (y = Z) }_X.y.z:A X =Z.

REMARK 5.2. Suppose we start with a hyperdoctrine without comprehen-
sion, such as a tripos, apply Proposition 4.2.6 to obtain comprehension,
and then interpret Definition 5.1. In terms of the original hyperdoctrine,
the resulting notion of “set” is essentially a partial equivalence relation.
It is common in tripos theory and realizability to work directly with
partial equivalence relations. Instead, we divorce existence from equality,
incorporating the former into a comprehension operation on types.
This matches Bishop’s two-stage conception better, as well as common
mathematical practice (the construction of subsets is distinct from quotient
sets), and generalizes better to the affine context.

ExamPpLE 5.3. If our base theory has Leibniz—Lawvere equality types eq 4,
then every type A4 has a “minimal” structure of a set, with equality eq ,.

NortaTioN 5.4. If 4 is a set and P is a predicate on its underlying type, we
implicitly give the comprehension {x : 4| P(x)} the same equality predicate
as A, making it again a set.

ExamPpLE 5.5. If 4 and B are sets, their cartesian product set is the product

. def
type 4 x B with ((x1, y1) = (x2,32)) = (x1 = x2) A (y1 = »2).

ExXaMPLE 5.6. The type of propositions Q is a set with (P = Q)<
(P <+ Q).

DEFINITION 5.7. A relation on a set A is a predicate P on its underlying
type such that

(X :y) /\P(X) I_x,y:A P(y)-

A relation is also called a subset of A, with x € P meaning P(x). We overload
notation by writing P as {x : 4|P(x)}, though a subset is not itself a set.

The relations on a given set are closed under all the logical operations. Put
differently, the subsets of a set are a sub-Heyting-algebra of the predicates

def

on its underlying type. We write UNV = {x : A|(x € U) A (x € V)} and
SO on.

DEFINITION 5.8. A function between two sets is an operation f : B4 such
that

|_x:A f(x) €
(x1 =x2) by (f ()

The function set is defined by
(4= B) ={f : B xi'xs . ((x1 = x2) = (f (1) = £ (x2)))}
(f =2) Evx.(f(x) = g(x)).

Note the notation: the operation type is B4, and the function set is 4 — B.

B
= f(xz)>-
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EXAMPLE 5.9. We can regard a predicate on 4 as an operation P : Q4 and
we have (x = y) A P(x) by 4 P(p) if and only if (x = y) by q (P(x) <
P(y)). Thus, a relation on A4 is the same as a function from A4 to the set Q
(Example 5.6), so we can define the power set of A as A4 = (4 — Q). Its
induced equality relationis (U = V) ZVx4.(x e U < x € V).

One final remark concerns the following alternative definition of
“function.”

DEFINITION 5.10. For sets 4, B, an anafunction'’ is a relation F on 4 x B
that is total and functional, 1.e., such that

l_)c:A HyB.F(X’ J/)
F(xa yl) /\F('xa yZ) l_x:A,y]:B,yzzB (yl :y2)

If /:A4— B is a function, then (f(x)= y) is an anafunction; the
principle of function comprehension (a.k.a. unique choice) says that every
anafunction is of this form. Function comprehension is not provable in
first-order logic, higher-order logic, or logic-enriched type theory, and indeed
fails in many triposes. Nevertheless, constructivists of Bishop’s school often
assume it implicitly (one can argue for it by positing a closer relationship
between “operations” and the existential quantifier than is implied by first-
order or higher-order logic).

In the absence of function comprehension, it is often preferable to use
anafunctions rather than functions. For instance, this is how one builds
the topos represented by a tripos (such as a realizability topos), and in
particular how one recovers the correct internal logic of a topos from its
tripos of subobjects.

§6. Affine sets and functions. We now switch to the affine context, for this
section and the rest of the paper, except when discussing the antithesis trans-
lation. In the definition of 2A-sets we find our first additive/multiplicative
bifurcation.

DEFINITION 6.1. A set is a type with a predicate = on 4 x A such that
Fea X=X
X=p bayu y=EX

(x=y)R(y=z) Fryzax =z

A set is strong if it satisfies the stronger transitivity axiom

(X = J’) M (y = Z) l_x.yﬁz:A X =z
ExamPLE 6.2. Asin the intuitionistic case, if our first-order affine logic has
Leibniz-Lawvere equality types eq 4 (Definition 4.3.1), then every type 4 has
a “minimal” structure of an 2-set, with equality eq ,. This is less useful than
in the intuitionistic case (Example 5.3), however, since by Proposition 4.3.3
any such 2(-set has affirmative equality, while we are often interested in 2(-sets
with non-affirmative equality.

3This term is inspired by the “anafunctors™ of [32].
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NoTtATION 6.3. Recall that if P is an 2-predicate on an 2A-type A, we
write !{ x:A | P(x) } for the comprehension type. If 4 is given as a set, we

implicitly give !{ x : 4 | P(x) } the same equality predicate.

Under the antithesis translation, an 2-set is an J-type with fwo binary
predicates (=, #) such that

|_xxy:A _\((X :y)/\(x #y))

"x:A X =X

=) |_xxy:A y=x

7é Y I_xA,y:A Yy 7é X

(x_ ) ( = ) l_xﬁyfz:A X =1z
(X 7é ) (y = ) l_x.,yA,z:A X 7& Yy
(X 7é ) (X = y) l_x.yA,z:A y 7é Z.

The axioms involving only = say that (4, =) is an J-set, and the last two
axioms say that # is an J-relation (Definition 5.7) on 4 x A. Given this, the
first axiom is equivalent to -,.4, —(x # x). Thus we have:

THEOREM 6.4. Under the antithesis translation:

(i) An A-set is an J-set equipped with an inequality relation: a relation #
such that —(x # x) and (x # y) — (y # x) (i.e., it is irreflexive and
symmetric).

(ii) It is strong if and only if # is an apartness, i.e.., (x #z) — (x #

IV (y#2).
(iii) Its equality is affirmative if and only if # is denial: (x # y) =

—(x = ).
(iv) Its equality is refutative if and only if # is tight: —(x #y) =

(x = ).

ExaMPLE 6.5. If 4 and B are sets, their cartesian product set is the cartesian
product type 4 x B with

((x1.31) = (2. 2)) E (x1 = x2) 11 (31 = p2).

Under the antithesis translation, this yields the cartesian product of J-sets
with the disjunctive product inequality (or product apartness):

((x1.31) # (x2.32)) = (x1 # x2) V (31 # »2).

EXAMPLE 6.6. The tensor product set A X B has the same underlying type,
but with equalities combined multiplicatively:

(. p1) = (x2.2)) £ (x1 = x2) B (1 = p).
In the antithesis translation, thus yields the weaker inequality

(v 1) (2, 32)) Z (31 = x2) = (1 # y2) A (1 = p2) = (31 # x2)).

If A4 and B have affirmative equality, so does 4 X B, but 4 x B need not.
If 4 and B have strong or refutative equality, so does 4 x B, but AX B
need not.
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ExaMPLE 6.7. The type Q is a set with
def def

(P=0Q)=(PooQ)=(P—-0Q)M1(Q—P). (6.8)

In the antithesis translation, this yields

(P=0)=(P" < QAP < Q).
(P#Q)=(PTAQ)V(P AQOT).

We could also use X in (6.8), but using 1 yields a more useful # and has
better formal properties (see Example 6.14 and Section 8). In neither case
is the equality strong, nor is it affirmative nor refutative even if P and Q are
both one or the other.

REMARK 6.9. The notion of “strong set” is quite natural under the antithe-
sis translation, since apartness relations are well-studied in intuitionistic
constructive mathematics. However, to a reader familiar with linear logic
(and particularly with linear proof theory), the M-transitivity of a strong set
may seem unreasonably strong. An assumption of (x = y) M (y = z) means
that we can choose to use either x = y or y = z but not both, so how could
we ever hope to prove x = z?

In fact, however, there are many sets that can be proven to be strong inside
affine logic. The key is that we don’t have to start by deciding which of x = y
and y = z to use: we can decompose X, y, and z and use the definition of
= to make case distinctions, and then make different choices of x = y and
y = z in different cases.

A paradigmatic example is the natural numbers N, for which we define
equality recursively in the usual way:

(0=0)=T, O=y+1)=L1.
(x+12y+D=E(x=y). (x+1=0)=1L
We prove (x = )M (y =z) Fyy-n (x = z) by induction on x, y,z. The
case when x and z are both O is trivial. If x 1s 0 but z is a successor, then
either y is 0, in which case we can use y = z to get a contradiction, or y is a
successor, in which we can use x = y to get a contradiction. The case when
x is a successor and z is 0 is symmetric. Finally, if xis x’ + 1 and zis z/ + 1,
then if y is 0 we can use either x = y or y = z to get a contradiction, while
if y is a successor y’ + 1 then our goal reduces to the inductive hypothesis
(x/ = yl) r (y/ = Z/) I_x’.yﬁ,z/:N (x/ = Zl)-
We now move on to discuss 2-relations and subsets.
DEFINITION 6.10. A relation on a set A4 is a predicate P such that
(X = )/) X P(X) l_x,y:A P(y)-
A relation is strong if

(X = y) I_IP(X) |_x.y:A P<y)-

We also refer to a relation as a subset, writing x = P instead of P(x), and
[x:4|P(x)] for Pitself. (Unlike in the intuitionistic case, we distinguish
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this notationally from a comprehension !{ x : 4 | P(x) }. since the latter
discards refutational information.)

THEOREM 6.11. Let U be an A-subset of an A-set A. In the antithesis
translation:

(i) Uis a complemented subset as in [10. Chapter 3. Definition 2.2): a pair
of J-subsets (U X)) of A such that

(x e UYN(y €H) Fypu (x # ).
(ii) It is strong if and only if ¥ is strongly extensional (also called #-open):

(J’Gm l_x.y:A (X#J’)V(XE,U).

Proor. Thesubset condition (x = y) X (x EU) by ,.4 (v E U) becomes

(x = J’) A (X € U) l_x.y:A (y € U)a
(x:J’)/\(yem l_x.y:A (xerl)a
(XG U)/\(y Gm I_x.y:A (x#y)'

The first two say that U and ¥ are J-subsets, and the last is the “strong
disjointness” condition in (i). The “strong extensionality” condition in (ii)
is exactly the contrapositive information arising from the strong subset
condition. =

DEFINITION 6.12. A function between two sets is an operation f : B such
that

(x1 = x2) Foua (f(0) = f(x)).
The function set is defined by

(4= B) = /B Mg (v = x2) — (f(x) = ()
(f =g) =TI (x) = g(x)),

THEOREM 6.13. In the antithesis translation, an A-function f : A — B isan
J-function that is strongly extensional, i.e., (f(x1) # f(x2)) Fxyxpa (X1 #
X2). The inequality on A — B is (f # g) = Ix1.(f(x) # g(x)).

EXAMPLE 6.14. We have (x = y) X P(x) F P(y) iff (x = y) F (P(x) —
P(y)), and symmetry of = then implies (x = y)F (P(x) — P(y)) T
(P(y) — P(x)),i.e.. (x =y)F (P(x) oo P(y)). Therefore, relations on A
are the same as functions from 4 to the set Q from Example 6.7. (Note that
this requires the M in (6.8).) Thus we can define the power set of A to be

def

PA = (A — Q). Its induced equality is
(U=V)Ex?((x EU) oo (x EV)).
In the antithesis translation, we have

def

(U#V)ERXA(x e UAxe)V(xeTAxeV)).
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ExaMPLE 6.15. In the antithesis translation, an 2-function f : 4 X B —
C must be strongly extensional for the disjunctive product inequal-

ity, (f(x1.31) # f(x2.32)) F (x1 # x2) V (31 # y2). By contrast, an 2-
function f : 4 X B — C need only be strongly extensional in each variable

separately: (f (x.y1) # f(x.32)) F (1 # y2) and (f (x1.p) # f(x2.¥)) F

(x1 # x»). Both are useful notions; see Example 7.8.

EXAMPLE 6.16. In particular, functions from Bto 4 = (4 — Q) classify
subsetsnot of 4 x B, but of 4 X B.In the antithesis translation, an 2(-subset
of AX B is a pair of J-subsets U ¥ C A4 x B such that

(x.y1) € U) A ((x.y2) € F) F (y1 # »2).
(x1.¥) € U) A ((x2.y) € ¥) F (x1 # x2).

whereas an 2A-subset of 4 x B satisfies the stronger condition

((x1.y1) € U) A ((x2.2) € B) F (x1 # x2) V (31 # »2).

The A-relations on an 2A-set are closed under the additive connectives, as
well as linear negation. This defines the additive operations of set algebra:

Unv=[x|xetU)nxeV)], UuV=[x|xel)uxeV)].
|—|l.Ul-:[[x||_|i.(xEUi)]], I_liUiZ[[xH_li.(xEUi)]],
vt =[x|(xeU)"]. g=[x|L].

Here the index i in [ ], and |_|; belongs to some type 7, while U is a predicate
on I x A that respects the equality of 4. In particular, it might be the case
that 7 is itself an 2A-set and U is a predicate on / x 4 or I X A.

We write U C V' to mean [|x4.((x EU) — (x EV)); in the antithesis
translation this means that U C V' and J~ C ¥/. Since [ | commutes with
M, we have (U =V)=(UC V)N (V C U)). By duality, U Z V means
| [x4.((x EU) R (x#ZV)).

Like linear negation, the complement of 2-subsets is involutive (U++ =
U) but not Boolean: U U U+ = 4 and U M U+ = ¢ both assert that U is
decidable.

LEMMA 6.17. In the antithesis translation, an A-subset is nonempty, i.e.,
U, if and only if its affirmative part is J-inhabited, i.e., 3x*.(x € U).

Proor. The definition of inequality on 24 gives
(U2d)" £ Ix.((xeUnxeAd)VixedDAxe)=Tx.(x e U). -

Multiplicatives and exponentials do not generally preserve subsets, but
they do induce operations on subsets by a reflection or coreflection process:

def

UKV < xi A=) ROGEU)RGEV))].
USVE[x: A ((x=y) = (re)SEV)],
v< x:A| A=y Ry EV))].

)

def

'y & x:A | ((x=y) =2y EU
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The poset of subsets of 4 thereby becomes semicartesian and *-autonomous
with a Seely comonad. In particular, as a replacement for the false equalities
UU UL =4 and UNU* = ¢ we have the true ones Ud UL =4 and
UK UL = 7, and the !-coalgebras form a “Heyting algebra of affirmative
subsets.” In the antithesis translation, | U is the affirmative part of U with
its inequality complement:

(xelNZ(xet) (ef)ENA((yet)—(x#£y).
Thus an “affirmative subset” (i.e., U = 1U) is determined by an ordinary
J-subset.

REMARK 6.18. If 2Set denotes the category of A-sets and functions,'*
we have constructed a pseudofunctor P : 2ASet°® — Aff, which is in fact
an affine hyperdoctrine—although, as suggested in Remark 4.1.4, we are
generally more interested in quantifiers for the projections 4 X B — A4 than
A x B — A. This affine hyperdoctrine over 2ASet seems analogous to the
“tripos-to-topos” construction [24] in intuitionistic logic, but it differs in
two important ways.

Firstly, it is unclear whether the relations on an 2(-set 4 can be recovered
from the category 2ASet as any sort of “subobject.” Proposition 4.2.5 is
discouraging in this regard. Secondly, it is unclear whether the equality
relation on an 2A-set A admits any characterization in terms of this
hyperdoctrine over 2Set: it cannot be the Leibniz—Lawvere equality, since
by Proposition 4.3.3 the latter is affirmative.

For these reasons, we will continue to work Bishop-style, with 2A-sets
defined to be types equipped with an equality predicate. However, it seems
possible that this affine hyperdoctrine over 2Set might shed some semantic
light on the question of affine type dependency (see Remark 4.4.3).

Finally, we note that unique existence and “anafunctions” (see Defini-
tion 5.10) also behave sensibly. Recall that classically we can express “there
is at most one x with P(x)” either as “for all x, y. if P(x) and P(y). then
x = y” or “there do not exist x, y with x # y such that P(x) and P(y).”
Intuitionistically these are no longer equivalent (unless # is tight), and only
the former is “correct.” But linearly they are again equivalent:

Mo (PO BPG) — (v =) = (L (x20) BP0 B P())

In the antithesis translation, these statements yield the “correct” intuition-
istic version augmented by a strong uniqueness “if x # y and P(x). then
P(y).” An even stronger sort of uniqueness would arise from the strong
linear condition

[Mxy.((P(x) M P(y)) — (x = y)).

14Strictly speaking we should either quotient these functions by pointwise equality or
consider 2ASet to be some sort of “e-category,” but we will not delve into these waters.
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which in the antithesis translation yields “if x # y. then either P(x) or

F(r).”

DEerINITION 6.19. For 2(-sets A, B, an anafunction from A4 to Bis a relation
F on A X B that is total and functional, i.e., such that

Fra LIyB.F(x.p)
Fx,y1)) XF(x.p2) Fray:ys (1= 12).

THEOREM 6.20. In the antithesis translation, an A-anafunction from A to
B corresponds to an J-anafunction that is “strongly extensional” in the sense
that

F(x1,p1) A F(x2.32) A1 # 32) Fxyooridn s (X1 7 Xx2).

PrROOF. An 2-anafunction consists of two J-relations F, ¥ on A x B such

that
l_x:A.y:B _'<F(xay) /\/F/(va))
F(x.y)) ANF(x,92) bFxappymn (V1 7 2)
F(x1.y) ANF(x2.9) Fapdvrays (x1# x2)
|_x:A EIyB'F(xa J’)
I_x:A ﬂVJ’B-F(Xa y)

Fx,py1))NF(x,92) Fraypys (V1 =12)
F(x»yl) A (J/1 # J/2) x:A.y1:B.y2:B F(x,yz)-

The fourth and sixth axioms say that F is an J-anafunction. Given this,
the second and seventh say ¥(x, y2) = 3yZ.(F(x.y1) A (1 # »2)). which
implies the first and fifth, and unravels the third to the claimed strong
extensionality property. o

T

A function is strongly extensional just when its corresponding anafunction
is. Thus, a function comprehension principle is equally sensible affinely as
intuitionistically, and in its absence we can once again work with anafunc-
tions instead. Moreover, Theorem 6.20 implies that function comprehension
is preserved by the antithesis construction: if an intuitionistic hyperdoctrine
P satisfies function comprehension, so does the affine hyperdoctrine P-..

§7. Algebra. Roughly speaking, there are two approaches to intuitionistic
constructive algebra. The first uses apartness only minimally; inequality
usually means denial —(x = y) and is avoided as much as possible. For
instance, apartness relations are absent from [26], and are only rarely
used in [35]. The second approach equips all sets with inequalities (often
tight apartnesses),'” and all classical definitions are augmented by “strong
negative” information such as anti-subgroups and anti-ideals. This is the
tradition of Heyting; see [50, Chapter §].

SRecall that for us, an inequality relation is irreflexive and symmetric, an apartness relation
additionally satisfies (x # z) - (x # y) V (y # z).andis tightif =(x # y) - (x = y).In[50]
an “apartness” is necessarily tight (otherwise they speak of a “pre-apartness”), and in [35] it
seems that no axioms are demanded in general of a relation called “inequality.”
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The second approach gives more refined information. For instance, the
real numbers are a field in the strong sense that any number apart from 0 is
invertible; but without apartness, all we can say is that they are a local ring
in which every noninvertible element is zero. However, carrying apartness
relations around is tedious and error-prone, and not every algebraic structure

admits a natural apartness:

We could demand that every set come with an inequality, putting
inequality on the same footing as equality...With such an approach,
whenever we construct a set we must put an inequality on it,
and we must check that our functions are strongly extensional.
This is cumbersome and easily forgotten, resulting in incomplete

constructions and incorrect proofs. [35, p. 31]

Moreover, rewriting all of algebra in “dual” form looks very unfamiliar to
the classical mathematician, and even a constructive mathematician may

find it unaesthetic.

The antithesis translation resolves this by automatically handling the
“bookkeeping” of apartness relations, allowing familiar-looking definitions
(written in affine logic) to nevertheless carry the correct constructive
meaning (when translated into intuitionistic logic). It also reveals the above
two approaches as ends of a continuum: J-sets with denial inequality are the
2A-sets with affirmative equality, while J-sets with a (tight) apartness are the
2A-sets with a (refutative) strong equality. There are also natural examples in

between; see Example 7.8.

DEFINITION 7.1. A group is an (2(-)set G together with an element ¢ : G

and functions m : G X G — G and i : G — G such that

Fvg  m(x,e) =x Fyg m(x,i(x

l_x:G m(e,x) =X I_x:G m(i(x),x)

Fryzg mm(x.p).z) = m(x.m(y.z)).
A group is strong if m is a function on G x G.

As usual, we write xy and x ! instead of m(x, y) and i (x).

Ile

[le

THEOREM 7.2. In the antithesis translation, an 2A-group consists of an

J-group equipped with an inequality relation such that

x! #* yfl Fxy:G X #,
Xu 7é XU I_>C.LL,1J:C? u 7é v,
Xu 7& yu l_x.y.u:G X 7é Y.

The extra condition for G to be strong is

(x” 7é y’l)) l_x.y.u,v:G (x 7& J/) \ (u 7& 'U)-/

which is equivalent to # being an apartness. In particular:

o An A-group with affirmative equality is precisely an J-group.
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o A strong A-group with refutative equality is precisely a group with
apartness relation in the sense of [50, Definition 8.2.2], i.e., an J-group
with a tight apartness for which the group operations are strongly
extensional.

o An arbitrary U-group is precisely an J-group with a (symmetric
irreflexive) translation invariant inequality as in [35, Exercise 11.2.5].

The fact that (7.3) is equivalent to # being an apartness is a standard
exercise in constructive algebra. In fact, it can be proven internally in affine
logic that an 2A-group is strong if and only if it has strong equality.

DEerINITION 7.4. A subgroup of a group G is a subset H C G such that
- (e EH)
(xEH)Fvg (xX'EH)
(xEH)X(yEH) bFyyo (xy EH).
A subgroup is strong if it satisfies the stronger condition
(xEH)N(yEH) Fyye (xy EH).
THEOREM 7.5. In the antithesis translation, an A-subgroup H of G is:

(i) An J-subgroup H of the J-subgroup G: together with
(ii) An J-subset H of G satisfying the following axioms:

(XGH) (yGH/)nyG(x#y),
(x1 e H)byeq (x € H).

(
(xye H)N(x € H) by 6 (v € H),
(xy e H)N(y € H) by yi6 (x € H).

Moreover:

o H is strong iff the last two axioms are replaced by the following stronger
one:

(xy Em |_x.,y:G (x €H7 \ (y EH)-

e An affirmative A-subgroup of an affirmative A-group is precisely an
J-subgroup of an J-group, together with its logical complement H «
{x € G|~(x € H)}.

o [If G is refutative and strong, then H is refutative and strong if and only if
H is an antisubgroup compatible with the apartness in the sense of [0,
Definition 8.2.4] together with its logical complement.

DEFINITION 7.6. An 2-subgroup H is normal if (x EH) - (yxy' EH).

In the antithesis translation, if H and G are affirmative then normality
reduces to ordinary normality, whereas if they are strong and refutative it
reduces to normality for an antisubgroup [50, Definition 8.2.7].
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THEOREM 7.7. Let H be a normal subgroup of G. Then (x =5 y) £ (xy ' £
H) defines a new equality predicate on the underlying type of G, and the
resulting set is again a group, denoted G/H .

Proor. The closure axioms of a subgroup directly imply the axioms of
an equality predicate. It remains to show that m and i are functions G/H X
G/H — G/H and G/H — G/H. For the first, we have

(xZpy)R(w=yz)=xy' EH)R (wz' EH)
F(xy'EH)R (ywz'y'EH)  (by normality)
F(xy lywzly T EH)
= ((xw)(yz)"' EH)
= (xw =y yz).

Similarly, for the second we have

(x =g y)=(y ' EHNF( Iy yEH)=( 'y EH)=(y " =5 x7). A

ExaMpLE 7.8. Let G = 2 be the set of infinite binary sequences, with
pointwise addition mod 2, and H = [x € G||_|m.[n.((m E n) —o (x, =
0))]. Then G is a strong group with refutative equality, while H is a normal
subgroup that is neither strong, affirmative, nor refutative. In the quotient
G/H we have

(62 0) = Um[n((m © ) — (x, 2 0).
(x2£0) =[m.| |n.((m En) K (x, = 1)).

That is, x = 0 if x is eventually 0, and x0 if x is 1 infinitely often. Neither
of these is the Heyting negation of the other, so G/H is neither affirmative
nor refutative. Similarly, G/H is not strong, so in the antithesis translation
its inequality is not an apartness and its multiplication is not strongly
extensional for the disjunctive product inequality, though it is for the weaker
equality on G/H X G/H.

In [35, p. 31] this example is used to argue that not all sets should have
inequalities. From our perspective, it shows instead that not all groups
should be required to be strong.

A (commutative) ring is an abelian group (R, +,0) with a multiplication
function - : RX R — R and unit 1 : R satisfying the usual axioms; it is
strong if both 4+ and - are defined on R x R. In the antithesis translation:

¢ An affirmative -ring is an ordinary J-ring.

o A strong refutative -ring is a ring with apartness as in [50, Definition
8.3.1] (except that they also assume 0 # 1).

e A general -ring is an J-ring with an inequality such that (x # y) <
(x =y #0)and (xy #0) = (y #0).

An ideal is an additive subgroup J with (x £J)  (xy £J). In the antithesis
translation, in the affirmative case this is an ordinary J-ideal, while in the
strong refutative case it is an anti-ideal [50, Definition 8.3.6]: an additive
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antisubgroup J with (xy € J) — (x € /) A (y € /). The quotient R/J of
an -ring by an ideal is straightforward, and its antithesis translation yields
the apartness on the quotient of an apartness ring by the complement of an
anti-ideal [50, Proposition 8.3.8].

DerINITION 7.9. Let J be an ideal of the 2-ring R that is proper, i.e.,
1£J.

o JisU-primeif (xy EJ)F(xEJ)U(y EJ).
o Jis®-primeif (xy EJ)F(xEJ) S (y EJ).
e Ris Ll-integral if (0) is proper and Li-prime.
e Ris $-integral if (0) is proper and $>-prime.

If J is proper, then R/J is L-integral or <-integral exactly when J is
LI-prime or $-prime, respectively. In the antithesis translation:

e A U-prime affirmative 2-ideal in an affirmative -ring is a proper J-
ideal such that (xy € J) - (x € J) V (y € J). An affirmative -ring is
U-integral if =(0 =1) and (xy =0) - (x =0) vV (y = 0): this is [26.
axiom I1].

e Similarly, an affirmative A-ring is $-integral if it satisfies =(0 = 1) and
[26, axiom 12]: (xy = 0) A =(x =0) — (y = 0).

e A &-prime strong refutative 2-ideal in a strong refutative 2A-ring is
an anti-ideal /' in an J-ring with apartness that is proper (1 € J) and
such that (x € /) A (y € J) - (xy €J). ie. a prime anti-ideal as in
[50, Proposition 8.3.10].

e Finally, an arbitrary 2(-ring is <-integral if and only if 1 # 0 and
we have (x #0) A (xy =0) — (y =0) and also (x £ 0) A (y #0) —
(xy # 0). Combined with the above characterization of -rings, this is
precisely an integral domain in the sense of [35, Exercise 11.2.7].

DerINiTION 7.10. Let J be a proper ideal of the 2-ring R.

o Jis U-maximal if Fy.g (x EJ)U||y.(1 - xy EJ).
o Jis -maximal if Fy.g (x EJ) & | |y.(1 -xy EJ).
e Ris a L-field if (0) is proper and LI-maximal.
e Risa $-field if (0) is proper and $-maximal.

We write inv(x) = | |y.(xy = 1) for “x is invertible”; this is the second
disjunct in (either kind of ) maximality for (0). The quotient R/J is a L-field
or $-field if and only if J is L-maximal or $>-maximal, respectively. In the
antithesis translation:

e An affirmative 2-ring is a L-field just when its corresponding J-ring
satisfies ~(0 = 1) and (x = 0) V inv(x). These are called discrete fields
(since they necessarily have decidable equality) or geometric fields [26.
axiom F1].

e A general 2-ring is a $-field just when its corresponding J-ring with
inequality satisfies 0 # 1 and (x # 0) — inv(x). This is precisely a field
as in [35] with # irreflexive (in [35] the zero ring is a “field” with

0+£0).
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e A $-field has strong refutative equality just when its J-ring has a tight
apartness; these are the Heyting fields of [35] and the fields of [50,
Definition 8.3.1].

e Strong refutative $-maximal 2(-ideals are the minimal anti-ideals of [50,
Definition 8.3.10].

e Finally, the affirmative 2-rings that are $-fields are the J-rings satisfying
—(1 =0) and =(x = 0) — inv(x), which is [26, axiom F2].

REMARK 7.11. The name “geometric field” arises because such fields are
the models of a geometric theory. However, antithesis translations of -
fields are also a geometric theory if we include the inequality # as part of
the theory. The apartness axiom for # is also geometric; only the tightness
axiom —(x # y) - (x = y) fails to be so.

In fact, writing a classical definition in affine logic and passing across
the antithesis translation often (though not always) produces a geometric
theory. It is a sort of refinement of the “Morleyization” (see, e.g.. [27.
D1.5.13]).

§8. Order. When equality is a defined relation, we can either introduce
order and topology as structures on a type which induce an equality, or
as structures on a set that might determine the equality by a “separation”
axiom. We prefer the former.

DEFINITION 8.1. A preorder on an 2-type A is a predicate C on A x A with
I_x:A (XEX) (XQ)/)&(J/ EZ) l_x,y.z:A (XEZ)-

e A preorder is strong if (x T y) M (y Ez) by g (x C 2).
o A linear order is a preorder such that by .4 (x C y) U (y C x).
e A total order is a preorder such that by .4 (x T y) & (y C x).

If 4 has a preorder, then (x = y) £ (x C y) 1 (y C x) makes 4 into a
set, and C is then a relation defined on 4 X 4. The sets-with-preorder we
obtain in this way are exactly the partial orders: sets with a preorder such
that C is a relation on 4 X 4 and is M-antisymmetric, i.e.. (x T y) M (y E
X) l_x,y:A (X = y)

ExampLE 8.2. The equality on Q from Example 6.7 is induced in this way
from the natural preorder (P C Q) £ (P — Q).

In the antithesis translation, an 2(-partial-order contains two relations <
and £, but it is often more suggestive to write x < y instead of y£x.

THEOREM 8.3. In the antithesis translation, a partial order on an A-set A
consists of two J-relations < and < such that

(Xﬁy)/\(J/SZ) l_xyz:A (X<Z)
(XSJ’)/\(J/ SX) I_xyA (X—y)
(X<J’>/\(y§2) l_xyz:A (X<Z)
(x <A <z)Fapzu (x<2)
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(X<y) }_x.y:A (X #y)
(x #y) ey (x<y)V(y<x)).

That is, < is an J-partial-order, < is a “bimodule” over it, and for x,y : A we
have (x # y) = ((x < y) V (y < x)). Moreover, the A-partial-order is...

e ...strong if and only if < is cotransitive: (x < z)F (x < y)V (y < z).
e ..linear if and only if (x < y) — (x < y) (hence < is transitive).
o ...total if and only if < is total, (x < y) V (y < x).

Such “order pairs” appear often in constructive mathematics, but the only
abstract such definition I know of was in the Lean 2 proof assistant.'® Often
either < or < is the other’s negation (i.e.. C is affirmative or refutative), but
not always:

ExaMpLE 8.4. Conway’s surreal numbers [16] are defined in classical
logic by:

— If L,R are any two sets of numbers, and no member of L is >
any member of R, then there is a number {L|R}. All numbers are
constructed in this way.

— x> yiff (no x® < y and x < no yt).

(For x = {L|R}, x* and x® denote typical members of L or R respectively.)
Leaving aside the problematic inductive nature of this definition, we can
write it affinely as

(yCx) & (LR GRep) Uyt 2 yh)t
=Ry cx®) n yhof cx).
where [ is its negation
xCyE@Cx) = xRGREy) u Lh(xCyh).

In the antithesis translation, this yields a simultaneous inductive definition
of < and <, neither of which is the Heyting negation of the other; see [18§]
and [52, Section 11.6]. Omitting R yields the plump ordinals (see [47] and
[52, Example 11.17]).

Recall that classically, if < is a total order we can define x < y by =(y < x)
or by (x < y)A(x # y). and recover x < y as ~(y < x) oras (x = y) V
(x < y). For an “order pair” as in Theorem 8.3 that is linear, the former
holds, but the latter generally fails. However, in affine logic we can say:

THEOREM 8.5. Let T be a refutative linear order, and write (x T y) £

(y T x)*. Then we have
(xCy)=(xEy) K (x#y). (8.6)
(xCy)=x=p)d(xCy). (8.7)

16 ttps://github.com/leanprover/lean2/blob/master/library/algebra/order.lean#L102;
it was removed in Lean 3. I am indebted to Floris van Doorn for pointing this out.

https://doi.org/10.1017/bs|.2022.28 Published online by Cambridge University Press


https://github.com/leanprover/lean2/blob/master/library/algebra/order.lean#L102
https://doi.org/10.1017/bsl.2022.28

AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS 369

Proor. For any partial order we have

(x Ey) X (x#y)

(xEp)R((xCy)n(
=(xCy)R(xCy U
= (xCYREC Y U((x Sy R(yCx)b)

1

This certainly implies x C y. Conversely, linearity of C means (x T y) -
(x C y). while refutativity implies (x C y) - ((x £ y) ¥ (x C y)), so that
(x C y) implies (x C y) X (x C y). This gives (8.6), while (8.7) is simply its
De Morgan dual. —|

Thus, while the constructive < does not mean “less than or equal to,” at
least in some cases (such as R; see Section 9) it does mean “less than par
equal to” (or perhaps, as suggested in Remark 3.8, “less than unless equal
to” or “less than or else equal to”).

REMARK 8.8. In classical and intuitionistic mathematics, preorders can be
identified with thin categories: categories in which there is at most one arrow
with any given domain and codomain. The situation is a bit more subtle
in affine logic, and depends on choosing a correct definition of “category.”
Since in general we do not compare objects of a category for “equality,” the
objects of a category should form only a type rather than a set. Similarly,
since we only compare arrows for equality if they are known to have the
same domain and codomain, rather than a single 2(-set of arrows we should
have a collection of such sets homg(x, y) indexed by pairs of objects x, y.
(This requires our theory to have dependent types.)

Now an 2-set A in which “all elements are equal” carries no more
information than the proposition | |x#.T, which is affirmative. Thus, a
“thin category” consists of a type together with an affirmative binary
relation | |x"om«(x») T that is transitive and reflexive. and hence coincides
with an affirmative preorder. In general, therefore, whenever preorders are
being treated like categories (for instance, when they are equipped with
Grothendieck topologies to define sheaf toposes), they should be assumed
affirmative.

§9. Real analysis. Recall from Remark 6.9 that the natural numbers type
N is a strong set. In fact it is a strong total order, with order relation defined
recursively:

def def

OCnET W+1COEL +1Cm+1)ZEmCTm).

def

The integers Z are the type N x N with ((a.b) C (¢.d)) = (a +d T b +¢).
and the rational numbers Q are Z x Nwith ((x, y) C (w.v)) £ (x - (v + 1) C
u-(y+1)). These total orders are affirmative, refutative, strong, and
decidable, as are the induced equalities (x = y) £ ((x T y) M (y C x)). In

the antithesis translation, they yield the usual posets of numbers.
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We define addition and multiplication by recursion on N, and then by
the usual formulas on Z and QQ, making Z a Ll-integral strong ring and Q a
strong LI-field.

DErFINITION 9.1. The Cauchy real numbers are the partially ordered 2A-set

ch!{x:QN||_|nm.|xnfxmlgn+rl+ﬁ},
(x T y) E[Mn. (% Ty + 5237).
(x 2 ) E((xCy) Ny Tx)=[nlxw =yl T 325
The set R, is a strong linear order and a strong ring that is a $-field.

THEOREM 9.2. In the antithesis translation, the -set R, is the usual such
J-set with its usual linear order and induced equality and apartness.

The Dedekind real numbers are a little more surprising. We first note that,
just as in classical logic (but not intuitionistic logic), the notion of “one-
sided cut” in affine logic doesn’t depend on the side, or whether the cuts are
open or closed.

DEerINITION 9.3. Let L C Q.

o Lisalowersetif[Jrs.(((s EL)X (r Cs)) —o (r EL)).
o Lisupwards-openif[|r.((r eL) — | Js.((r C s) X (s EL))).
o L is upwards-closed if [ 1s.(([Tr.((r Cs) — (r EL))) —o (s EL)).

Dually, we have upper sets, downwards-open, and downwards-closed.
THEOREM 9.4. The following -sets are isomorphic:

W L =2Q | L is an upwards-open lower set }

L E2Q| L is an upwards-closed lower set }
U e 2Q| U is a downwards-open upper set }
HUe2Q| U is a downwards-closed upper set } .

ProOOF. The isomorphisms are:

def

LE[seQ|[((rcs)— (rel)] U=
le,d:[[rEQ‘Us(rEs SEL)]] U=ET
Ug[[rEQ|ﬂs(rEs) (SEU))]] L—Ul
UE[seQ|Ur(rcs)R(re0))] LETL. .

DErFINITION 9.5. We write C for any of the sets in Theorem 9.4, and we call
its elements cuts.

We give C the partial order induced from containment of lower sets. Thus,
if we write x, Xz, X, xg for the four representations of x £ C, we have

(yv C xv) (yT C x7).

(xCy (xi C yi) =
(x T (xo Zyo) = (xUuZyv).

) =
xCy) = (i ¥%xi)

111
Sl
NI
=

s
[l
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Using totality of the order on QQ, we can show that this order on C is linear. If
we identify r £Q with the cut r; = [¢ EQ | ¢ C r ]. then Q is fully order-
embedded in C, and moreover for any x £C and r £ Q we have

rcx)=(exy), Cr)=0Eex).
(rCx)=(rexg). (xCr)=(r exp).

Thus, we can define a cut x by specifying any one of the relations (- x).
(-C x). (x ). and (x C-) on Q which has the appropriate property. This is
usually more congenial than working explicitly with upper or lower subsets
of Q.

In intuitionistic logic, it is common to work with two-sided cuts instead.
But because an 2A-subset is a complemented J-subset, in the antithesis
translation our one-sided 2(-cuts become two-sided J-cuts.

THEOREM 9.6. In the antithesis translation, C corresponds to the set of pairs
(L, U) of J-subsets of Q such that L is an upwards-open lower set, U is a
downwards-open upper set, and L < U. Its induced order is

(L1. 1) < (L. Uy)) = (L1 € L) A (U> € UY)).
(L. U1) < (L. Uy)) = 3r.((r € L) A (r € Uy)).

PrOOF. By Theorem 6.11, an element of Z2Q is a disjoint pair (L. Z) of
subsets of Q. To say that it is an 2(-lower-set means that L is an J-lower-set
and X is an J-upper-set. Given this, disjointness is equivalent to L < Z. And
to say that it is 2-upwards-open means that L is J-upwards-open and Z is
J-downwards-closed. Finally, the bijection between open and closed upper
cuts (or, dually, lower ones) is also true intuitionistically:

UZ{s|3r.((r<s)A(rek))} FE{rs.((r<s)—(seU)} o

The J-set of pairs (L,U) in Theorem 9.6 is also called the set of
(rational ) cuts [43]. or sometimes the interval domain. It is distinct from
R even classically, containing additionally all closed intervals [a, b] for
—o<a<b< oo

DEFINITION 9.7. The Dedekind real numbers R, are the 2A-set of x : C
with

o boundedness: | |q%.(q C x) X | |¢%.(x T q).
o Ll-locatedness: [r2sQ.((rCs) — ((rCx) U (x C 5))).

All cuts are “®-located.” (r = s) — ((r © x) @ (x C s)). by $-excluded-
middle. In the antithesis translation, R, is the usual set of Dedekind reals.

REMARK 9.8. Aswe did for Nin Remark 6.9, we can prove entirely in affine
logic that the real numbers form a strong set. Suppose (x C y) M (y C z): to
show x C z we assume r : Q with » C x and must prove » C z. Now there is
ans : Qwithr C s C x. and since y is U-located we have (r = y) U (y C s).
Doing a case split on this, if  C y we use y C z to conclude r C z, while if
y C s weuse x C y to conclude x C s, a contradiction.
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Now, there are at least two natural ways to define addition on C:
xEyC ) ZIr%%U(g2r+9)R(xCr)R(yCs)).
(qexay) | Ju2%(g=u+v)Ruc x)R (v y).

If x,y: Ry, one can prove that x @y = x By, and in the antithesis
translation they give the usual addition on Dedekind reals:

(x4+y<q)ZTrs.((g=r+s)AN(x<r)A(y<s)), (9.9)

(g<x+»)ZTrs.((g=r+s)AFr<x)A(s<p)). (9.10)

However, for cuts, B and B are distinct. In the antithesis translation, with +
for J-cuts defined using (9.9) and (9.10), wehave (x By < q) = (x + y < ¢q),
but ¢ < x Ay is weaker than ¢ < x + y. One place where this matters is in
defining metric spaces.

DEFINITION 9.11. A cut-metric on an A-type X is an operation d : C¥*¥

with
l_x,y:X OEd( )
I_xX ( ) =
'_vcy Xd(x Z) Ed(x )’)Ed(% )

For any cut-metric, (x C y) = (d(x, y) = 0) defines a preorder. If d is
symmetric, this is already an equality making X a set; otherwise we can
symmetrize it as in Section 8. (We can also symmetrize d directly with
d'(x,y) Esup(d(x,y).d(y,x)).) If X is already a set and d a function,
the usual metric separation condition (d(x,y) = 0) - (x = y) makes its
equality coincide with that obtained in this way.

In particular, if d (x, y) : R, for all x, y, then the antithesis translation of
X is an J-quasi-metric space, and an J-metric space if we impose symmetry.

Now suppose X is a cut-metric space and we have ¢ EX and B C X. As
observed intuitionistically in [43], C is a complete lattice (which Ry is not,
constructively'’); thus we can define the distance from a to B as an infimum:

d(a.B) =infyzpd(a.b).

Rather than defining infima in 2(-posets in general, we simply make this
explicit:

(d(a.B) C

def

q) ELb*.((b EB)KR (d(a.b) T q)).
(g Sd(a.B)) =[*.((b EB) — (¢ C d(a.b))).
(g = d(a.B) =r((g C r)R[P*.((b EB) — (r T d(a.b)))).

Even if each d(a,b) is a Dedekind real, d(a, B) may not be. But the
observation of Richman [43] is that if we treat d(a, B) as a cut, then its

"The “strongly monotonic cuts” or “MacNeille reals” are also a complete lattice, but
their meets and joins involve double-negation, making them less useful than those of C; see
[43. Section 3].
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inequality relations to rational (hence also real) numbers are exactly what
we would expect of such a “distance.” In the antithesis translation, these
become:

(d(a.B) < q) =3b".((b € B) A (d(a.b) < q)).

(¢ <d(a.B))=Vb".(((b € B) = (¢ <d(a.b))) A((d(a.b) < q) = (b eB))).
If B is affirmative, ¢ < d(a. B) becomes Richman’s V68 .(¢ < d(a,b)). We
also have
(d(a.B) C d(a.B"))

=g-((d(a. B) C q) — (d(a. B) C q))
=[g.( (le'X~((b EB)X(d(a.b') C q))) — LIp*.(b EB)R (d(a.b) T q)))
=gW"*.((0" EB) R (d(a.b") © ¢)) — 6™ .((b EB) R (d(a.b) T q))).
At least in the Dedekind-real case, we can then write € el qg—d(a.b") to get
MNe P’ *.( EB) — | |p¥.((h EB)X (d(a.b) C d(a.b') +¢€)))
whose antithesis translation, when B, B’ are affirmative, reduces to Rich-
man’s:

(d(a. B) < d(a.B') = VeNb'* .((b" € B') = 36" .((b € B) A (d(a.b) < d(a.b') +¢))).
Still following [43]. we can define the (directed ) Hausdorff distance between
two subsets 4, B C X as

d(4.B) < supa,:Ad(a B) = sup, 4 inf,z=p d(a.b).

(d(4.B) T q) = Ud' (¢’ C ) BMa™.((a E4) — [Ub*.(b EB)R (d(a.b) T ¢')))).
However, unlike Richman, we can show:

THEOREM 9.12. The Hausdorff distance is a cut-metric on X .

Proor. The proof of the triangle inequality is essentially the same as
that of its “upper portion” in [43, Section 6]. We must show if d (4, B) &
d(B,C) C ¢ then d(4, C) C ¢. By definition of 8, we have |_|rs.((¢ = r +
s)X(d(4,B)Cr)X(d(B.C)Cs)). Now d(A,B) Cr and d(B.C)C s
yield ¥’ C r and s’ s such that

Ma®.((a EA4) — | p*.(b EB)R (d(a.b) T 1)),
Y .((b EB) — Uc*.((c EC)R(d(b.c) T 5))).
Thus, for any a EA4 we get b £ B with d(a,b) C ¢, then from b we get
)

¢ ECwithd(b,c) C s’.Henced(a,c) T d(a.b Ed(b c)Cr'+s' Cq.s0
that d(4.C) C gq. -

In [43, Section 6] Richman notes that the cut-valued Hausdorff distance
fails the triangle inequality if addition of cuts is defined by (9.9) and (9.10).
He concludes that one should forget the “lower cut” part of the Hausdorff
distance. We conclude instead that the relevant addition of cuts is @, not
(9.9) and (9.10). Indeed. (9.9) and (9.10) are suspect right away, as it is
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not even clear whether they can be obtained simultaneously as the antithesis
translation of any single definition of addition for 2-cuts.

The other example in [43, Section 6] where cuts seem to have problems can
also be resolved with affine logic. Suppose (intuitionistically) 4 is an abelian
group and p a prime with (), p"4 = 0.1.e.. (Vn.3c.(a = p"c)) Fuea (a = 0).
Define

la| Zinf{p™|a € p"A} = inf{p™"|3c.(a = p"c)}.

In classical mathematics, this defines an “ultranorm.” i.e., |a + b| <
sup(|al.,|b|). Intuitionistically, if we interpret |a| as a cut and sup as the
binary supremum (the union of lower parts and intersection of upper parts),
then the upper part of |a + b| < sup(|al, |b|) holds but the lower part can
fail.

Our solution is to replace this “additive” binary supremum with a
multiplicative one. Returning to affine logic, for cuts x, y we define

E]

s

(sup®(x.y)C ) E(x T @) R (y T q).

Now let 4 be an abelian 2-group and ([n.|_|c?.(a = p"c)) Fueq (a = 0),
and define

“int [x | Ln((x = p ") B Lea = ") ]

I claim that then we have |@ + b| C sup®(|a/. |b|). This is again just like the
“upper part” proof from [43]:if |a| C p™ and |b| C p", then a = p"c and
b = p"d for some ¢,d, so thata +b = p"(c¢ + d) and hence |a + b| C p™.
So in both cases, it is not that cuts are inadequate, but that the operations on
cuts sometimes need to use multiplicative connectives rather than additive
ones.

la

REMARK 9.13. Another problematic area of analysis for constructive
mathematics is the theory of measure spaces. Already in [10] complemented
subsets were used as the domain for a constructive measure, and [8]
formulates an abstract notion of measurable space based on a Chu
construction like ours. This suggests that affine logic would also be a natural
context for constructive measure theory.

REMARK 9.14. We end this section with an example where proof-relevance
matters. An J-sequence of real (or rational) numbers is Cauchy if

Ve dkNnm.(n >k Am >k — |x, — x| <e€). (9.15)
and diverges [10, Section 2.3] if
JeVkInm.(n >k Am >k A|x, — xp| > €). (9.16)

These are formal De Morgan duals, so if we define Cauchy-ness of an
2A-sequence by

MNe.Llk.[nm.(n > k®m >k —o |x, — x| C &), (9.17)

then its linear negation is divergence.
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However, in the absence of countable choice, it is often better to consider
a Cauchy sequence as coming with a function K., and Bishop presumably
understands a divergent sequence to come with functions N, M. But if
we write out the assertions of such functions by hand, the corresponding
formulas

JKVeNnm.(n > K. A'm > K, — |x, — x| <€), (9.18)

e ANMYK.(Ne > k A My >k A|xy, — x| > €) (9.19)

are no longer De Morgan duals. Godel’s “Dialectica” interpretation [20, 23,
40, 41] automatically does this sort of “Skolemization.” so that (9.15) and
(9.16) would be interpreted as (9.18) and (9.19) respectively: but this doesn’t
solve the problem that the two pairs are not each other’s negations.

Instead, we can write (9.15) and (9.16) using the propositions-as-types
interpretation into dependent type theory. This gives

IL>, ]_[n’m(n>k/\m>k—> |xXp — Xm| <€), (9.20)

S Tl X pm(n >k Am >k Ax, — x| >e). (9.21)

which include the Skolem functions automatically, due to the “type-
theoretic axiom of choice” [T, >, 5 C(x.y) = 3", 5[, C(x. f(x)).
Moreover, (9.20) and (9.21) are still De Morgan duals with respect to
¥ and II. Therefore, we can obtain them from the antithesis translation
of (9.17) applied to the propositions-as-types hyperdoctrine mentioned in
Examples 4.1.3.

§10. Topology. Finally, we consider point-set topologies. There are
many classically equivalent ways to define a topology; first we consider
neighborhood relations.

Note that the preorder (U C V) Z[x*.(x EU) — (x EV)) on Q4
makes sense even if 4 is only a type, making Q4 into a set.

DEFINITION 10.1. A topology on a type A is a predicate E on A x Q4 with

(xEU) F (xEU) (reflexivity)
xEU)RWUCYV) - (xEV) (isotony)
F (xEA) (nullary additivity)
xEURKXxEV) F (xEUNYV) (binary additivity)
(xgU) v (xE[y|yEU]) (transitivity).

Isotony implies each (x E-) is a relation on the set Q4. We define
a preorder on A4 by (x Cy) E[|U((y E U) — (x E U)). making 4
into a set as well, such that E is a relation on 4 X Q4. Moreover,
an arbitrary predicate U : Q4 is contained in a smallest relation U<
[xeA]|[y?.((x=y)RU(y))]. and by definition of equality on A we

have (x E U) oo (x E U). Thus, E is determined by its behavior on subsets,
so we may consider it to be a relation on 4 X FA. If we instead assume 4
is given as a set and [E as a relation on 4 X Z4, then to ensure that the
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equality coincides with the one constructed above we must impose the 7
axiom

[MU((x EU) oo (y EV)) & (x = p).

Now a relation on 4 X #A4 is equivalently a function int : 24 — PA,
and Definition 10.1 translates into an affine version of an “interior
operator”:

(i) int(U) C U,

(i) (UCV)— (int(U) Cint(V)),
(i) int(4) = A,

(iv) int(U) ®int(V) Cint(U N V),
(v) int(int(U)) = int(U)

plus the following form of the 7, axiom:

(vi) (MU((x €int(U)) oo (y Eint(V)))) —o (x = y).
The most interesting of these axioms s (iv), which is a version of the classical
int(U)Nint(V) Cint(UN V) (10.2)

that uses an additive intersection on the right but a multiplicative one on the
left. This may look more surprising than the (equivalent) binary additivity
axiom for E in Definition 10.1, since in the latter X is a logical connective
while M s a set operation. However, the following example suggests that this
odd-looking mixture of additive and multiplicative intersections is exactly
right:

ExampLE 10.3. Any cut-metric space (Definition 9.11) has a topology
defined by

(xEU) = P [*.((d(x.y) Ee) — (y EV)).

To prove binary additivity, from (x € U) X (x E V') we can getey and ey,
and then choose ¢ & min(ey.ey) to prove x E (U M V). Note that here
we need to use both hypotheses at once, so they must be combined with X
rather than . We then have to show that given y with d(x, y) C € we have
yEUNV. ie,that (y EU)N(yEV). For yEU weuse d(x,y) Ce C
ey and the hypothesis from x E U, and dually. Note that here we need to
use the same hypothesis d(x, y) C € in proving both subgoals y £ U and
y E V, so they must be combined with M rather than X.

Axiom (iv) is further clarified by writing it in terms of cl(U)Z

(int(UL)":
dULV)C(U)®c(V). (10.4)

Since (—)L is involutive, in linear logic cl and int contain the same data. But
intuitionistically, “closure operators” do not respect unions: a point may lie
in the closure of U U V' without our being able to decide which of U or V
it lies in the closure of. Our (10.4) remedies this by taking one of the unions
to be multiplicative.
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On the other hand, classically and intuitionistically the converse of (10.2)
always holds, so (10.2) is equivalent to closure of the fixed points of int (the
open sets) under binary intersections. It is harder to express (iv) using “open
2A-subsets.”

We now move on to the antithesis translation of an 2-topology. This is
rather complicated, since not only does [E give rise to two relations, each
A-subset U is actually rwo (disjoint) J-subsets. We start with some familiar
special cases.

THEOREM 10.5. Under the antithesis translation, an A-topology such that
(xEU) F (xEU)X(xE!U)
corresponds exactly to a TyJI-topology on a type A. If we write x < U for the
J-relation “X is in the interior of U,” then the induced inequality on A is
(x££ EU(x < U)A=(y < U)VIU(-(x < U) A (y < U)).

ProoF. Theassumption implies that [E is determined by a single J-relation
< between points of 4 and J-subsets of 4. The axioms on [E then translate
to the usual definition of an J-topology in terms of a neighborhood relation.
Finally, our definition of equality in a topological space corresponds to the
T, axiom. =

If U is an J-subset of an J-set 4 with inequality £, we write
(x g U) =W (v € U) = (x # y)).

This is the same as saying that x belongs to the inequality complement of
U, i.e., x Z ! U in the antithesis translation.

THEOREM 10.6. Under the antithesis translation. an A-topology such that'®
xEU)F!(xEU) (10.7)
xEW)R!I(xeEU)F(xEU) (10.8)

corresponds to a point-set pre-apartness space satisfying the reverse Kol-
mogorov property in the sense of [11, p. 201."" i.e., an J-set with an inequality
# and a relation ><1 between points and J-subsets such that

(x>t K) - (x ¢ K) (10.9)

(x>t K)A(LCK)F (x> L) (10.10)
F(x><0) (10.11)

(x><t K)AN (x> L) (x><t KUL) (10.12)
Vx.((x><tK) - (x ¢ L)) FVx.((x><t K) = (x ><1 L)) (10.13)
(x> K)A=(y >t K) - (x # p). (10.14)

18 A simpler attempt at (10.8) would be (x E ?U) F (x E U). but that is inconsistent with
reflexivity at least in the antithesis translation, since ?(0,0) = (1,0).
[11] writes x ¢ K to mean —~(x € K): our x ¢ K is written there as x € ~K.
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and which also satisfies the additional “forwards Kolmogorov property” that

(x #y)F(xpa{y}) V(< {x}). (10.15)

ProOF. Since U C ?U, and x E U is affirmative by (10.7). the converse
of (10.8) also holds. Thus E is determined by its behavior on refutative
2-subsets, and hence by one J-relation between points and J-subsets.
We define (x >< K) £ (x E (-K. K)). But note that (—K,K) is not an
2A-subset, and as noted above [E is determined by its behavior on
A-subsets; thus x <1 K is also equivalent to x E ?(=K.K) = ({y|y ¢
K}, K). In particular, reflexivity of E implies (10.9).

Statements (10.10)—(10.12) are straightforward translations of 2l-isotony
and additivity. The direct translation of 2-transitivity is (x ><1 K) F (x ><
{y|=(y ><t K)}), which is equivalent to (10.13) and (10.14) together. Our
definition of equality yields

(x#y)=3IK(x>< K)A=(y <t K)) VIK.(~(x >t K) A (y <t K)).

However, if x ><1 K and —(y ><1 K), then y € {z|-(z ><1 K)}, whence
x <1 {y}., whereas conversely if x >< {y} then we can take K = {y}. Thus,
we have

(x #y) = (x<a {pH vV (y e {x}).

The right-to-left implication follows from (10.9), while the left-to-right is
(10.15). -

Thus, J-topologies and apartnesses are special cases of 2-topologies. But
in some sense these restrictions on 2(-topologies miss the point, because
virtually no naturally defined 2-topologies satisfy them! In the antithesis
translation, a general 2-topology consists of two relations < and <« between
points and complemented subsets (Theorem 6.11); and even for Dedekind-
metric spaces neither is the Heyting negation of the other, and both parts of
a complemented subset are used.

ExampLE 10.16. Recall that in Example 10.3 we showed that any 2A-cut-
metric space has an underlying 2(-topology. In the antithesis translation, this
topology becomes

(x < (UF)) = %P9y  (((d(x.y) <e)
= eU)A(yel) —(dx.y) >e))).
(x&(UF)) EVe®03p¥ ((d(x,p) <) A (y € 1))
This is degenerate only in that the relation < only depends on ¥, not on

U. But since both conjuncts in (x < (U,_¥)) remain true under shrinking e,
we can distribute the quantifiers and take a minimum of the two &’s to write

(x < (UK) =@EP vy .((d(x.y) <e) = (y € U)))
A @B vyX ((y e B) — (d(x.p) > ¢€))),
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Fo=((x < (U) A (x&(UF)))
x<(U¥) F xe€U
xeV F (xg(U®))
(x<(UNAUCVIAFCH) F (x<(VI)
xg(VINANUCVINF CF) F (x&(UK))
(x < (U A (x&(VK) F Fp(yeUnk)
Fo(x<(4,0)
Fo—(x&(4.0))
(< (UNDANx < (VLK) F (x<(UNV.EUY))
(x < (U AN xLUNVEUY)) F (x&(V)
x<(UR) F (x<{ly < (UB)} {yly&(U)}))
(x&{yly < (U} {ply&(UF)}) + (x&(UV))

FiGURE 3. The antithesis translation of an 2(-topology.

where the first conjunct depends only on U and the second only on ¥.
Thus, we may think of x < (U ¥) as “x is in the interior of U and is apart
from &7.”

In the general case, we can write the axioms of an 2-topology in terms
of < and ¥, as in Figure 3. But they are not very familiar, because we are
used to spaces that are degenerate in the manner of Example 10.16: with <«
depending only on ¥, and < the conjunction of two properties depending
on U and ¥ respectively. This suggests the following definition.

DEerINITION 10.17. A unified topology on an J-type A consists of three
predicates <, <1, ~ on 4 x Q4 such that:

e < is a topology in the usual sense:

(x < U)

F(x e U)
x<UANUCVY)EF
}_

x<V)

X < A)

x<UANx<V)Fix<UNV)
x<UFx<{yly<U}).

A~~~ A~/

e > satisfies the following apartness axioms:

(x><t K) F=(x €K) *)
(x> K)A(LCK)F (x> L)
F(x><0)
(x><t K)A(xD< L) F (x>t KUL)
(x><t K)F (x> {y|ly ~ K}). (10.18)

e ~ satisfies the following “closure space” axioms:

(xeK)F (x~K)

(x~K)AN(KCL)F(x~L)
F=(x = 0) (*)
(x~(KUL)A(xp><K)F(x~L) (10.19)

(x={yly=K})F (x = K).
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e The following compatibility condition holds:

(x < UAN(x~K)FIy.(y e UNK). (10.20)

In the presence of the other axioms, either of the axioms (x) implies
the other. Note that transitivity for <1 (10.18) involves ~, while binary
additivity for ~ (10.19) (in constructively sensible form derived from &)
involves ><.

THEOREM 10.21. Given a unified topology, if we define
(x < (UF) Z(x <U)A(x ) (x&(UK)) = (x = 1),

then we obtain an A-topology (in the antithesis translation) as in Figure 3.

Not every 2A-topology has this form, but those coming from cut-metrics
do, with

(x < U) Z3eL0vpX ((d(x,y) <e) = (y € U)).

def

(x> K) E L0y ((y e K) = (d(x,y) > ¢)).

(x ~ K) E¥e®0.3p* ((d(x.y) <e) A (y € K)).

ExampLE 10.22. Recall the Hausdorff cut-metric on £X from Theo-
rem 9.12:

(d(4.B) T q) =" ((¢' = g) B[Na™.((a E4)
— [ p*.((b EB)K (d(a.b) T ¢')))).

In the antithesis translation, if 4, B are affirmative, then:

e d(A. B) < g means that thereis a ¢’ < ¢ such that for any point a € 4,
there exists a point b € B with d(a,b) < ¢'.

e ¢ < d(A.,B) means for any ¢’ < ¢. there is a point @ € A4 such that
every pointh € B has ¢’ < d(a.b).

Thus, in this case:

e A < U means there is an € > 0 such that ¢/ contains all subsets B for
which there is an ¢’ < € such that every point of 4 is e-close to some
point of B.

e A ><1 K means there is an € > 0 such that for every B € Kand e’ < ¢
there is a point of A that is at least &’-far from every point of B.

e A ~ K means for any € > 0 there is a B € K and an €’ < € such that
every point of A4 is ¢’-close to a point of B.

Thus, the antithesis translation suggests that rather than taking one of
neighborhoods, apartness, or nearness as primary, it is more natural to have
all structures in parallel. Of course, Definition 10.17 is rather unwieldy;
but Definition 10.1 is quite simple, suggesting it may be easier to just
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stay in affine logic. In the next section we consider this possibility more
seriously.

§11. Towards affine constructive mathematics. So far, we have viewed
affine logic as a tool for producing definitions and theorems in intuitionistic
logic, through the antithesis translation. However, there are other reasons
one might care about the “affine constructive mathematics” we have started
developing in this paper. One is that it admits other interesting models.

ExaMpLE 11.1. Linear logicians are familiar with many x-autonomous
categories, such as coherence spaces and phase spaces. As in Example 4.1.2,
any complete semicartesian *x-autonomous category with Seely comonad
yields an affine hyperdoctrine over Ser. I expect there are “realizability
linear triposes” coming from linear combinatory algebras [1, 2]. In addition,
Dialectica constructions [40] also act on fibrations [23]. However, many of
these models are not semicartesian, and hence move beyond affine logic to
general linear logic.

ExampLE 11.2. Any Boolean algebra is semicartesian and x-autonomous,
with ¥ =M, ¢ = 1, and |P £ P. Thus, linear logic also specializes directly
to classical logic.

More generally, on a Boolean algebra we can take any meet-preserving
comonad to be !, such as the interior operator of a topology acting on a
powerset. Thus, any classical topological space X gives rise to an affine tripos
whose propositions are subsets of X, with the affirmative and refutative ones
being open and closed respectively. This relates to the “modal” view of

sheaves from [4, 5].

ExaMpLE 11.3. Lukasiewicz logic is a semicartesian x-autonomous struc-
ture on the unit interval [0, 1], with T =1, 1 =0, and

PNQ=min(P.Q) []x.P(x)=inf, P(x) PXQ=max(0,P+Q-1)
PuUQ=max(P.Q) [Jx.P(x)=sup ,P(x) P<$Q=min(l.P+ Q)
Pt=1-P P —-oQ=min(l.1- P+ Q).

It also admits a Seely comonad defined by !1 =1 and !P =0 for P < 1.
An 2-set in this model is precisely a metric space with all distances < 1.
(The distance d(x,y) is actually the inequality x#y.) It is strong iff it
is an ultrametric space, and affirmative iff it is discrete. Functions are
nonexpansive maps, and anafunctions (Definition 6.19) are nonexpansive
maps between metric completions. The 2-set Q = [0, 1] has its usual metric
|x — |, and the function set 4 — B has the supremum metric. For a fixed
affirmative 2-set A, the 2A-subsets of A are fuzzy sets with universe A,
with their usual induced metric. Finally, (closed upper) 2-cuts x : C are
non-decreasing right-continuous functions R — R; hence bounded 2A-cuts
are cumulative distribution functions of random variables, with Dedekind
2A-reals corresponding to constant random variables.
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However, what about the philosophical constructivist, in the tradition
of Bishop, say? I believe that one can also motivate affine constructive
mathematics on purely philosophical grounds; what follows is one attempt.

We begin by agreeing with Brouwer’s critique of excluded middle,
“P or not P,” as a source of non-constructivity. However, the classical
mathematican’s belief in this law is not contentless; one may say that the
constructivist and the classicist are using the word “or” to mean different
things. The constructivist using intuitionistic logic expresses the classical
mathematician’s “or” as =—(P V Q). but the classical mathematician may
rebel against the implication that she is unconsciously inserting double
negations everywhere. A more even-handed approach is to stipulate both
kinds of “or” on an equal footing: the constructivist’s P LI Q says that we
know which of P or Q holds; while the classicist’s P & Q says...something
else.

Before addressing exactly what it says, we consider negation. Intuition-
istically, =P means that any proof of P would lead to an absurdity. But
after this definition, one immediately observes that it is not very useful and
should be avoided. So why did we bother defining negation in that way? A
more useful notion of “negation” is the polar opposite of a statement, i.e.,
the most natural and emphatic way to disprove it. The opposite of “every x
satisfies P(x).” in this sense, is “there is an x that fails P(x)”: a respectable
constructive disproof of a universal claim should provide a counterexample.
Similarly, the opposite of “P and Q” is “either P fails or Q fails,” and so on.
This negation is involutive, with strict De Morgan duality for quantifiers,
conjunctions, and disjunctions.

The most natural way that “if P then Q” can fail is if P is true and Q is
false. But the opposite of “P and not O is “Q or not P.” so the involutivity
of negation means that the latter should be equivalent to “if P then Q0.” In
particular, the tautology “if P then P” is equivalent to “P or not P,” i.c.,
excluded middle. Thus, the “or” appearing here must be the classical one
&. That is, “if P then Q” (which we may as well start writing as P — Q) is
equivalent to P+ & Q.

This tells us what P ¢ Q means: it means P+ —o Q. i.e.. if P fails then
0O must be true. But any sort of disjunction is symmetric, so P & Q should
also be equivalent to Q- — P. Thus, contraposition must hold: P — Q is
equivalent to O+ — P, This, in turn, implies that we can do proofs by
contradiction.

Proof by contradiction is generally considered non-constructive. For
instance, a constructive proof of “there exists an x such that P(x)” ought to
specify x, whereas proof by contradiction seems to subvert this. But does it
really? If we try to prove “there exists an x such that P(x)” by contradiction,
we would begin by assuming “for all x, not P(x)”...and we can only use that
assumption by specifying an x!

Non-constructivity only enters if we use that assumption more than once,
giving different values of x, and derive a contradiction without determining
which value of x satisfies P. Thus, we can remain constructive in the presence
of proof by contradiction by imposing an “affinity” restriction that each
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hypothesis can be used at most once.”’ This is essentially the content of
Girard’s comment:

...take a proof of the existence or the disjunction property; we
use the fact that the last rule used is an introduction, which we
cannot do classically because of a possible contraction. Therefore, in
the...intuitionistic case, - serves to mark a place where contraction...is
forbidden.... Once we have recognized that the constructive features
of intuitionistic logic come from the dumping of structural rules on a
specific place in the sequents, we are ready to face the consequences
of this remark: the limitation should be generalized to other rooms,
i.e., weakening and contraction disappear. [19, p. 4]

We now let M and X be the De Morgan duals of LI and <, and calculate
(PRXQ) oR=(P*4® Q0" R=P*%(0* 9 R)=P — (Q — R).

Thus, to maintain the “deduction theorem” that we prove Q — R by proving
R with Q as an extra hypothesis, we must implicitly combine hypotheses
with K.

The behavior of M can be deduced by duality: a hypothesis P 1 Q may
as well be used by contradiction, requiring us to show (P Q)L =pPtU
O~: and since this is the constructive “or” it requires us to either show
P+ or OF. Thus, to use a hypothesis P 11 Q we must either use P or O,
but not both. Note the utter reversal of the historical origin of the linear
connectives:

The most hidden of all linear connectives is par [¢], which came to
light purely formally as the De Morgan dual of [X] and which can be
seen as the effective part of a classical disjunction. [19, p. 5].

Finally, the linearity/affinity restriction is sometimes too onerous. For
instance, the axioms of a group must be used many times in the proof of any
theorem in group theory. Since we are here regarding the affinity restriction
as simply a syntactic discipline to which we subject ourselves in order to
maintain constructivity, we may allow ourselves to ignore it in certain cases
as long as we keep track of where this happens and prevent ourselves in
some other way from introducing nonconstructivity in those cases. This is
the purpose of the modality !: it marks hypotheses, like the axioms of a
group, that we allow ourselves to use more than once. The price we pay
is that when checking an axiom of the form !P, we cannot use proof by
contradiction (or more precisely, if we try to do so, the hypothesis we get
to contradict is not P~ but the weaker 2(PL) £ (1P)"). But this is rarely
bothersome: when was the last time you saw someone prove that something
is a group by assuming that it isn’t and deriving a contradiction? (See also
Remark 4.7.1.)

X0ra “linearity” restriction that it must be used exactly once, but this is harder to justify
philosophically, since affinity is sufficient to ensure constructivity.
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Whether or not the reader finds the foregoing discussion convincing, I
believe it proves that it is possible to argue for affine logic, rather than
intuitionistic logic, on philosophical constructivist grounds. Ultimately, of
course, the proof of the pudding is in the eating: whether affine constructive
mathematics can stand on its own depends on how much useful mathematics
can be developed purely in affine logic. In this paper we have only
scratched the surface by exploring a few basic definitions, with the antithesis
translation as a guide for their correctness.
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