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Abstract

The notion of conditional comonotonicity was first used implicitly by Kaas, Dhaene,
and Goovaerts (2000) and was formally introduced by Jouini and Napp (2004) as a
generalization of the classical concept of comonotonicity. The objective of the present
paper is to further investigate this relatively new concept. The main result is that a
random vector is comonotonic conditional to a certain σ -field if and only if it is almost
surely comonotonic locally on each atom of the conditioning σ -field. We also provide
a new proof of a distributional representation and an almost sure representation of a
conditionally comonotonic random vector.
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1. Introduction

The concept of comonotonicity has a long history, starting from Schmeidler [12] and Yaari
[13]. It has numerous applications in finance and actuarial science, especially in studying the
riskiness of a collection of risks. Dhaene et al. [4], [5] provide a good summary of the theory
and its various applications. In [7], the notion of conditional comonotonicity was introduced
as a natural extension of the classical notion, and was applied to dynamic economics problems.
Indeed, this notion has already been used implicitly by [8] to obtain an improved convex upper
bound for the sum of random variables. The aim of this paper is to provide further development
and to give a more complete account of the theory. In particular, we will show that under some
mild conditions, a random vector in Rn is comonotonic conditional to a certain σ -field if and
only if it is almost surely (a.s.) locally comonotonic, i.e. its image is comonotonic in Rn on
each atom of the σ -field, a.s. In the course of deriving this result, we have also produced a
new proof on distributional representation and almost sure representation of a conditionally
comonotonic random vector.

We end this introduction by giving a brief review of the concept of comonotonicity. For
more information on comonotonicity, we refer the reader to [4], [5], and [9]. A subset A of
Rn is called comonotonic if, for any (s1, . . . , sn) and (t1, . . . , tn) in A, (ti − si)(tj − sj ) ≥ 0
for any i, j ∈ {1, 2, . . . , n}. A random vector (X1, . . . , Xn) in Rn is said to be comonotonic
if it has a comonotonic support, i.e. there exists a comonotonic subset C of Rn such that
P((X1, . . . , Xn) ∈ C) = 1. Here, we may replace C by its closure C− if C is not measurable,
since the closure of a comonotonic set is again comonotonic.
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Lemma 1. The following statements are equivalent.

(a) The random vector (X1, . . . , Xn) is comonotonic.

(b) P(X1 ≤ x1, . . . , Xn ≤ xn) = min1≤i≤n P(Xi ≤ xi).

(c) There is a P-null set N such that whenever ω, ω′ ∈ Nc, we have

(Xi(ω) − Xi(ω
′))(Xj (ω) − Xj(ω

′)) ≥ 0.

(d) There exist nondecreasing functions f1, . . . , fn and a random variable Z such that

(X1, . . . , Xn)
d= (f1(Z), . . . , fn(Z)).

Characterization (b) implies that the joint distribution function of a comonotonic random vector
is precisely the Frèchet upper bound. Characterization (c) tells us that the pointwise behavior of
a comonotonic random vector, X1, . . . , Xn, is almost surely moving together in the same direc-
tion. Characterization (d) gives us a distributional representation. In fact, we may take Z to be
a uniform(0, 1) random variable, and fi to be F−1

Xi
, where F−1

Xi
(s) = inf{t ∈ R | FXi

(t) ≥ s}.
Lemma 1 will be generalized to the conditional case in the sequel.

2. Definitions and notation

We first recall the definition of a probability kernel. Given any two measurable spaces (A, A)

and (B, B), a probability kernel from (A, A) to (B, B) is a [0, 1]-valued function Q on A×B
such that Q(·, F ) is A-measurable for any fixed F ∈ B and Q(a, ·) is a probability measure
on (B, B) for any fixed a ∈ A.

Consider a random vector X = {X1, . . . , Xn} defined on a probability space (�, F , P) and
a measurable map Y from (�, F ) to another measurable space (T , T ). For instance, T could
be Rm and T the Borel σ -field on Rm. In this case, Y is a random vector. There always exists
a probability kernel µ from (T , T ) to (Rn, B(Rn)) satisfying

P(X ∈ A | Y ) = µ(Y, A) a.s. for each A ∈ B(Rn); (1)

moreover, this kernel is unique in the sense that if µ′ is another kernel satisfying (1), then
µ(Y, ·) = µ′(Y, ·) a.s. For a proof of this standard result, we refer the reader to [10, Theorem 6.3]
or [11, Section 30]. We call this kernel a regular conditional distribution of X given Y . Since
each probability measure µ(Y (ω), ·) has a unique extension to the universal completion B̂(Rn)

of B(Rn), and µ remains a probability kernel after this extension, we will hereafter assume
that the domain of each µ(Y (ω), ·) is B̂(Rn).

Note that if X̃1, . . . , X̃n are n random variables such that (X1, . . . , Xn) = (X̃1, . . . , X̃n)

a.s., then from the definition of conditional expectation,

µ(Y, A) = µ̃(Y, A) a.s.

for any A ∈ B(Rn), where µ̃ denotes the regular conditional distribution of (X̃1, . . . , X̃n)

given Y . By uniqueness, we have µ(Y, ·) = µ̃(Y, ·) a.s.
The next definition is adopted from [7] after a slight modification.

Definition 1. Let X, Y , and µ be defined as above. We say that X is comonotonic conditional to
Y (or simply Y -comonotonic) if the probability measure µ(Y (ω), ·) has a comonotonic support
in Rn for almost all ω.

https://doi.org/10.1239/jap/1189717532 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1189717532


Characterizations of conditional comonotonicity 609

In [7], the object to be conditioned on is a sub-σ -field of F ; in our definition here, it is
a random element. While the two approaches are equivalent, the reasons for our choice are
twofold:

(i) it seems that conditioning on a random element can make the roles of Y and σ {Y } clearer;

(ii) in the later part of this paper, the proof demands a certain degree of regularity on
the structure of the conditioning σ -field, which can be achieved by assuming that it
is generated by a measurable map taking values in a ‘nice’ space.

Indeed, Kaas et al. [8] also implicitly used the random element approach but not the σ -field
approach.

Note that Definition 1 generalizes the classical definition of comonotonicity in the sense that
if (X1, . . . , Xn) is comonotonic in the classical sense, then it is Y -comonotonic whenever σ {Y }
is the trivial σ -field on �.

Given any σ -field H on �, we can partition � by the following equivalence relation:

ω ∼ ω′ ⇐⇒ 1H (ω) = 1H (ω′) for all H ∈ H .

The equivalence classes of this equivalence relation are called H -atoms. In general, an
H -atom need not be H -measurable. However, it can be shown that if the σ -field H is countably
generated (i.e. if there exists a countable subset H0 ⊆ H such that σ {H0} = H ), then every
H -atom is H -measurable. Examples of countably generated σ -fields are those generated by
a measurable map taking values in a separable metric space. We remark that any measurable
random element ξ from (�, H) into (M, B) would be constant on every H -atom when M is
a separable metric space and B is the Borel σ -field on M .

The following notation will be used throughout: the regular conditional distribution of X

given Y is always denoted as µ. For any real number x, we use (−∞, x]i to denote the cylinder
R×· · ·×R×(−∞, x]×R×· · ·×R, where the interval (−∞, x] appears at the ith coordinate.
If C is a subset of Rn, then the closure, i.e. the smallest closed set containing C, is denoted as
C−. If ν is a measure on a measurable space (S, S), then the completion of S with respect to
the measure ν is denoted as Sν , and the universal completion of S is denoted as Ŝ.

3. Two easy characterizations

Let ω be an arbitrary fixed point in �. For any i ∈ {1, 2, . . . , n}, the map

x �→ µi(Y (ω), x) := µ(Y (ω), (−∞, x]i )
is a distribution function on R. We could define its inverse as follows:

µ−1
i (ω, u) = inf{x ∈ R | µi(Y (ω), x) ≥ u}.

Obviously, for fixed ω ∈ �, u �→ µ−1
i (ω, u) and is nondecreasing and left-continuous.

Next we fix u ∈ (0, 1). For any s ∈ R, observe that

{ω : µ−1
i (ω, u) ≤ s} = {ω : u ≤ µi(Y (ω), s)} ∈ σ {Y }

because µ is a probability kernel. Hence, the map

ω �→ µ−1
i (ω, u), i = 1, 2, . . . , n,
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is σ {Y }-measurable for any fixed u ∈ (0, 1). From this, we may represent this map as

ω �→ µ−1
i (ω, u) = νi(Y (ω), u). (2)

IfU is a uniform(0, 1) random variable, then the distribution ofµ−1
i (ω, U) is the i-coordinate

projection of the measure µ(Y (ω), ·), that is

µ−1
i (ω, U)

d= µ(Y (ω), ·) ◦ π−1
i ,

where πi is the i-coordinate projection map from Rn to R.
Now we present two easy characterizations of conditional comonotonicity. Characterization

(b) is analogous to statement (b) in Lemma 1. Characterization (c) will be used in the sequel
and a similar statement can be found in [7]. Here we give a more detailed proof.

Lemma 2. The following statements are equivalent.

(a) (X1, . . . , Xn) is Y -comonotonic.

(b) For any fixed real numbers x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn | Y ) = min
1≤i≤n

P(Xi ≤ xi | Y ) a.s.

(c) If U is a uniform(0, 1) random variable then, for P almost all ω, the random vector

(µ−1
1 (ω, U), . . . , µ−1

n (ω, U))

has distribution µ(Y (ω), ·).
Proof. Statement (a) implies statement (b). For any fixed real numbers x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn | Y ) = µ(Y, ×n
i=1(−∞, xi]) a.s.

= min
1≤i≤n

µ(Y, (−∞, xi]i ) a.s.

= min
1≤i≤n

P(Xi ≤ xi | Y ) a.s.,

where the second equality follows from Lemma 1 and the P almost sure comonotonicity of
µ(Y, ·).

Statement (b) implies statement (a). For any fixed real numbers x1, . . . , xn,

µ(Y, ×n
i=1(−∞, xi]) = min

1≤i≤n
µ(Y, (−∞, xi]i ) a.s.,

where the exceptional null set depends on the choice of x1, . . . , xn. By considering rational xi

first and then using the continuity of the measure µ(Y (ω), ·), we have

µ(Y, ×n
i=1(−∞, xi]) = min

1≤i≤n
µ(Y, (−∞, xi]i ) for all x1, . . . , xn, a.s.

This means that the measure µ(Y, ·) is comonotonic almost surely.
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Statement (a) implies statement (c). We calculate the joint distribution of µ−1
1 (ω, U), . . . ,

µ−1
n (ω, U) as follows: for any real numbers s1, . . . , sn,

P(µ−1
1 (ω, U) ≤ s1, . . . , µ

−1
n (ω, U) ≤ sn)

= P(U ≤ µ1(Y (ω), s1), . . . , U ≤ µn(Y (ω), sn))

= P(U ≤ min
1≤i≤n

µi(Y (ω), si))

= min
1≤i≤n

µi(Y (ω), si)

= µ(Y (ω), ×n
i=1(−∞, si]) a.s.,

where the last equality follows from Lemma 1. This shows that (c) is true.
Statement (c) implies statement (a). Since each map µ−1

i (ω, ·) is nondecreasing for fixed
ω, the random vector (µ−1

1 (ω, U), . . . , µ−1
n (ω, U)) is comonotonic. Hence, its distribution

µ(Y (ω), ·) is comonotonic for almost all ω by Lemma 1.

4. Local comonotonicity

In [7], the following example was considered. Suppose that � = {ω1, ω2, ω3, ω4} and the
random variables X1 and X2 are defined by

ω1 ω2 ω3 ω4

X1 1 2 3 4
X2 3 4 1 2

If P assigns 1
4 to each {ωi}, it is obvious that X1 and X2 are not comonotonic in the classical

sense. However, as stated (without proof) by Jouini and Napp [7], X1 and X2 are comonotonic
conditional to the σ -field G = {φ, {ω1, ω2}, {ω3, ω4}, �} (say generated by some Y ). The
intuitive idea is that if X1 and X2 are comonotonic locally on every σ {Y }-atom, then they are
Y -comonotonic. Inspired by this example, we introduce the following definition.

Definition 2. Let X, Y , and µ be defined as above. We say that X is locally comonotonic on Y

(or simply locally Y -comonotonic) if there is a P-null set N such that, for every σ {Y }-atom A,

CA := {X(ω) | ω ∈ A ∩ Nc} (3)

is a comonotonic subset in Rn.

The example used by Jouini and Napp [7] suggests that local comonotonicity implies
conditional comonotonicity. The aim of this section is to give a formal proof of this assertion;
moreover, we shall show that these two concepts are actually equivalent. In the mean time,
we shall also provide a different proof of the distribution representation and an almost sure
representation of a Y -comonotonic random vector.

Before we present the theorem which deals with the general case, it would be beneficial to
note (see Theorem 1, below) that the above questions can be answered in an elementary way
when σ {Y } is generated by a countable partition. Under this special situation, there is no need
to assume any particular structure on (T , T ) and (�, F ).

Theorem 1. When σ {Y } is generated by a countable partition, conditional comonotonicity is
equivalent to local comonotonicity.
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Proof. Suppose that X is Y -comonotonic. Let A be an σ {Y }-atom with P(A) > 0.
Then there exists ωA ∈ A such that µ(Y (ωA), ·) has a comonotonic support in Rn, i.e.
µ(Y (ωA), ĈA) = 1 for some measurable comonotonic subset ĈA of Rn. As µ(Y (·), ĈA) is
σ {Y }-measurable, it is constant on A. Hence, µ(Y (ω), ĈA) = 1 for all ω ∈ A. Since A is
σ {Y }-measurable, we have∫

A

1{X∈ĈA}(ω) P(dω) =
∫

A

P(X ∈ ĈA | Y )(ω) P(dω) =
∫

A

µ(Y (ω), ĈA) P(dω) = P(A).

This means that X ∈ ĈA a.s. on A. Since there are only countably many σ {Y }-atoms, we may
conclude that outside a certain P-null set N , X is comonotonic on A ∩ Nc for each σ {Y }-atom
A, i.e. X is locally Y -comonotonic.

Conversely, suppose that there is a P-null set N such that X is comonotonic on A ∩ Nc for
each σ {Y }-atom A. Let A be any σ {Y }-atom A with P(A) > 0, and let CA be the image of X

on A ∩ Nc as defined in (3). Then CA is a comonotonic subset of Rn. Since µ(Y (·), C−
A ) is

constant on the σ {Y }-atom A (to be denoted as k), then

k P(A) =
∫

A

µ(Y (ω), C−
A ) P(dω)

=
∫

A

P(X ∈ C−
A | Y )(ω) P(dω)

=
∫

A

1{X∈C−
A }(ω) P(dω)

= P(A),

hence k = 1. This implies that µ(Y (ω), ·) has a comonotonic support for almost all ω, i.e. X

is Y -comonotonic.

We can see that the above argument breaks down when there are uncountably many
σ {Y }-atoms with zero probability because their union may have a strictly positive probability.
To overcome this difficulty, it seems that extra regularity is needed on our underlying probability
space and σ {Y }. In particular, we shall see in the next theorem that it is sufficient to assume
that both (T , T ) and (�, F ) are Polish spaces, i.e. T and � are Polish spaces, T and F are
the respective Borel σ -fields on them. For example, we may model our underlying probability
space (�, F , P) to be ([0, 1], B([0, 1]), λ), where λ is the Lebesgue measure on B([0, 1]).

To prepare for the theorem, we need the next two results. A Borel space is a measurable
space that is Borel isomorphic to a Borel subset in [0, 1]. For example, every Polish space is
Borel.

Lemma 3. Suppose that ξ and η are two random elements in Borel spaces S and T , respectively,
and f is a measurable map from T to S. If ξ

d= f (η), then there exists η̃
d= η such that ξ = f (η̃)

a.s.

Lemma 4. For any random elements η, η̃, ξ , and ξ̃ , P(ξ ∈ B | η) = P(ξ̃ ∈ B | η̃) a.s. for any
measurable set B if and only if (η, ξ)

d= (η̃, ξ̃ ).

Lemma 3 is taken from [10, Corollary 6.11]; Lemma 4 follows from the definition of
conditional expectation.
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Theorem 2. Suppose that both (T , T ) and (�, F ) are Polish spaces, i.e. T and � are Polish
spaces, T and F are the Borel σ -fields on them. Then the following statements are equiva-
lent.

(a) (X1, . . . , Xn) is Y -comonotonic.

(b) There exist real-valued functions (y, u) �→ νi(y, u) on T × (0, 1) (i = 1, 2, . . . , n)
with the property that νi(Y (ω), ·) is nondecreasing for fixed ω ∈ �, and νi(·, u) is
T -measurable for fixed u ∈ (0, 1), such that

(X1, . . . , Xn, Y )
d= (ν1(Y, U), . . . , νn(Y, U), Y ), (4)

where U is any uniform(0, 1) random variable on (�, F , P) that is independent of Y .

(c) There exist a random element Ŷ : (�, F ) → (T , T ), a random variable Û , and real-
valued functions (y, u) �→ νi(y, u) on T × (0, 1) (i = 1, 2, . . . , n), with the property
that νi(Y (ω), ·) is nondecreasing for fixed ω ∈ �, νi(·, u) is T -measurable for fixed
u ∈ (0, 1), and Y = Ŷ a.s., such that

(X1, . . . , Xn) = (ν1(Ŷ , Û ), . . . , νn(Ŷ , Û )) a.s.

(d) (X1, . . . , Xn) is locally Y -comonotonic, i.e. there is a P-null set N such that, for every
σ {Y }-atom A,

CA = {X(ω) | ω ∈ A ∩ Nc} (5)

is a comonotonic subset in Rn.

Proof. Statement (a) implies statement (b). Let f be a bounded measurable function on
(Rn, B(Rn)) and g a bounded measurable function on (T , T ). Let U be any uniform(0, 1)

random variable on (�, F , P) that is independent of Y . Consider functions νi (i = 1, 2, . . . , n)

as defined in (2). They have the properties required in statement (b). Moreover,

E[f (ν1(Y, U), . . . , νn(Y, U))g(Y )]
= E[g(Y ) E[f (ν1(Y, U), . . . , νn(Y, U)) | Y ]]
= Eω[g(Y (ω)) EU [f (ν1(Y (ω), U), . . . , νn(Y (ω), U))]]
= Eω[g(Y (ω)) EU [f (µ−1

1 (ω, U), . . . , µ−1
n (ω, U))]]

= Eω

[
g(Y (ω))

∫
Rn

f (x1, . . . , xn)µ(Y (ω), dx1 × · · · × dxn)

]
= Eω[g(Y (ω)) E[f (X1, . . . , Xn) | Y ](ω)]
= E[f (X1, . . . , Xn)g(Y )],

where the fourth equality follows from Lemma 2. Here, EU means that the variable being
integrated over is U ; similarly, Eω means that the integration is taken over ω. We can conclude
from this calculation that

(X1, . . . , Xn, Y )
d= (ν1(Y, U), . . . , νn(Y, U), Y ).

Hence, (b) is true.
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Statement (b) implies statement (c). Suppose that (X1, . . . , Xn) has the distribution repre-
sentation (4). By Lemma 3, there exists (Ŷ , Û )

d= (Y, U) such that

(X1, . . . , Xn, Y ) = (ν1(Ŷ , Û ), . . . , νn(Ŷ , Û ), Ŷ ) a.s.

In particular, this implies that Y = Ŷ a.s. and

(X1, . . . , Xn) = (ν1(Ŷ , Û ), . . . , νn(Ŷ , Û )) a.s.

Statement (c) implies statement (d). There exist P-null sets N1 and N2 such that Y = Ŷ

on Nc
1 , and (X1, . . . , Xn) = (ν1(Ŷ , Û ), . . . , νn(Ŷ , Û )) on Nc

2 . Let N = N1 ∪ N2, then
N is also a P-null set. Let A be an arbitrary σ {Y }-atom. Then, for any ω, ω′ ∈ A ∩ Nc,
we have νi(Y (ω), ·) = νi(Y (ω′), ·) (call this common value νi(Y (A), ·)); hence, for any
i, j ∈ {1, 2, . . . , n}, we have

(Xi(ω) − Xi(ω
′))(Xj (ω) − Xj(ω

′))
= (νi(Y (A), Û(ω)) − νi(Y (A), Û(ω′)))(νj (Y (A), Û(ω)) − νj (Y (A), Û(ω′)))
≥ 0,

where the last inequality follows because each map νi is nondecreasing in its second argument
when the first argument is fixed. This shows that the set CA, as defined in (5), is comonotonic.

Statement (d) implies statement (a). We break down the proof into the following steps.

(i) The construction of X̃. Since the exceptional null set N in statement (d) may not be
σ {Y }-measurable, there can be three different types of σ {Y }-atom. Let N1 be the collection
of all σ {Y }-atoms, A, such that A ⊆ N ; N2 the collection of all σ {Y }-atoms, A, such that
A ⊆ Nc; and N3 be the collection of all σ {Y }-atoms that are not in N1 or N2. Let x∗ be a
point in Rn such that

P((X1, . . . , Xn) ∈ {x∗}) = 0.

If such a point does not exist, then σ {Y } must be generated by a countable partition and, hence,
the result follows from Theorem 1. Then there exists a P-null set N3 such that µ(Y (ω), {x∗}) =
0 when ω ∈ Nc

3 . Then we define the following random vector:

X̃(ω) = (X̃1, . . . , X̃n)(ω) =
{

x∗, ω ∈ N,

(X1, . . . , Xn)(ω), ω ∈ Nc.

By construction, (X̃1, . . . , X̃n) = (X1, . . . , Xn) a.s. Therefore, if µ̃ denotes the regular con-
ditional distribution of X̃ given Y , then µ(Y, ·) = µ̃(Y, ·) a.s. (say outside P-null set N4).
Moreover, for any σ {Y }-atom A, the set

C̃A = {(X̃1, . . . , X̃n)(ω) | ω ∈ A}
is a comonotonic subset of Rn when A ∈ N1 ∪ N2; when A ∈ N3, C̃A can be expressed as
CA ∪ {x∗}, where CA is the comonotonic set defined in (5).

(ii) The measurability of sections of the image of (X̃(ω), Y ). Since Rn × T is a Polish space
and B(Rn) ⊗ T is the Borel σ -field, by the measurable graph theorem (see, for example, [2,
Chapter 2]), the graph of (X̃, Y ), i.e.

Gr(X̃, Y ) = {(ω, X̃(ω), Y (ω)) | ω ∈ �},
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is F ⊗ B(Rn) ⊗ T measurable in � × Rn × T . Since the set

G = {(X̃(ω), Y (ω)) | ω ∈ �}
is the projection of Gr(X̃, Y ) on Rn × T , it is measurable with respect to ̂B(Rn) ⊗ T , the
universal completion of B(Rn)⊗T , by the well-known projection theorem (see [3, Chapter 3]).

Now we show that, for any y ∈ T , the section Gy = {X̃(ω) | (X̃(ω), y) ∈ G} belongs to
B̂(Rn). To see this, let ν and Q be arbitrary probability measures on (T , T ) and (Rn, B(Rn)),
respectively. Then

G ∈ ̂B(Rn) ⊗ T ⊆ B(Rn) ⊗ T
Q⊗ν

and, hence, there exist G(1), G(2) ∈ B(Rn) ⊗ T such that

G(1) ⊆ G ⊆ G(2) and (Q ⊗ ν)(G(2) \ G(1)) = 0.

Then the cross-sections G
(i)
y = {X̃(ω) | (X̃(ω), y) ∈ G(i)} ∈ B(Rn), i = 1, 2, will satisfy

(a) G
(1)
y ⊆ Gy ⊆ G

(2)
y , and

(b) Q(G
(2)
y \ G

(1)
y ) = 0 for ν-almost all y by Fubini’s theorem.

As ν can be chosen arbitrarily, Gy ∈ B(Rn)
Q

for all y ∈ T . As Q is also arbitrary, we conclude
that Gy ∈ B̂(Rn).

(iii) The concentration property of conditional measures. Having shown that each section
Gy ∈ B̂(Rn), we can now develop the concentration property of regular conditional probability.
The idea is borrowed from [6]. Let µ̃ be the regular conditional distribution of X̃ given Y that
has been extended to the universal completion B̂(Rn). Observe that∫

�

µ̃(Y (ω), GY(ω)) P(dω) =
∫

�

[µ̃(y, Gy)]y=Y (ω) P(dω)

=
∫

�

[∫
Rn

1{x∈Gy } µ̃(y, dx)

]
y=Y (ω)

P(dω)

=
∫

�

P[X̃ ∈ GY | Y ](ω) P(dω)

= P(X̃ ∈ GY )

= P((X̃, Y ) ∈ G)

= 1,

hence there is a P-null set N5 ∈ σ {Y } such that whenever ω ∈ Nc
5 , µ̃(Y (ω), GY(ω)) = 1. This

P-null set N5 can be expressed as a union of σ {Y }-atoms because σ {Y } is countably generated.
If A is a σ {Y }-atom that lies outside N5, then we must have µ̃(Y (ω), B) = 0 whenever ω ∈ A,
B ∈ B̂(Bn), and X̃−1(B) ∩ A = ∅, because in this case we have B ⊆ Gc

Y(A).

(iv) Now let ω be an arbitrary point in Nc
3 ∩ Nc

3 ∩ Nc
5 and A be the σ {Y }-atom containing ω.

If A ∈ N1 ∪ N3 then
µ(Y (ω), C̃−

A ) = µ̃(Y (ω), C̃−
A ) = 1,

where the last equality follows from the fact that X̃−1((C̃−
A )c) ∩ A = ∅ and the definition of

the null set N5. Similarly, when A ∈ N2, then

µ(Y (ω), C−
A ) = µ(Y (ω), C−

A ∪ {x∗}) = µ̃(Y (ω), C−
A ∪ {x∗}) = 1.
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Hence, µ(Y (ω), ·) has a comonotonic support whenever we have ω ∈ Nc
3 ∩ Nc

4 ∩ Nc
5 . Hence,

(X1, . . . , Xn) is Y -comonotonic.

Similar distributional representation and the almost sure representation of a conditionally
comonotonic vector, as described in statements (b) and (c), were obtained in [7]. The proof
presented here is new. Note that when proving that (a) implies (b), (b) implies (c), and (c)
implies (d), the assumption that (�, F ) is Polish is not needed. In proving that (b) implies (c),
we need (T , T ) to be Polish to guarantee that Lemma 3 is applicable; in proving that (d) implies
(a), we need both (T , T ) and (�, F ) to be Polish spaces so that the image of (X̃, Y ), which
is denoted as G in the proof, is measurable with respect to ̂B(Rn) ⊗ T . It is also remarked
that (c) implying (a) can be proved directly without the need for (�, F ) to be Polish if σ {Y } is
generated by a countable partition, by using the technique in Theorem 1.

We remark that when σ {Y } is taken to be the trivial σ -field (for example, when Y is a
constant function), the above theorem reduces to the equivalence of statements (a), (c), and (d)
in Lemma 1.

The following corollaries are direct consequences of the above theorem.

Corollary 1. Any random vector X = (X1, . . . , Xn) is Y -comonotonic whenever X is
Y -measurable.

Corollary 2. Suppose that W is another random element in a Borel space (S, S) such that
σ {Y } ⊆ σ {W }. Then (X1, . . . , Xn) is W -comonotonic whenever it is Y -comonotonic. In
particular, if (X1, . . . , Xn) is comonotonic in the classical sense, then it is Y -comonotonic for
any random vector Y .

Corollary 3. If (X1, . . . , Xn) is Y -comonotonic and f1, . . . , fn are n increasing functions,
then (f1(X1), . . . , fn(Xn)) is also Y -comonotonic.

Corollary 1 implies that the concept of conditional comonotonicity is only of interest when
the conditioning random element Y is not too complicated. If the structure of Y is so complicated
that it contains all the information of X (i.e. X ⊆ σ {Y }), then X is automatically Y -comonotonic
and this concept becomes vacuous. From Corollary 2, we can also see that the simpler the
conditioning random element is, the more comonotonic is the random vector. In particular,
given that X is Y -comonotonic and Z is W -comonotonic, we may be able to determine whether
X or Z is more comonotonic by comparing the size of σ {Y } and σ {W }. If in addition X and Z

have the same conditional marginal distributions, it can be proved that the sum of the one that
is more comonotonic has a higher convex order than the sum of the other one. For a precise
statement and more information in relation to convex ordering, we refer the reader to [1].

5. Conclusion

In this paper, we have studied several characterizations of conditional comonotonicity. It
is shown that many results in the classical setting can be extended to the conditional case.
The main result describes the local behavior of a conditionally comonotonic random vector on
atoms of the conditioning σ -field. In the development, some regularity assumptions are made
concerning the structure of the state space (T , T ) and the underlying probability space (�, F ).
It would be interesting to see whether these assumptions can be relaxed.
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