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Abstract

Intersection densities are introduced for a large class of nonstationary Poisson processes
of hypersurfaces and inequalities for them are proved. In doing so, similar results from
both Wieacker (1986) and Schneider (2003) are summarized in one theorem and the
concept of an associated zonoid of a Poisson process of hypersurfaces is generalized to
a nonstationary setting.
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1. Introduction

Starting with Matheron’s introduction of his Steiner convex set in [5], the idea of using an
associated convex body to analyse a process of geometric objects has proven itself to be a very
fruitful concept. To get an impression of the variety of problems to which this technique has
been applied see, for example, the introductions of [11] and [7] or [8, Section 4.5] and the
references given therein.

While the case of stationary processes has been treated by Wieacker in a very general way
in [9], [10], and [11], some of the results for hyperplane processes have been generalized by
Schneider to a nonstationary setting in [7]. In the present paper, we undertake the humble effort
to extend a few of these findings.

After introducing some basic notation in Section 2, we define, in Section 3, intersection
densities and associated zonoids for certain processes of hypersurfaces, i.e. cylinders with an
(Hk, k)-rectifiable set as a basis. Then a connection between intrinsic volumes of associated
zonoids and intersection densities is derived. We conclude Section 3 by exploiting this relation-
ship to prove inequalities for intersection densities. The final section is devoted to intersections
of these processes with affine subspaces.

We also want to mention that questions regarding measurability and the proofs of some
auxiliary results have been moved to the appendix to make this paper more readable.

2. Preliminaries and basic notation

Throughout this paper we will work in d-dimensional Euclidean space R
d , d ∈ N, equipped

with the canonical structures, Sd−1 being its unit sphere, B(Rd) the Borel σ -algebra, and λd the
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d-dimensional Lebesgue measure. More generally, for a topological space S, we will always
denote the Borel σ -algebra by B(S).

Let k ∈ {0, . . . , d}. The k-dimensional Hausdorff measure will be denoted by Hk and the
k-dimensional Lebesgue measure on a k-dimensional affine subspace E of R

d by λE . Note
that any Borel subset of R

d is Hk-measurable.
A subset M of R

d is called k-rectifiable if and only if either k = 0 and M is finite or if
k ≥ 1 and there exists a Lipschitz map of some bounded subset of R

k onto M . Here, M is
called (Hk, k)-rectifiable if and only if Hk(M) < ∞ and Hk-almost all of M can be covered
by some countable family of k-rectifiable sets. Finally, M is called Hk-rectifiable if M ∩ C is
(Hk, k)-rectifiable for all compact sets C ⊆ R

d .
In the following, the tangential properties of (Hk, k)-rectifiable sets play an important role.

Let M be a (Hk, k)-rectifiable subset of R
d with 0 < k < d and let Nork(M, x) denote the

cone of all approximate normal vectors of M at x. By Theorem 3.2.19 of [2], the latter is a
(d − k)-dimensional linear subspace of R

d for Hk-almost all x ∈ M . For basic notions from
geometric measure theory, we refer the reader to [2].

Let Ld
k be the Grassmannian of all k-dimensional linear subspaces of R

d . For linear
subspaces L1, . . . , Lk of R

d with

dim L1 + · · · + dim Lk = m ≤ d,

we choose an orthonormal basis in each space Li (the empty set if dim Li = 0) and define the
determinant [L1, . . . , Lk] to be the m-dimensional volume of the parallelepiped spanned by
these m vectors. For a linear subspace L, its orthogonal complement will be denoted by L⊥
and the orthogonal projection onto L by pL.

The spaceF ′ of all nonempty closed subsets of R
d will be endowed with the Fell topology and

the σ -algebra B(F ′). The subspace K ′ ⊆ F ′ of all nonempty, compact convex sets (convex
bodies) will be equipped with the Hausdorff metric and the σ -algebra induced by B(F ′). For
all basic notions from convex geometry, we refer the reader to [6]. Finally, let F (k) ⊆ F ′ be
the subspace of all nonempty, closed (Hk, k)-rectifiable subsets of R

d . All required concepts
from stochastic geometry (e.g. point processes, intensity measures, or Campbell’s theorem) can
be found in [8].

3. Intersection densities and associated zonoids

Let l ∈ {1, . . . , d}. Throughout this paper, Xl will always be a point process on F ′ with
locally finite nontrivial intensity measure � of the form

�(A) =
∫

Ld
d−l

∫
F (l−1)

∫
L⊥

1{A}(M + L + x)f (M + L, x)λL⊥(dx) P(L, dM)�(dL), (3.1)

where 1{·} denotes the indicator function and A ∈ B(F ′). Here,

f : F ′ × R
d → [0, ∞)

denotes a measurable mapping with the additional property that f (F, ·) is locally integrable
for all F ∈ F ′; for L ∈ Ld

d−l , P(L, ·) is a probability measure such that

P(L, {M ∈ F (l−1) | M ⊆ L⊥}) = 1
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and L �→ P(L, A) is measurable for A ∈ B(F ′); � denotes a finite measure on Ld
d−l .

Here, Xl can be considered as a process of cylinders, where � describes the distribution of the
direction spaces and P(L, ·) the distribution of the basis. Note that f , P, and � are not uniquely
determined by �.

Let m ∈ {1, . . . , d}, n0, . . . , nm ∈ {1, . . . , d − 1}, and M0, . . . , Mm ⊆ R
d . Furthermore,

define

n := n0 + · · · + nm.

We say the pairs (M0, n0), . . . , (Mm, nm) satisfy condition (I ) if and only if Mi is Hni -
measurable and (Hni , ni)-rectifiable for i ∈ {1, . . . , m} and M0 ×· · ·×Mm is Hn-measurable
and (Hn, n)-rectifiable. By Theorem 4.2 of [4], this is equivalent to the definition of condi-
tion (I ) in [9]. Examples of pairs of sets satisfying condition (I ) can be found in
[9, p. 238].

For i ∈ {0, . . . , m}, let µi be a measure on F (ni ). We say the pairs (µ0, n0), . . . , (µm, nm)

satisfy condition (I ) if and only if the pairs (M0, n0), . . . , (Mm, nm) satisfy condition (I ) for
µ0 ⊗ · · · ⊗ µm-almost all (M0, . . . , Mm) ∈ F (n0) × · · · × F (nm).

Before introducing intersection densities for Xl , let us prove the following lemma.

Lemma 3.1. Let j, l ∈ {1, . . . , d}, L1, . . . , Lj ∈ Ld
d−l , and M1, . . . , Mj ∈ F (l−1) such that

M1 ⊆ L⊥
1 , . . . , Mj ⊆ L⊥

j and (M1, l − 1), . . . , (Mj , l − 1)

satisfy condition (I ). Furthermore, let

fi : L⊥
i → [0, ∞)

be a measurable function for i ∈ {1, . . . , j} and B ∈ B(Rd) a bounded Borel set. Then∫
L⊥

j

· · ·
∫

L⊥
1

Hd−j (B ∩ (M1 + L1 + x1) ∩ · · · ∩ (Mj + Lj + xj ))f1(x1) · · · fj (xj )

× λL⊥
1
(dx1) · · · λL⊥

j
(dxj )

=
∫

Rd

1{B}(z)
∫

M1

· · ·
∫

Mj

f1((z − pL1(z)) − x1) · · · fj ((z − pLj
(z)) − xj )

× [Nord−1(M1 + L1, x1), . . . , Nord−1(Mj + Lj , xj )]
× H l−1(dxj ) · · · H l−1(dx1)λd(dz).

Proof. Since B is bounded, there exist cubes

W1, . . . , Wj ∈ K ′

such that Wi ⊆ Li and

B ∩ (Mi + Li + xi) = B ∩ (Mi + int Wi + xi)

for all xi ∈ L⊥
i and i ∈ {1, . . . , j}, where int W denotes the interior of W .

https://doi.org/10.1239/aap/1183667611 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667611


310 • SGSA L. M. HOFFMANN

By Fubini’s theorem, the following holds:∫
Rd

· · ·
∫

Rd

Hd−j (B ∩ (M1 + W1 + x1) ∩ · · · ∩ (Mj + Wj + xj ))

× f1(x1 − pL1(x1)) · · · fj (xj − pLj
(xj ))λd(dx1) · · · λd(dxj )

= λL1(W1) · · · λLj
(Wj )

×
∫

L⊥
j

· · ·
∫

L⊥
1

Hd−j (B ∩ (M1 + L1 + x1) ∩ · · · ∩ (Mj + Lj + xj ))

× f1(x1) · · · fj (xj )λL⊥
1
(dx1) · · · λL⊥

j
(dxj ).

On the other hand, since (M1 + W1, d − 1), . . . , (Mj + Wj, d − 1) satisfy the assumptions of
Theorem A.1 in the appendix, we obtain∫

Rd

· · ·
∫

Rd

Hd−j (B ∩ (M1 + W1 + x1) ∩ · · · ∩ (Mj + Wj + xj ))

× f1(x1 − pL1(x1)) · · · fj (xj − pLj
(xj ))λd(dx1) · · · λd(dxj )

=
∫

Rd

· · ·
∫

Rd

Hd−j (B − x1 ∩ (M1 + W1) ∩ (M2 + W2 + x2) ∩ · · · ∩ (Mj + Wj + xj ))

× f1(x1 − pL1(x1))f2(x2 + x1 − pL2(x2 + x1))

× · · · fj (xj + x1 − pLj
(xj + x1))λd(dx1) · · · λd(dxj )

=
∫

Rd

∫
M1+W1

· · ·
∫

Mj +Wj

1{B−x1}(t1)f2(t1 − t2 + x1 − pL2(t1 − t2 + x1))

× · · · fj (t1 − tj + x1 − pLj
(t1 − tj + x1))

× [Nord−1(M1 + W1, t1), . . . , Nord−1(Mj + Wj, tj )]
× Hd−1(dtj ) · · · Hd−1(dt1)f1(x1 − pL1(x1))λd(dx1)

= λL1(W1) · · · λLj
(Wj )

×
∫

Rd

∫
M1

· · ·
∫

Mj

1{B−x1}(t1)f2(t1 − t2 + x1 − pL2(t1 − t2 + x1))

× · · · fj (t1 − tj + x1 − pLj
(t1 − tj + x1))

× [Nord−1(M1 + L1, t1), . . . , Nord−1(Mj + Lj , tj )]
× H l−1(dtj ) · · · H l−1(dt1)f1(x1 − pL1(x1))λd(dx1),

where the last identity follows from Theorem 3.2.23 of [2]. Combined with another change of
variable, this yields the assertion.

Let j ∈ {1, . . . , d}. We introduce a Borel measure νj on R
d by

νj (B) := E
∑

(M1+L1,...,Mj +Lj )∈(Xl)
j
=

Hd−j (B ∩ (M1 + L1) ∩ · · · ∩ (Mj + Lj )),

B ∈ B(Rd). Here, (Xl)
j
= denotes the process of all j -tupels of j different particles of Xl . The

following result holds.
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Theorem 3.1. Let j, l ∈ {1, . . . , d} and let Xl be a Poisson point process with intensity measure
as in (3.1) such that the pairs (P(L1, ·), l − 1), . . . , (P(Lj , ·), l − 1) satisfy condition (I ) for
�⊗· · ·⊗�-almost all (L1, . . . , Lj ) ∈ Ld

d−l ×· · ·×Ld
d−l . Then the measure νj is absolutely

continuous with respect to λd with the density given by

γj (z) :=
∫

Ld
d−l

· · ·
∫

Ld
d−l

∫
F (l−1)

· · ·
∫

F (l−1)

×
∫

M1

· · ·
∫

Mj

[Nord−1(M1 + L1, x1), . . . , Nord−1(Mj + Lj , xj )]

× f (M1 + L1, (z − pL1(z)) − x1)

× · · · f (Mj + Lj , (z − pLj
(z)) − xj )

× H l−1(dxj ) · · · H l−1(dx1) P(L1, dM1) · · · P(Lj , dMj)

× �(dL1) · · · �(dLj ), z ∈ R
d .

For j ∈ 1, . . . , d, we call γj the j th intersection density of Xl . Sometimes, γ1 is called the
surface area density of Xl .

Proof of Theorem 3.1. By Lemma A.1, Lemma A.2, and Campbell’s and Fubini’s theorems,
and since Xl is Poisson, we have

νj (B) =
∫

Ld
d−l

· · ·
∫

Ld
d−l

∫
F (l−1)

· · ·
∫

F (l−1)

×
∫

L⊥
j

· · ·
∫

L⊥
1

Hd−j (B ∩ (M1 + L1 + x1) ∩ · · · ∩ (Mj + Lj + xj ))

× f (M1 + L1, x1) · · · f (Mj + Lj , xj )λL⊥
1
(dx1) · · · λL⊥

j
(dxj )

× P(L1, dM1) · · · P(Lj , dMj)�(dL1) · · · �(dLj ).

First, we assume that B ∈ B(Rd) is bounded. Then, the application of Lemma 3.1 and Fubini’s
theorem yields

νj (B) =
∫

Rd

1{B}(z)
∫

Ld
d−l

· · ·
∫

Ld
d−l

∫
F (l−1)

· · ·
∫

F (l−1)

×
∫

M1

· · ·
∫

Mj

[Nord−1(M1 + L1, x1), . . . , Nord−1(Mj + Lj , xj )]

× f (M1 + L1, (z − pL1(z)) − x1)

× · · · f (Mj + Lj , (z − pLj
(z)) − xj )H

l−1(dxj ) · · · H l−1(dx1)

× P(L1, dM1) · · · P(Lj , dMj)�(dL1) · · · �(dLj )λd(dz).

By monotone convergence, this is true for arbitrary B ∈ B(Rd).

To introduce a class of zonoids associated with Xl , we define a Borel measure µz on Sd−1 by

µz(A) :=
∫

Ld
d−l

∫
F (l−1)

∫
M

H0(Sd−1 ∩ Nord−1(M + L, x) ∩ A)

× f (M + L, (z − pL(z)) − x)

× H l−1(dx) P(L, dM)�(dL), A ∈ B(Sd−1).
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Let A ∈ B(Sd−1) and B ∈ B(Rd). Then

E
∑

(M+L)∈Xl

∫
M+L

1{B}(x)H0(Sd−1 ∩ Nord−1(M + L, x) ∩ A)Hd−1(dx)

=
∫

Ld
d−l

∫
F (l−1)

∫
L⊥

×
∫

M+L+z

1{B}(x)H0(Sd−1 ∩ Nord−1(M + L + z, x) ∩ A)Hd−1(dx)

× f (M + L, z)λL⊥(dz) P(L, dM)�(dL)

=
∫

Rd

1{B}(z)
∫

Ld
d−l

∫
F (l−1)

×
∫

M

H0(Sd−1 ∩ Nord−1(M + L, x) ∩ A)

× f (M + L, (z − pL(z)) − x)H l−1(dx) P(L, dM)�(dL)λd(dz)

=
∫

Rd

1{B}(z)µz(A)λd(dz).

Hence, for λd -almost all z ∈ R
d , the measure µz is uniquely determined by � (and, thus, does

not depend on the choice of f , P(L, ·), and �). Under the additional assumption that

B �→ E
∑

(M+L)∈Xl

∫
M+L

1{B}(x)Hd−1(dx)

is a locally finite Borel measure on R
d , a normalization of µz could be interpreted as the

distribution of the normals of the particles of Xl in z whenever µz(S
d−1) > 0. We call µz the

local mean normal measure of Xl at z.
By Theorem 2.1 of [3] (and a classical result from convex geometry), for each z ∈ R

d , there
exists a unique zonoid �(Xl, z) whose support function is given by

h(�(Xl, z), u) =
∫

Sd−1
|〈u, v〉|µz(dv), u ∈ Sd−1.

From now on, we refer to �(Xl, z) as the local associated zonoid of Xl at z.
Let lin(x) denote the linear hull of a vector x ∈ R

d . From Theorem 2.5 of [3] we obtain,
for j ∈ {0, . . . , d},

Vj (�(Xl, z))

= 4j

j !
∫

Ld
d−l

∫
F (l−1)

· · ·
∫

Ld
d−l

∫
F (l−1)

×
∫

M1

· · ·
∫

Mj

[Nord−1(M1 + L1, x1), . . . , Nord−1(Mj + Lj , xj )]

× f (M1 + L1, (z − pL1(z)) − x1)

× · · · f (Mj + Lj , (z − pLj
(z)) − xj )H

l−1(dxj ) · · · H l−1(dx1)

× P(L1, dM1)�(dL1) · · · P(Lj , dMj)�(dLj ).

We can exploit this last identity to prove the following theorem for the intersection densities.

https://doi.org/10.1239/aap/1183667611 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667611


Intersection densities SGSA • 313

Theorem 3.2. Let j, l ∈ {1, . . . , d} and let Xl be a Poisson point process with intensity measure
as in (3.1) such that the pairs (P(L1, ·), l − 1), . . . , (P(Lj , ·), l − 1) satisfy condition (I ) for
� ⊗ · · · ⊗ �-almost all (L1, . . . , Lj ) ∈ Ld

d−l × · · · × Ld
d−l . For λd -almost all z ∈ R

d , we
then have

γj (z) = j !
4j

Vj (�(Xl, z)).

Moreover, if j ≥ 2, we have

γj (z) ≤
(

j ! κ
j
d−1

(
d

j

) /
djκ

j−1
d κd−j

)
γ1(z)

j ,

for λd -almost all z ∈ R
d , where equality holds if and only if �(Xl, z) is a ball. For k ∈ N, κk

denotes the volume of the k-dimensional unit ball.

Remark. For stationary processes of hypersurfaces, more general results can be found in
[10, Section 4] (see e.g. [10, Corollary 2]).

Proof of Theorem 3.2. The first equation follows from Theorem 3.1 and the above formula
for Vj (�(X, z)). By Equation (7.28) of [8, p. 307], we have

(
κd−1

d
V1(K)

)j

≥ κ
j−1
d

(
κd−j

/ (
d

j

))
Vj (K),

for K ∈ K ′ and j ≥ 2, with equality if and only if K is a ball.

Example. Let l ∈ {1, . . . , d} and k ∈ {0, . . . , l}. For L ∈ Ld
d−l , let P̃(L, ·) be a probability

measure such that P̃(L, {K ∈ K ′ | dim K = k, K ⊆ L⊥}) = 1 and L �→ P(L, A) is
measurable for A ∈ B(F ′). The dimension of a convex body is defined as the dimension of
its affine hull.

Let Xl be a Poisson process with intensity measure as in (3.1). Furthermore, we assume
that P(L, ·) is the image measure of P̃(L, ·) under the mapping K �→ rel bd K , where rel bd K

denotes the relative boundary of K , i.e. the boundary of K in its affine hull. Then Xl satisfies
the assumptions of Theorem 3.1 and Theorem 3.2.

For l = 1 and k = 0, Xl is a Poisson hyperplane process. In this case, Theorem 3.1 and
Theorem 3.2 give part of the results of Theorem 2 of [7].

Next, assume that l = k = d . By Theorem 2.2.4 of [6], for Hd−1-almost all boundary
points of a convex body K with nonempty interior, there exists a unique outer normal vector
σK(x) of K at x. Because lin(σK(x)) = Nord−1(bd K, x), the local mean normal measure µz

can be written as

µz(A) =
∫

K ′

∫
bd K

(1{A}(σK(x)) + 1{−A}(σK(x)))f (K, z − x)Hd−1(dx) P0(dK),

where bd K denotes the boundary of K and A ∈ B(Sd−1), with P0(·) = P̃({0}, ·).
For any K ∈ K ′, the measure Hd−1(bd K ∩ ·) is equal to the (d − 1)th curvature measure

of K . Thus, by Theorem 4.2 of [1], B �→ E
∑

K∈X

∫
bd K

1{B}(x)Hd−1(dx) is a locally finite
Borel measure on R

d and, hence, µz is a finite measure for λd -almost all z ∈ R
d . If we

additionally assume that f ≡ γ > 0 is a constant function, Theorem 3.1 and Theorem 3.2
yield Equations (4.54) and (4.55) of [8, p. 164].
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Furthermore, for all l ∈ {1, . . . , d} and k ∈ {1, . . . , l}, the above considerations show that
the local mean normal measure is of the form

µz(A) =
∫

Ld
d−l

∫
K ′

∫
rel bd K

(1{A}(σK+L(x)) + 1{−A}(σK+L(x)))

× f (K + L, (z − pL(z)) − x)

× H l−1(dx)̃P(L, dK)�(dL), A ∈ B(Sd−1).

Note that, since K + L has nonempty interior, σK+L(x) can be defined as for convex bodies;
σK+L(x) coincides with σK(x) considered in the affine hull of K .

4. Intersections with affine subspaces

Let l ∈ {1, . . . , d} and let Xl be a point process with intensity measure as in (3.1). In the
last section, we introduced associated zonoids for such processes and connected their intrinsic
volumes to intersection densities. In this section, we study intersections of Xl with affine
subspaces. For example, Xl induces a (nonstationary) point process onto any affine line and we
will show that the intensity function of such a process can be expressed in terms of the support
functions of the associated zonoids.

Let k ∈ {1, . . . , d − 1}, z ∈ R
d , and U ∈ Ld

k . We want to find an expression for the mean
(k−1)th Hausdorff measure of the intersections of the particles of Xl with z+U in an arbitrary
Borel set B ⊆ B(U + z). Therefore, we define the following measure:

νU+z(B) := E
∑

(M+L)∈Xl

Hk−1(B ∩ (z + U) ∩ (M + L)), B ∈ B(U + z).

Remark. For k = 1, νU+z(B) coincides with the mean number of intersection points in B of
the line z + U with the particles of Xl . If Xl is stationary and λU+z(B) = 1, then νU+z(B) is
the intensity of the stationary point process induced by Xl onto U + z which, by stationarity,
is independent of z.

The main result of this section is the following theorem.

Theorem 4.1. Let k ∈ {1, . . . , d − 1}, l ∈ {1, . . . , d}, and let Xl be a point process with
intensity measure as in (3.1). Furthermore, let U ∈ Ld

k and z ∈ R
d . Then νU+z is absolutely

continuous with respect to λU+z with the density given by

γU+z(y) := 2
∫

Sd−1
[lin(u), U⊥]µy(du), y ∈ U + z.

Proof. By Campbell’s theorem,

νU+z(B) =
∫

Ld
d−l

∫
F (l−1)

∫
L⊥

Hk−1(B ∩ (U + z) ∩ (M + L + x))

× f (M + L, x)λL⊥(dx) P(L, dM)�(dL).
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Analogous to the proofs of Lemma 3.1, Lemma A.1, and Lemma A.2, we obtain

νU+z(B) =
∫

z+U

1{B}(y)

∫
Ld

d−l

∫
F (l−1)

∫
M

[Nord−1(M + L, x), U⊥]

× f (M + L, (y − pL(y)) − x)H l−1(dx)

× P(L, dM)�(dL)λU+z(dy)

=
∫

z+U

1{B}(y)2
∫

Sd−1
[lin(u), U⊥]µy(du)λU+z(dy).

Example. Let k = 1 and U := {su | s ∈ R} for some u ∈ Sd−1. In this case, we have

γU+z(z + su) = 2
∫

Sd−1
|〈v, u〉|µz+su(dv) = 2h(�(Xl, z + su), u),

for s ∈ R. This is a generalization of Equation (4.50) of [8, p. 159].

Appendix A. Auxiliary and measurability results

In this section, we collect auxiliary and measurability results needed in Section 3. Respective
results implicitly used in Section 4 follow analogously.

The main tool in the proof of Lemma 3.1 is the next result which is a slight generalization
of Theorem 3 of [9] and follows directly from the proof of the latter.

Theorem A.1. Let m ∈ {1, . . . , d}, n0, . . . , nm ∈ {1, . . . , d−1}, B ∈ B(Rd), and let Mi ⊆ R
d

be an Hni -measurable set for i ∈ {0, . . . , m}. Furthermore, define n := n0 + · · · + nm

and let f : R
d × · · · × R

d → [0, ∞) be a measurable mapping. We assume that the pairs
(M0, n0), . . . , (Mm, nm) satisfy condition (I ) and that n ≥ md. Then∫

Rd

· · ·
∫

Rd

Hn−md(B ∩ M0 ∩ (M1 + x1) ∩ · · · ∩ (Mm + xm))f (x1, . . . , xm)

× λd(dx1) · · · λd(dxm)

=
∫

M0

· · ·
∫

Mm

1{B}(t0)f (t0 − t1, . . . , t0 − tm)[Norn0(M0, t0), . . . , Nornm(Mm, tm)]
× Hnm(dtm) · · · Hn0(dt0).

The measurability of the mappings

(t1, . . . , tm) �→ [Norn0(M0, t0), . . . , Nornm(Mm, tm)]
and

(x1, . . . , xm) �→ Hn−md(B ∩ M0 ∩ (M1 + x1) ∩ · · · ∩ (Mm + xm))

was proved in [9].
The following two auxiliary results were needed in the proof of Theorem 3.1.

Lemma A.1. Let k ∈ {1, . . . , d}, B ∈ B(Rd), and

M := {(M ′
1, . . . , M

′
k) ∈ (F ′)k | M ′

1, . . . , M
′
k is (Hd−1, d − 1)-rectifiable,

M ′
1 ∩ · · · ∩ M ′

k is a Hd−k-rectifiable set}.

https://doi.org/10.1239/aap/1183667611 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1183667611


316 • SGSA L. M. HOFFMANN

Then both M and the mapping

(M1, . . . , Mk) �→ Hd−k(M1 ∩ · · · ∩ Mk ∩ B) 1{M}(M1, . . . , Mk)

are measurable.

Proof. By Theorem 2.1.3 of [12] and as, by Theorem 1.1.6 of [8], the mapping (F1, F2) �→
F1 ∩ F2, F1, F2 ∈ F ′, is measurable, M is a measurable set. The result then follows from
Theorem 2.1.3, Theorem 2.2.1, and Corollary 2.1.4 of [12].

Lemma A.2. Let k and M be as in Lemma A.1 and Xl as in the assumptions of Theorem 3.1.
Then

E
∑

(M1+L1,...,Mk+Lk)∈(Xl)
k=

1{Mc}(M1 + L1, . . . , Mk + Lk) = 0,

i.e. (M1 + L1) ∩ · · · ∩ (Mk + Lk) is almost surely an Hd−k-rectifiable set for all
(M1 + L1, . . . , Mk + Lk) ∈ (Xl)

k=.

Proof. First, let M1, . . . , Mk, L1, . . . , Lk be fixed. From Theorem 3.2.23 of [2] and
Theorem 1.4.1 of [12] we obtain that (x1 + M1 + L1) ∩ · · · ∩ (xk + Mk + Lk) is Hd−k-
rectifiable for λkd -almost all (x1, . . . , xk) ∈ R

kd .
Since Xl is assumed to be Poisson, this, together with Lemma A.1, Campbell’s theorem, and

Corollary 3.1.6 of [8], yields

E
∑

(M1+L1,...,Mk+Lk)∈(Xl)
k=

1{Mc}(M1 + L1, . . . , Mk + Lk)

=
∫

Ld
d−l

· · ·
∫

Ld
d−l

∫
F (l−1)

· · ·
∫

F (l−1)

×
∫

L⊥
k

· · ·
∫

L⊥
1

1{Mc}(x1 + M1 + L1, . . . , xk + Mk + Lk)

× f (M1 + L1, x1) · · · f (Mk + Lk, xk)λL⊥
1
(dx1) · · · λL⊥

k
(dxk)

× P(L1, dM1) · · · P(Lk, dMk)�(dL1) · · · �(dLk)

= 0.

Measurability of the mapping

M + L �→
∫

M+L

1{B}(x)H0(Sd−1 ∩ Nord−1(M + L, x) ∩ A)Hd−1(dx)

follows analogously to [9, p. 235].
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