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Abstract
Showering is one of the most water-intensive behaviours in urban households, accounting
for 20–30% of water use. Real-time feedback from smart devices has been proven to sig-
nificantly reduce water consumption in showers. Still, it is not known whether these
devices have spillover effects on other water use behaviours. For the first time, we provide
empirical evidence for a significant and negative within-domain spillover effect from the
use of such devices, showing an increase in water use in other activities by 2.5% per day
per household. Up to one-third of conservation effects are eroded by such spillovers,
resulting in a two steps forward, one step back situation. Overall, however, net water
use is still reduced by 4.7% in the 385 households that were observed. This study points
out an important behavioural limit on the use of such smart shower devices and suggests
that such use be accompanied by informational or other campaigns to reduce the large
negative spillovers.
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Introduction

Showering accounts for a significant proportion (roughly 20–30%) of water used in
residential households (Shahmohammadi et al., 2019; Hoo, 2020), while heating
this water to comfortable temperatures also consumes a significant amount of
energy (Makki et al., 2013; Binks et al., 2017). Hence, motivating reduced water
use during showers is a significant step towards sustainability and conservation
efforts.

Given the relatively low price elasticity of water demand, as well as the political risk
of raising water prices, research on non-price measures such as nudges is, as a result,
particularly useful for policymakers (Bernedo et al., 2014; Smith and Visser, 2014;
Brick et al., 2023). While pricing policies remain important for balancing
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conservation and revenue needs for utilities and authorities, non-price measures are
growing in importance and prominence as complementary policy instruments.

There has been a large body of empirical work on nudges – which are defined as a
way to reshape the choice architecture to encourage individuals to behave in ways that
they themselves would prefer over their current actions (Oliver, 2017, 2023) – espe-
cially on providing real-time feedback through smart devices. Such smart shower
devices have been shown to significantly reduce water use during showers (Willis
et al., 2010; Agarwal et al., 2017).

During showers, users are typically more focused on the immediate pleasures
derived from showering compared to the volume of water used and may not be con-
scious of the amount of time and water used in the process. Real-time feedback on
water usage helps to mitigate this by transforming water consumption from some-
thing ‘abstract, invisible and untouchable’ to a process that is ‘transparent, dynamic
and controllable’ (Buchanan et al., 2014). Smart shower devices make users aware of
how much water they are using at any given time and work to increase the salience of
this information (Karlin et al., 2015; Tiefenbeck et al., 2018).

For example, the Hydrao Aloé conveys water use through the changing colours of
LED lights in the shower head, while the Amphiro B1 does so through a numerical
information display installed in the shower hose (see Supplementary Appendix S1 for
more detailed descriptions). Agarwal et al. (2017) found a significant reduction in
shower water consumption using the Amphiro B1 device in households in
Singapore, and Willis et al. (2010) found a mean reduction of 27% in shower event
volumes using the WaiTEK Shower Monitor.

In general, other studies have shown the effectiveness of devices that provide real-
time feedback either through reducing electricity consumption (Jessoe and Rapson,
2014), reducing caloric intake (Bollinger et al., 2011) or increasing online information
disclosure (Kehr et al., 2015).

Recent work by Goette and Tiefenbeck captures much of our current understand-
ing of the behavioural aspects of water conservation. First, Goette et al. (2019) found
that feedback is more likely to reduce water consumption levels among heavy users
(confirming earlier work by Tiefenbeck et al. (2018)). The influence of feedback
not only varies with the type of water consumer but also with other forms of social
interventions. Goette et al. (2021) showed that the water-conserving benefits of feed-
back interventions are consistently stronger for high baseline users but only when
they are initially presented with an achievable water conservation goal. That is, over-
ambitious goals can backfire on water conservation.

Second, Tiefenbeck et al.’s (2019) paper is based on nearly a decade of research on
how feedback reduces household water use. Both weekly and monthly reports of
household water consumption levels have been shown to reduce household water
consumption by around 6% (Tiefenbeck et al., 2013; Torres and Carlsson, 2018).
Moreover, the amount of water saved through feedback interventions is significant.
Tiefenbeck et al. (2014) showed that participants who received real-time feedback
on the amount of water consumed while showering subsequently reduced their con-
sumption levels by 23%, and this was sustained throughout the two-month study per-
iod. They further found that feedback interventions may be more effective among the
younger generations. Tiefenbeck et al. (2018) found that real-time feedback using the
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Amphiro B1 device reduced Swiss household shower resource (water and energy)
consumption by 22%. Recently, Tiefenbeck et al. (2019) have shown that providing
real-time feedback on energy consumed while showering leads to a significant
11.4% reduction in energy use. This promising finding was obtained from hotel
guests – volunteers neither aware of nor incentivised to participate in the study.

While these experiments have done much to show that nudging by increasing sali-
ence works to constrain water consumption, there remains a gap in our current under-
standing relating to the possible spillover effects. Spillover effects are interesting because
they potentially increase or reduce the effect of a specific intervention or policy (Dietz
et al., 2009). Spillover is defined as the effect of an intervention on subsequent beha-
viours not directly targeted by the intervention (Truelove et al., 2014). Liu et al.
(2021) found that setting goals to reduce electricity consumption may, in some cases,
also lead to a reduction in water consumption. However, negative spillover could also
occur in an environmental campaign. Werfel (2017) found that reminding people of
their energy-saving actions reduced their support for a carbon tax policy.

The pathways for such spillover effects of behavioural interventions are increas-
ingly receiving attention in the field of environmental psychology (Truelove et al.,
2014; Nash et al., 2017; Maki et al., 2019) and environmental economics (Carlsson
et al., 2021; Jessoe et al., 2021; Kumar et al., 2023).

Positive spillovers are accounted for by cognitive dissonance and theories relating
to identity (Truelove et al., 2014; Nash et al., 2017). Cognitive dissonance theory
(Festinger, 1962) suggests that people feel discomfort if they hold contradictory
beliefs or behave inconsistently. The inconsistency between what people believe
and how they behave motivates people to engage in additional environmentally con-
scious actions that will help minimize feelings of discomfort.

Negative spillovers (also known as compensatory spillovers), as reviewed by Nilsson
et al. (2017) and Truelove et al. (2014), are posited as the reduction of the likelihood of
subsequent pro-environment behaviour after prior engagement in pro-environment
behaviour. Some research relates such spillovers to the moral licensing theory, which
suggests that after performing a moral behaviour, individuals are more likely to feel
entitled or ‘licensed’ to behave immorally in other aspects (Merritt et al., 2010).

Overall, however, empirical studies on spillover effects tend to be limited. Many
studies measure non-targeted behaviours of interventions based on intentions or self-
reported data, which is subject to error and bias (Makki et al., 2013; Lanzini and
Thøgersen, 2014). Studies are often correlational in nature, making causal inferences
difficult (Truelove et al., 2014). At the same time, there are very few studies looking
across longer time horizons and only measure the spillover immediately after the ini-
tial behavioural action (Maki et al., 2019).

Our study aims to add to empirical research on spillover effects within the water
domain. We evaluate whether the real-time feedback from smart shower devices can
have spillover effects on other water use behaviours in households using a
difference-in-difference approach. We first find that there is a large and significant
conservation effect; second water use at other places in the household increases, partly
offsetting the gains in shower water conservation.

The outline of this paper is as follows. The section ‘Methods’ discusses the study
design, data collection and estimation of treatment and spillover effects. The section
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‘Results’ presents the results and findings, juxtaposed against important current
research. The section ‘Conclusions’ sets out our conclusions and how these contribute
to the current understanding of water behaviours.

Methods

Study design

Our research was conducted in a randomized control trial in Singapore. Singapore,
being a water-stressed, city-state where water is imported from a neighbouring coun-
try and where water conservation is high on the national agenda (Tortajada et al.,
2013), is constantly exploring new and innovative ways to conserve water.
However, more needs to be done. The Smart Shower Programme is a manifestation
of the latest approach – a turn towards libertarian paternalism (Thaler and Sunstein,
2003, 2008) by applying nudges (in the form of smart shower devices) to encourage
water conservation by individuals and households.

Under the Smart Shower Programme, the Public Utilities Board – Singapore’s
National Water Agency – started to deploy smart shower devices in 10,000 new
homes in 2018. A prior trial on 500 households in 2015 indicated a water savings
of 5 L per person per day during showers, which translates to about 3% of their
monthly water usage (PUB, 2022).

For this current study, the Hydrao Aloé smart shower devices were installed in the
bathrooms of households (NUS ethics approval no. S-18-332) from four high-rise
housing estates in Singapore (Keat Hong Mirage and Keat Hong Pride in Choa
Chu Kang, and Waterway Cascadia and Waterway View in Punggol), which share
very similar characteristics to households in the Smart Shower Programme in
terms of flat types and building age but are not within the programme. Each house-
hold was observed for a period of three months, with the first month being the base-
line period and the next two months as the intervention period. Smart shower device
readings were collected between 18 July and 13 November 2020 (due to different start
times for different groups of households; see Figure 1).

The four housing estates comprise 4,368 flats in high-rise buildings, which construc-
tion was completed in 2015 and 2016. (A gap of a few years after building completion
was chosen to prevent overlapping with households’ move-in phase, where water use
can be more erratic and difficult to interpret.) Limiting our sample households to high-
rise buildings also has the benefit of ensuring that there will be minimal fluctuations in
water pressure, which is controlled centrally by authorities, ensuring that water usage
deviations will not be a consequence of differences in water flow (due to water pressure).
Singapore’s housing policies limit the combined household monthly incomes of occu-
pants to S$12,000 (about US$9,000) at the time of buying these flats and do not allow
selling the flat within five years after purchase. As a result, the typical occupants share
very similar profiles – young families, sometimes with living-in elderly parents, with
similar household incomes. The flats comprise two or three bedrooms, and all have
two bathrooms. These similarities ensure a fair comparison across households in the
treatment and control groups. An additional step is to balance the two groups on
key characteristics, such as location, household size and household water use during
the random assignment process (see Supplementary Appendix S2).
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Figure 1. Study timeline and implementation.
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Invitation letters to join the study were sent out about 2 weeks before recruitment.
During the recruitment, trained surveyors went door-to-door to ask households to
participate in the study. Basic information was given: (1) households were informed
that the study involved smart shower devices and water conservation, (2) that there
would be water data collection and three short surveys over the entire study period
and (3) that they would receive a S$20 (about US$15) grocery voucher for participat-
ing in each survey. About 10% of the households agreed to participate, and, in total,
407 households were recruited. Participating households were informed that they
could keep the smart shower devices at the end of the study.

Once households opted into the research project, the first survey was administered,
the water meter was read, and the Hydrao Aloé smart shower devices were installed in
both household’s bathrooms. The Hydrao Aloé device is powered by water flow dur-
ing a shower and can record water volume (in whole litres), duration, average tem-
perature and flow rate per shower. A mobile application allows the shower data to
be synced to a cloud application to configure the colour of LED lights in the shower
head based on pre-set thresholds of water use. Households were only able to access
this mobile application after the end of the study. During a shower, around 2 min
of soaping time is allowed before the next water flow is recorded as a new shower.

The surveyors visited the recruited households three more times at monthly inter-
vals. Prior to the second visit, households were randomly assigned to either the treat-
ment or control group. The randomization ensured that treatment and control
households were balanced on key characteristics such as baseline household water
use, household size and selected survey questions.

During the second visit, the surveyors configured the light settings of the devices
for treatment households. The shower heads’ colour changes were set from green to
red with the following thresholds: green (0–10 L), blue (10–14 L), purple (14–18 L)
and red (18–20 L). The devices started flashing red when water use exceeded 20 L.
The target of 20 L was selected based on an average use of about 25 L per shower
event during the baseline period. For control households, the lights remained off
throughout the intervention period. Small waterproof posters explaining the meaning
of each colour were placed inside the shower cubicles of the treatment households.
The researchers also administered the second survey, replaced faulty devices and
recorded the water meter readings.

During the third visit, surveyors retrieved the second month of shower data,
replaced any faulty devices and read the household water meters. Finally, during
the fourth and last visit, households answered the third survey, surveyors retrieved
the third month of shower data and read the water meters of the households.

Figure 1 gives an overview of the study timeline and implementation process.

Data collected

Of the 407 households that were recruited, 3851 remained at the end of the study.
Some households dropped out due to personal reasons, long periods of absence

1An ex-post power estimation test (Burlig et al., 2020) and an analysis of covariance (ANCOVA) robust-
ness check support the adequacy of the sample size (see Supplementary Appendices 3 and 4).
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from the house or smart shower device inactivity due to personal preferences (for
example, finding the showerhead too heavy). There were no indications of systemic
differences due to these attrition issues.

The raw dataset included observations of 239,216 measured showers from 768 devices
in 385 households. The devices’ limited internal memory restricts shower volume
records to 240 shower events between data downloads, with older records being over-
written by new ones. This type of limitation is not unique to such smart shower devices;
Agarwal et al. (2017, p. 17) and Tiefenbeck et al. (2018, Supp. Info. p.3) used devices
with limits of 672 and 205 shower events, respectively. Imputation was used to replace
the missing overwritten records in the shower data (similar to the Agarwal et al. (2017)
study) to account for time-fixed effects and calculate shower event frequencies. Since all
shower events recorded (even overwritten ones) are ordered with a running sequence of
numbers, we were able to use the sequence of numbers to determine if there was a gap
(missing sequence numbers) that needed to be imputed. The number of showers to
impute was the respective average number of showers in each period. The volume input-
ted was the mean volume of the device used in each period. A total of 21,445 shower
values were added through imputation, resulting in a total of 260,661 showers.
Imputation of missing data did not affect the robustness of the data – average water con-
sumption per shower event and trends of control and treatment groups remain similar to
a parallel analysis without the imputation (see Supplementary Appendix S5).

In the next pre-processing step, 61,470 recorded showers below 5 L were removed
as records with very low water use may not indicate showers, but rather water used for
other purposes (such as cleaning). While this number appears high, shower heads in
Singapore bathrooms are frequently used for cleaning due to closed cubicle designs
(Agarwal et al., 2017). The first and last recorded shower event for each time period
(between data collection) was also discarded due to noise from field workers installing
and syncing smart shower devices, which requires running the shower to power the
Bluetooth connection – this resulted in another 2,026 shower events being dropped.
Finally, the data were cleaned by filtering out the devices that recorded fewer than 10
shower events during the baseline and the intervention period; 2,510 shower events
falling under this category were removed. The final dataset consisted of 194,655
showers from 672 smart shower devices in 381 households (see Table 1).

Water meters for households were read at every fortnightly visit to a recruited
household, resulting in four readings for each household. Water consumption for
each household was obtained by taking the difference between two consecutive read-
ings and dividing that by the number of days that had passed.

Estimation of treatment and spillover effects

To quantify the treatment effect, we applied a difference-in-difference approach based
on the following equation:

yis = ai + b1Tis + dt + 1is, (1)

where yis is the water volume of shower event s from device i, and Tis is a binary vari-
able that equals 1 if the shower event s from device i occurs during the intervention
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Table 1. Sample distribution across treatment and control

Group
No. of

households
No. of
devices

No. of
showers
recorded

Baseline (M1)

Average
duration of
showers
(min)

M2 + M3

Average
duration of
showers
(min)

Average water use (L) Average water use (L)

Per
shower

Per
household

Per
shower

Per
household

Treatment 189 336 94,768 24.90 160.10 3.49 19.75 123.78 3.51

Control 192 336 99,887 25.17 166.88 3.62 25.17 167.61 3.77

Total 381 672 194,655 25.04 163.45 3.55 22.54 145.46 3.64
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period and device i is in the treatment group (t represents the percentage point of
study completion; the baseline period is defined by t≤ 33% (i.e. the first month of
the three-month study) and the intervention period is defined by t > 33%). The con-
trol group serves as the reference group. Thus, β1 represents the average treatment
effect. Furthermore, we control for device-fixed effects, αi, and time-fixed effects,
δt, using the study completion variable, t. Finally, εis represents the shower-specific
error term and to account for the correlation among shower events coming from
the same device, we cluster standard errors on the devices.

The persistence of the treatment effect was assessed by extending (1) to four time
periods based on the fortnightly estate water meter reading collection:

yis = ai + b1Tis + b2Tis(dt − a1)+ b3Tis(dt − a2)

+ b4Tis(dt − a3)+ b5Tis(dt − a4)+ dt + 1is,
(2)

where ak are the knots or cutoffs in a spline regression and the terms δt–ak have the
value only if the term is positive, and 0 otherwise. In this model, β1 can be interpreted
as the treatment effect immediately at the start of the intervention. The remaining
β-coefficients are the slopes for the treatment group at each phase of the intervention
period and will provide information on the persistence of the treatment effect.

We also investigated if the overall water use of households was affected by the use
of smart shower devices. The household water use derived from the monthly water
meter readings was split into shower water use, based on the data downloaded
from the smart shower devices, and non-shower use. All amounts were converted
to LPD for each household.

The model to assess the spillover effect of water used elsewhere in the household is
similar to the model for the shower analysis. However, this time, i refers to a house-
hold rather than a device. There are also no subscript s since showers have already
been aggregated at the household level; s in Tis is replaced by the time subscript t
to represent periods. Households and time-fixed effects are present as well. yi refers
to shower, non-shower or overall LPD. Treatment variable T = 1 when the observation
is recorded from the treatment group during the intervention period.

yi = ai + b1Tit + dt + 1i. (3)

Results

Water savings in shower use

A typical shower event during the baseline period used around 25 L and took about
4 min (see Table 1). There was considerable variation in the showering behaviour of
households. For instance, while most showers used 10–25 L, some households con-
sumed more than 60 L per shower.

After the intervention, there was an immediate drop in the average water use of the
treatment group and no change in the control group (see Figure 2). The immediate
effect was around 7 L per shower event (a positive and significant slope of the curve),
which stabilized after 2 weeks at about 5 L per shower until the end of the study period.
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The average treatment effect over the intervention period is 5.54 L per shower
event and is statistically significant at the 1% level (Table 2). The treatment resulted
in a 22% decrease in shower water use, given an average baseline use of 25 L per
shower.2

The persistence of the treatment effect was analysed by dividing the study period
into four parts, with splits at 33%, 50%, 66% and 83% study completion, and esti-
mating a spline regression model. The treatment effect was estimated at 6.99 L per
shower immediately after the feedback was switched on. The slope at the first spline
is positive and significant, suggesting that households were adjusting to the surprise
of the intervention and saving slightly less than the immediate savings observed.
The slope at the second spline is not significant and close to zero (the coefficient
from Treatment * first spline nearly offsets the coefficient from Treatment * second
spline), and the rest of the coefficients are small and non-significant. This implies
that the treatment effect had stabilized after the initial drop-off at least for the
remaining weeks of the study, although whether the treatment effect will remain
stable over the longer term cannot be determined without further follow-up longi-
tudinal studies.

Figure 2. Shower water use over the study period.

2Compared to about 2–4 L with a baseline of 20 L in the Agarwal et al. (2017) study (about 10%
decrease) and around 9.5 L per shower with a baseline of 44 L in the Tiefenbeck et al. (2018) study
(about 22% decrease).
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Negative spillovers

Households used an average of 496 LPD in the baseline period, with no significant
difference between treatment and control (see Table 3). Non-shower use averaged
333 LPD, while shower use averaged 163 LPD. Figure 3 shows the change in overall
water consumption relative to the baseline periods, and Table 4 shows the regression
results. There was a non-significant increase in overall water use in the control group,
while the treatment group showed a significant decrease in the overall water con-
sumption of 23.5 LPD or a decrease of 4.7% of the baseline water use. However,
the magnitude of this overall decrease in household water consumption was smaller
than that of the decrease in shower water use. Specifically, while the control group
had a slight non-significant increase in shower LPD, the treatment group had a sig-
nificant 37 LPD reduction in shower water use. This suggests a negative spillover
effect of about 13.5 LPD since the decrease in shower water used per day due to
the intervention was offset by an increase in non-shower water used per day.

Overall, some negative spillover is observed across all households, although it is
not high enough to completely erode the conservation effects. While the net effect
is large (roughly 5% of a household’s water use), about one-third of the treatment
effect was lost due to negative spillovers.

This finding should be seen against current thinking on spillover effects.
Earlier studies suggest that the effects of water savings at the household level are

Table 2. Results of the difference-in-difference estimations for treatment effect

Treatment effect

Dependent variable: volume (L)

(1) (2)

Treatment −5.541*** −6.987***

(0.389) (0.513)

Treatment * first spline (knot = 33) 0.098***

(0.033)

Treatment * second spline (knot = 50) −0.088

(0.055)

Treatment * third spline (knot = 66) 0.000

(0.048)

Treatment * fourth spline (knot = 83) −0.049

(0.047)

Device-fixed effects? Yes Yes

Time-fixed effects? Yes Yes

Observations 194,655 194,655

Adjusted R2 0.260 0.260

Note: Standard errors are clustered on devices. *p < 0.1; **p < 0.05; ***p < 0.01.
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Table 3. Water usage and duration per household

Group

Baseline (M1) M2 + M3

Average overall
water usage per
household (L)

Average shower
water usage per
household (L)

Average non-shower
water usage per
household (L)

Average overall
water usage per
household (L)

Average shower
water usage per
household (L)

Average non-shower
water usage per
household (L)

Treatment 494.72 160.10 334.62 476.05 123.78 352.27

Control 497.32 166.88 330.44 502.15 167.61 334.54

Total 496.01 163.45 332.55 488.96 145.46 343.50
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larger than what can be accounted for by the use of smart shower devices (Agarwal
et al., 2017), suggesting a positive spillover effect possibly due to increased awareness
of resource use. However, as the study had used aggregated secondary data, its results
were inconclusive. Our study establishes that the spillover is, in fact, negative and
large, at least in the context of Singapore.

Figure 3. Overall and shower difference-in-difference estimates (household level).

Table 4. Spillover effect

Spillover effect

Dependent variable: water use (LPD)

Overall LPD (1) Shower LPD (2) Non-shower LPD (3)

Treatment −23.511*** −37.048*** 13.537**

(7.856) (3.982) (6.656)

Household-fixed effects? Yes Yes Yes

Time-fixed effects? Yes Yes Yes

Observations 1,116 1,116 1,116

Adjusted R2 0.959 0.925 0.948

Note: *p < 0.1; **p < 0.05; ***p < 0.01.
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Second, negative spillover in environmental behaviour had earlier been established
by Tiefenbeck et al. (2013), but this was across domains. They reported that house-
holds that reduced water use (6.0% on average) simultaneously increased their elec-
tricity consumption by a similar proportion (5.6% on average). Our study shows that
this effect takes place within domains as well.

Third, we were interested in uncovering the mechanism underlying the spillover
effects to improve the intervention. Our work finds traction in current thinking on
moral licensing.

Figure 4 shows that there is a negative relationship between the change in water
use for showering and other water use in the treatment group, while this relationship
is positive in the control group. When considering only households that decreased
their showerhead usage after the treatment, we notice a small spillover effect, i.e., a
decrease in showerhead use led to an increase in non-bathroom use. For every 1 L
of water saved through the showerhead treatment, these households increased their
non-bathroom usage by about 0.15 L. This spillover effect may be explained by

Figure 4. Shower vs non-shower LPD.
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treatment households opting to use other taps within the household rather than the
showerhead for their non-bathroom water needs. Yet, consideration of the shower-
head treatment only explains about 1% in the variance of non-bathroom usage –
there are probably other factors that have a greater impact on the increase in non-
bathroom water usage.

This provides prima facie support for the moral licensing hypothesis – that users
compensate for conservation behaviours in showering by using more in other areas.
While this is insufficient to infer a causal relationship, this preliminary finding is
worthy of further exploration in future studies.

Additional analysis

The large behavioural response also allows us to examine whether the reaction to real-
time feedback differs in subsamples. Previous studies have found that conservation
effects are larger for high baseline users than for users who start with more efficient
resource use (Allcott, 2011; Ferraro and Price, 2013; Allcott and Rogers, 2014; Brent
et al., 2015; Schultz et al., 2016). We checked if the aggregate treatment effect was
affected by the baseline use of the shower devices. By splitting and categorizing the
observations by the median baseline shower consumption (which was 19 L), we
can examine whether the treatment effect differed between high (an average of
33.77 L) and low (an average of 15.45 L) baseline users. While there do not seem
to be noticeable differences in the control group between high and low baseline
users, the converse is true for the treatment group. On average, in the treatment con-
dition, high baseline users reduced their shower water use by around 5 L more com-
pared to low baseline users.

We also checked whether the number of showers that were taken was influenced
by the use of the smart shower devices. Participants in the treatment condition could
have taken more showers despite consuming less water per shower event. This could
have attenuated water conservation behaviours arising from the use of smart shower
devices. However, we found a small decrease in the average number of showers taken
per day in the treatment group (from 3.15 to 3.07 showers per day), while in the con-
trol group, there was almost no change (from 3.31 to 3.30 showers per day).
A difference-in-difference estimation of the shower frequency shows that the decrease
is not significant when all devices are included, significant (p < 0.05) if two outlier
devices are excluded and significant (p < 0.10) if further devices with incomplete
baseline data are excluded (to remove the potential impact of imputation) (see
Supplementary Appendix S6 for more details).

A check of the heterogeneity by regressing the spillover effect to a range of house-
hold characteristics and attitudes did not show any clear patterns (such as over time,
across different intervention periods or with household size). However, the presence
of older household members seems to affect the spillovers; the negative spillovers were
significantly (p < 0.05) stronger for households with people aged 50 and above (see
Supplementary Appendix S7).

The survey examined respondents’ attitudes towards showering, conservation and
the smart shower device, as well as their water use perception. The results show that
both treatment and control group respondents’ attitudes towards water conservation
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and the environment were similar and did not change significantly over the study
period. The survey also shows that while the treatment group saw the merits of
using smart shower devices, they also experienced some degree of stress using it.

As expected, the treatment intervention increased respondents’ awareness of their
water use during shower events. In the surveys, respondents were asked to estimate
how much water they use during shower events. We then compared their estimates
with their actual water use before and after the intervention (see Supplementary
Appendix S8). Before the intervention, control and treatment households estimated
that they used about 13 L per shower event, which is only around half of the average
baseline of 25 L per shower event. After the smart shower devices were switched on,
treatment households estimated their shower water use much more accurately, with
the mean estimated water use being close to the actual mean water use.
Interestingly, despite not receiving any feedback, control households also showed
increased awareness of their water use, even though they were still about 9 L off
the mark. The exact reason for this cannot be identified from the present study
but is worth exploring in future research.

Conclusion

Overall, this study serves as a response to the call for more research on the outcomes
of experiments that aim to inform governance (Kivimaa et al., 2017) by highlighting
the impact of spillovers in the use of smart water devices for water conservation
efforts. There are two main findings in this study – the first confirms existing research
and the second provides a novel insight into water use behaviours. First, in line with
the behavioural turn among policy scholars to effect policy changes (Leong and
Howlett, 2022), including the consumer behaviour and policy sphere (Reisch and
Zhao, 2017), we found that the use of nudging through real-time feedback has a
large effect on the per-shower water use – on the studied sample, savings are on aver-
age 5.54 L per shower. One of the reasons could be due to a more accurate idea of
how much water is being used – our surveys find that real-time feedback makes per-
ceptions of water use far more accurate.

Our study design allows us to explore beyond a snapshot view of this nudging
effect and examine its impact on a medium term (of —two to three months).
Nevertheless, we do need to be wary of extrapolating the results to the longer term.
Most of the literature suggests that this type of nudge will decay relatively quickly
(Ferraro et al., 2011; Ferraro and Price, 2013; Allcott and Rogers, 2014; Bernedo
et al., 2014), and this is evident in our study as well through the drop-off in treatment
effect from the initial 7 L per shower to 5 L per shower. However, the effectiveness of
nudges in the long run is still not clear in the existing literature (Congiu and Moscati,
2022). Some scholars have suggested that the long-term effectiveness of nudges will
depend on whether it is a Type 1 nudge (those targeting automatic behaviour) or
a Type 2 nudge (those that educate or persuade at the conscious level) (Lin et al.,
2017). Type 2 nudges are expected to lead to long-term changes, but the efficacy
of Type 1 nudges in leading to sustained changes is less certain. Our study suggests
a stabilization of the treatment effect after the initial drop-off (especially when the
nudged behaviour becomes a habit over time), but with smart shower devices
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being a Type 1 form of nudge, it is equally likely that individuals will start to revert to
their old habits once the salience of the devices has worn off.

Second, and more significantly, we demonstrate, for the first time, the existence of
a negative spillover from the use of smart meter devices. This is observed across all
households, and while this does not completely erode conservation effects, it does
provide a cautionary insight into the use of such devices. Whereas in the past,
research has only shown the benefits of use, our study shows that as high as one-third
of the conservation effects may be cancelled by negative spillovers. That is to say, two
steps forward, unfortunately, one step back.

Other than negative spillovers, another important consideration of implementing
smart water devices in residential units, based on a systems perspective, is the impact
on the amount of wastewater available. While using smart meter devices during
showers helps to save water, it also has the lead-on effect of reducing wastewater avail-
able, which could subsequently be used for water recycling. This is another important
avenue for water conservation in Singapore. As such, from a systems perspective, the
efficacy of smart meter showers may be further eroded on a national basis (though it
still does lead to savings on a household level).

We also recognize that there is a limit to the mileage smart water devices can
have. As we mentioned, showering is a pleasurable activity, so the devices can
only reduce water usage to a certain extent without actually prohibiting showers
altogether.

While concerns about the potential autonomy-eroding qualities of soft paternal-
istic interventions such as nudging and smart shower devices need to be paid
proper attention (Oliver, 2023), another area of concern revolves around the exter-
nalities associated with these interventions (spillovers). Nudge interventions
should not be considered in isolation but with consideration of all the ‘ripples on
a pond’, i.e. the behavioural splash as a result of the intervention (Dolan and
Galizzi, 2015).

Lastly, we posited that moral licensing could account for this behaviour – that
users compensate for their restrictive behaviours in showering by using more water
elsewhere. Given this, policymakers will need to systematically evaluate any potential
spillovers (positive or negative) (Krpan and Urbaník, 2021) with future research that
could focus on further uncovering the mechanism of such spillovers as well as policy
implications such as the need to compensate for these negative spillovers by raising
awareness of water consumption in non-showering areas. For instance, by tweaking
the nudges into socially minded nudges (Van Der Linden, 2018), such as by inform-
ing people how many referent others are participating in the same initiative (installing
smart water devices in their homes).

Supplementary Material. To view supplementary material for this article, please visit https://doi.org/10.
1017/bpp.2024.25.
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