Chemosymbiotic bivalves from Miocene methane-seep carbonates in Italy

Steffen Kiel,1 and Marco Taviani2,3,4

1Swedish Museum of Natural History, Department of Palaeobiology, Box 500 07 104 05 Stockholm, Sweden (sten.kiel@nrm.se)
2Institute of Marine Sciences, Italian National Research Council, Via Gobetti 101, 40129 Bologna, Italy
3Biological Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA (marco.taviani@bo.ismar.cnr.it)
4Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy

Abstract.—Eleven species of chemosymbiotic bivalves are reported from middle to late Miocene methane seep deposits (‘Calcari a Lucina’) in the Italian Apennines, including seven new species and one new genus. The new species are Bathymodiolus (s.l.) moroniae and B. (s.l.) miomediterraneus among the Bathymodiolinae and Archivesa aharoni, A. apenninica, A. strigarum, and ‘Piocardiata’ italica among the Vesicomyidae; specimens from the middle Miocene of Deruta are reported as Archivesa aff. aharoni. Samiulus iohannesbaptistae new genus new species is introduced for an unusual mytilid with a commarginally ribbed surface, which might be the first non-bathymodiolin mytilid obligate to the seep environment. The two large lucinid species from which these deposits derived their informal name ‘Calcari a Lucina’ are identified as Meganodontia hoernea (Des Moulins, 1868) and Lucinoma perusina (Sacco, 1901). With Chanellaxinus sp., we report the first thyasirid from a Neogene deep-water seep deposit in Italy and the first fossil occurrence of this genus.

Introduction

Limestone deposits yielding large lucinid bivalves have been known for centuries from the Miocene deposits in Italy, and were termed ‘Calcari a Lucina’ (Manzoni, 1876; Coppi, 1877; Scarabelli, 1880; Sacco, 1901; Di Stefano, 1903). Due to their isolated occurrence in deep-water sediments and the large bivalves preserved in them, they were considered to have been transported from shallow water (Ricci Lucchi and Veggiani, 1967). This view changed after the first discovery of faunal communities at methane seeps in the deep Gulf of Mexico with similarly large bivalves (Paull et al., 1984) and the recognition that methane seep carbonates can be identified based on their distinctive, light carbon isotope signature (Hovland et al., 1987). The ‘Calcari a Lucina’ deposits throughout Italy are now considered as ancient deep-water methane seep deposits (Clari et al., 1988; Conti et al., 1993; Terzi, 1993; Aharon and Sen Gupta, 1994; Berti et al., 1994; Ricci Lucchi and Vai, 1994; Taviani, 1994; Terzi et al., 1994; Peckmann et al., 1999; Clari et al., 2004b; Conti et al., 2004, 2010). Despite this wealth of geologic literature on these deposits, modern studies on the macrofauna are relatively rare (Moriani, 1966; Taviani, 1994, 2011, 2014; Taviani et al., 2011). The purpose of the present contribution is to provide a revision of the major taxa of chemosymbiotic bivalves of the ‘Calcari a Lucina’ deposits, with exclusion of solemyids.

Materials and methods

Specimens were coated with ammonium chloride for photography. The material is from twelve seep deposits of middle to late Miocene age (Fig. 1) associated with deep-water hemipelagic marls or turbidites, mostly ascribed to the Marnoso-arenacea Formation. Their geological and stratigraphic context is described in various publications (Vai et al., 1997; Conti and Fontana, 1999; Clari et al., 2004b; Taviani, 2011). A short description of the localities is provided in the Appendix.

Repositories and institutional abbreviations.—MGGC: Museo Geologico Giovanni Capellini, University of Bologna; MSF: Museo Civico di Scienze Naturali, Faenza; MZB: Museo dell’Evoluzione (formerly Zoologia), University of Bologna; MRSN: Museo Regionale di Scienze Naturali, Torino (managing the Bellardi and Sacco collection, property of the Turin University).

Systematic paleontology

Class Bivalvia Linnaeus, 1758
Subclass Pteriomorphia Beurlen, 1944
Order Mytilida Férussac, 1822
Family Mytilidae Rafinesque, 1815
Genus Bathymodiolus kenk and Wilson, 1985

Type species.—Bathymodiolus thermophilus Kenk and Wilson, 1985, Recent, Galapagos Rift Zone, by original designation.

Remarks.—Molecular phylogenetic studies have shown that species currently classified as Bathymodiolus belong to at least two clades within the bathymodiolins (Gustafson et al., 1998; Jones et al., 2006; Lorion et al., 2010, 2013; Thubaut et al., 2013), of which those related to B. childressi may be placed in a separate genus. This species group is often referred to as the ‘childressi clade’ and it is recommended to use “Bathymodiolus” only in quotation marks for these species until the taxonomic uncertainties...
Bathymodiolus exbrocchii are settled (Gustafson et al., 1998). Morphologically, the two clades can be distinguished based on muscle-scar pattern (Gustafson et al., 1998), which, unfortunately, is not preserved in any of the fossils reported here from northern Italy. Therefore, we refer to them as Bathymodiolus (sensu lato).

Bathymodiolus (s.l.) moroniae new species

Figure 2

1966 *Modiolus (Modiolus) exbrocchii* exbrocchii Sacco; Moroni, p. 78, pl. 5, fig. 2, pl. 6, fig. 4.
1996 *Bathymodiolus exbrocchii* Sacco; Taviani, fig. 2a, 4c.
2001 *Mioiolinid* Taviani, fig. 20.7a.
2011 “*Bathymodiolus*” cf. *exbrocchii* (Sacco, 1898); Taviani, fig. 3c.

Type specimens.—Holotype: MGGC 21907, single right valve from Case Rovereti. Paratypes: seven specimens from Case Rovereti: MZB 27218, 27268, 27270, 27272, 27273; MGGC 21921, 21922; one from Monticino-Limisano – Castelnuovo junction: MSF 1100; one from Ca’ Planté (MSF 2135, on same large block as MSF 2119). Forty-four valves (including MZB 27068, 27271, 27278, 27281) from Case Rovereti; three specimens from Verzino (MGGC 21923, 21924, 21925); one from Deruta (MGGC 21926); seven articulated shells from Deruta (MRSN, under cf. *Bathymodiolus exbrocchii*, PU 40607); one articulated specimen from Verzino MGGC 21927; three articulated shells (MSF 1360) plus one valve from Ca’ Planté; and specimens from Montepetra; four valves from block from Monticino-Limisano – Castelnuovo junction, Brisighella (MSF 1106-1109); five valves from Abisso “Mornig” (MSF 1086, 1090, 1094, 1097, 2120); see Table 1 for measurements.

Remarks.—The assignment of this species to *Bathymodiolus* (sensu lato) is based on its general shape, the change from a hinge with denticles in young specimen to an edentulous hinge in adults, its shell microstructure (cf., Génio et al., 2012), and its mass occurrence at seep deposits. The early juvenile shell shape and adductor and retractor muscle scars, which have been used to identify other fossil bathymodiolins (Kiel, 2006; Kiel and Goedert, 2007; Sæther et al., 2010; Amano and Jenkins, 2011; Kiel and Amano, 2013) are not preserved in *Bathymodiolus (s.l.) moroniae* n. sp.

Nelli (1903) and Moroni (1966) had identified this species as *Modiolus (Modiolus) exbrocchii* exbrocchii Sacco, 1898, which was named by Sacco (1898) based on an illustration of *Modiola broccii* Mayer in Hörmes, 1870 from the Vienna Basin (Hörmes, 1870, p. 345, pl. 45, fig. 13a, b). However, this species differs from *B. (s.l.) moroniae* by being more elongate and by having a distinct and sharp ridge running from the umbo to the posteroventral margin, whereas *B. (s.l.) moroniae* is smoothly convex. Furthermore, specimens of *B. moroniae* with the size of *M. exbrocchii* as figured by Hörmes (11 cm) are more compact and less elongate that *M. exbrocchii*.

Most similar in general shell shape are specimens of *B. brevior* von Cosel, Métrier, and Hashimoto, 1994 living at hydrothermal vents in the Indian Ocean (this population was formerly called *B. marisindicus* Hashimoto, 2001, but later synonymized with *B. brevior*, based on molecular data), and *B. puteoserpens* von Cosel, Métrier, and Hashimoto, 1994 from the Mid-Atlantic Ridge (von Cosel et al., 1994; Hashimoto, 2001). Another similar species is *B. brooksi* from the Gulf of Mexico (Gustafson et al., 1998). Interestingly, these three morphologically most similar species all belong to *Bathymodiolus sensu strictu* and not to the *childressi* clade.

Unlike bathymodiolins at most other fossil seep deposits, *Bathymodiolus (s.l.) moroniae* n. sp. occurs mostly as disarticulated valves, especially in adult stages.

Bathymodiolus (s.l.) miomediterraneus new species

Figure 3

Type specimens.—Holotype: MGGC 21908; paratypes: MSF 1351 (two articulated shells), MSF 1352 (two articulated shells,
Table 1. Measurements of Bathymodiolus (s.l.) moroniae new species; H = height, L = length, W = width of two valves, except when indicated otherwise.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Specimen</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Rovereti</td>
<td>MZB 21907, holotype</td>
<td>61</td>
<td>27.8</td>
<td>9.3 (single)</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 27270, paratype</td>
<td>41.7</td>
<td>21.4</td>
<td>8.5 (single)</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 27218, paratype</td>
<td>52.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 27268, paratype</td>
<td>72 (incomplete)</td>
<td>33.0</td>
<td>13 (single)</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 27273, paratype</td>
<td>110 (incomplete)</td>
<td>49</td>
<td>17 (single)</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 27273, specimen on same block</td>
<td>64.0</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 27272</td>
<td>39.0</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MGGC 21927</td>
<td>27.6</td>
<td>14.3</td>
<td>9.5</td>
</tr>
<tr>
<td>Verzino</td>
<td>MGGC 21923</td>
<td>74 (incomplete)</td>
<td>37</td>
<td>9.5 (single)</td>
</tr>
<tr>
<td>Verzino</td>
<td>MGGC 21924</td>
<td>61 (incomplete)</td>
<td>25</td>
<td>18 (single)</td>
</tr>
<tr>
<td>Verzino</td>
<td>MGGC 21925</td>
<td>87 (incomplete)</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MGGC 21920</td>
<td>95</td>
<td>42</td>
<td>15.5 (single)</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MGGC 21921</td>
<td>41.2 (incomplete)</td>
<td>20</td>
<td>10.4</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MGGC 21922</td>
<td>11</td>
<td>5.4</td>
<td>2 (single)</td>
</tr>
<tr>
<td>Bivio Castelnuovo</td>
<td>MSF 1100</td>
<td>101.5 (incomplete)</td>
<td>49.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1360, paratype</td>
<td>133</td>
<td>52</td>
<td>16</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1360, specimen on same block</td>
<td>93 (incomplete)</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>Abisso "Mornig"</td>
<td>MSF 1086</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abisso "Mornig"</td>
<td>MSF 2119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abisso "Mornig"</td>
<td>MSF 2120</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abisso "Mornig"</td>
<td>MSF 1090</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abisso "Mornig"</td>
<td>MSF 1097</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abisso "Mornig"</td>
<td>MSF 1094</td>
<td>82 (incomplete)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

one figured), MSF 1353 (right valve), MSF 1190 (left valve); all types from Le Colline.

Diagnosis.—Small- to medium-sized “Bathymodiolus” with subterminal umbo, broad anterior margin, and arched dorsal margin; maximum inflation just anterior to middle of shell; blunt ridge running from umbo to posteroventral corner.

Occurrence.—Middle Miocene (early Serravallian) seep carbonates at Le Colline in northern Italy.

Description.—Well inflated, moderately sized, arched modioliform shell with low, subterminal umbo; maximum inflation just anterior of center; anterior margin broad and well rounded, posterodorsal margin broadly arched in large specimens, smaller specimens with distinct posterodorsal corner, ventral margin slightly concave in small specimens, strongly concave in large ones; posterior margin gently rounded; blunt ridge running from umbo to posteroventral corner; surface smooth except for growth increments.

Etymology.—Referring to the Miocene Mediterranean Basin.

Materials.—Three specimens from Le Colline (MSF 2136); see Table 2 for measurements.

Remarks.—Similar in shape is ‘Modiola’ pisticina Sacco, 1904 from the Burdigalian of Piedmont (Sacco, 1904, pl. 29, fig. 6a, b; Merlino, 2007, pl. 6, figs. 8, 9); the type specimen is small (~13 mm long) and has the umbo in a more posterior position and a broader anterior margin than B. miomediterraneus n. sp. ‘Modiola’ pisticina may be related to small bathymodiolins such as “Idas” and should be further investigated in the context of whale- and wood-fall communities in the Italian Neogene. The middle Miocene ‘Modiola’ exbrocchii (e.g., the specimen illustrated as Modiola brocchii by Hörnes, 1870) and its variation M. exbrocchii var. tauroarpa Sacco, 1898, a small species of ~20 mm length (Sacco, 1898, pl. 11, figs. 28, 29; Merlino, 2007, pl. 6, fig. 7), have a more elevated umbo and a more distinctive ridge running from the umbo to the posterior-ventral margin than B. miomediterraneus. The new species differs from Bathymodiolus (s.l.) mororiae n. sp. by having the umbo in a more anterior (subterminal) position. The most similar Recent species are Bathymodiolus mauritanicus von Cosel, 2002, which occurs off West Africa and in the Gulf of Cadiz (von Cosel, 2002; Génio et al., 2008) and appears to have a broader posterior margin than B. (s.l.) miomediterraneus n. sp., and the Japanese Bathymodiolus hirtus Okutani, Fujikura, and Sasaki, 2004, which has a more elevated umbo as adult than B. (s.l.) miomediterraneus n. sp. and is broader (less slender) as juvenile (Okutani et al., 2004). A fossil species with a similar subterminal umbo is the presumably Oligocene Bathymodiolus (s.l.) palmaren sis from Colombia (Kiel et al., 2010), but it differs from B. (s.l.) miomediterraneus n. sp. by being more elongate and by having almost straight anterior and posterior margins. Bathymodiolus (s.l.) miomediterraneus n. sp. is typically found with articulated valves, in contrast to Bathymodiolus (s.l.) mororiae n. sp. and Samiolus iohannesbaptistae n. gen. n. sp.

Genus Samiolus new genus

Type species.—Samiolus iohannesbaptistae new genus new species, from late Miocene seep deposits in northern Italy.

Figure 2. Bathymodiolus (s.l.) mororiae new species from Miocene seep deposits in Italy: (1, 2) holotype (MGGC 21907) from Case Rovereti, isolated right valve; (3) paratype (MZB 27273) from Case Rovereti, internal mold of large specimen, left valve; (4) paratype (MZB 27270) from Case Rovereti, left valve with preserved shell; (5, 6) paratype (MRSN PU 40607.01) from Deruta, internal mold of articulated specimen; (7, 8) paratype (MGGC 21922) from Case Rovereti, left valve of juvenile specimen showing fine taxodont dentition on posterior side of shell; (9) paratype (MSF 2119) from Abisso “Mornig,” left valve, anterior side with shell remains, posterior side internal mold showing pallial line and adductor muscle scar; (10) paratype (MRSN PU 40607.02) from Deruta, left valve with preserved shell; (11) paratype (MSF 1100) from the Monticino-Limiasco – Castelnuovo junction, large right valve with preserved shell.
Diagnosis.—Small- to medium-sized modioliform shell; strong, almost angular ridge from umbo to posteroventral corner; posterior part of shell sculptured by roughly commarginal wrinkles, unlike any other mytilid.

Etymology.—The name combines the name Sami, crediting the paleontologist Marco Sami, who was responsible for collecting a substantial number of valuable macrofossils from ‘Calcari a Lucina’, including this new taxon, with the mytilid genus Modiolus, which has a similar shell shape.

Remarks.—Samiolus n. gen. contains presently only the type species. A similar strong and sharp ridge can be seen in Gibbomodiola taurarcuata Sacco, 1898 from the Italian Miocene (Sacco, 1898, pl. 11, figs. 34a, 35b; Merlino, 2007, pl. 6, fig. 10), but this species lacks wrinkles (own observations on Sacco’s type material housed in the Turin Museum). Another species with a similar ridge is Modiola dombraviensis Kittl, 1887 from middle Miocene ‘blue deep-water clays’ in eastern Czech Republic and southern Poland (Kittl, 1887, p. 272, pl. 9, figs. 7–11).

Table 2. Measurements of Bathymodiola (s.l.) miomediterraneus new species, all specimens from Le Colline, northern Italy; H = height, L = length, W = width of two valves, except when indicated otherwise.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>holotype, MGGC 21908, MSF 1246</td>
<td>55.5</td>
<td>25.1</td>
<td>10 (single)</td>
</tr>
<tr>
<td>MSF 1190</td>
<td>54.0</td>
<td>24.5</td>
<td>9.2 (single)</td>
</tr>
<tr>
<td>MSF 1351</td>
<td>50.0</td>
<td>22.0</td>
<td>9.6 (single)</td>
</tr>
<tr>
<td>MSF 1352</td>
<td>38.0</td>
<td>15.0</td>
<td>11.0</td>
</tr>
<tr>
<td>MSF 1353</td>
<td>33.5 (incomplete)</td>
<td>17.6</td>
<td></td>
</tr>
<tr>
<td>MSF unnumbered</td>
<td>36.3</td>
<td>18.0</td>
<td>12.0</td>
</tr>
<tr>
<td>MSF unnumbered</td>
<td>57.7</td>
<td>27.6</td>
<td>7.5 (single)</td>
</tr>
<tr>
<td>MSF unnumbered</td>
<td>37.8</td>
<td>16.4</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Figure 3. Bathymodiola (s.l.) miomediterraneus new species from the middle Miocene seep deposit at Le Colline, northern Italy: (1) paratype (MSF 1353) with strongly concave ventral margin, right valve; (2) holotype (MGGC 21908) showing broadly arched dorsal margin, left valve; (3, 4) paratype (MSF 1352), small specimen showing right valve and in ventral view, respectively; (5) block with two paratypes (MSF 1351), view of left valves; (6) strongly arched, gerontic specimen (MSF 1190).
But *Modiola dombraviensis* has a nearly smooth surface with only fine growth increments and lacks the wrinkled sculpture of *Samiolus iohannesbaptistae* n. sp. (own observation of material housed in the Natural History Museum Vienna). This wrinkled surface sculpture distinguishes *Samiolus iohannesbaptistae* n. gen. n. sp. also from all fossil and extant bathymodiolins (Squires and Goedert, 1991; von Cosel and Olu, 1998; Gustafson et al., 1998; von Cosel, 2002; Sasaki et al., 2005; Desbruyères et al., 2006; von Cosel and Janssen, 2008; Lorion et al., 2010; Amano and Jenkins, 2011).

Samiolus iohannesbaptistae new species

Figure 4

Type specimens.—Holotype MGGC 21910 from Ca’ Carnè; paratypes: three specimens from Ca’ Carnè: MSF 1073, MSF 1120 (left valve), MZB 60090; one specimen from Ca’ Piantè: MSF 1355.

Diagnosis.—Same as generic diagnosis.

Occurrence.—Late Miocene (late Tortonian) seep carbonates in northern Italy.

Description.—Modioliform, small- to moderately sized shell, umbo subterminal; posterodorsal margin slightly arched.

![Figure 4](https://www.cambridge.org/core/journals/journal-of-paleontology/issue/C37E80096F/128F913C108E1D856B5273347C42D499)

*Samiolus iohannesbaptistae new genus new species from late Miocene seep deposits in northern Italy: (1–4) paratype (MSF 1073) from Ca’ Carnè, four views on right valve; (5, 6) interior of small specimen (MGGC 23010) from Ca’ Carnè, showing hinge dentition of right valve; (7–10) paratype (MSF 1120) from Ca’ Carnè, right valve; (11) large specimen (MSF 1355) from Ca’ Piantè, left valve; (12–16) holotype (MGGC 21910) from Ca’ Carnè, five views of right valve.
posterodorsal corner at ~60% total shell length, ventral margin convex; strong ridge starting posterior of umbo, running to posteroventral corner, anterodorsal margin of ridge almost angular, followed by broad groove; shell surface anterior of ridge smooth except for growth lines, posterior side shows ribbing or wrinkles, resulting from irregular, roughly commarginal thickenings. Juvenile specimen with fine taxodont hinge teeth along entire posterodorsal margin and on oval hinge plate below beak; hinge area in adult smooth. Largest specimen 33 mm long, 17 mm high, single valve 7 mm wide; a juvenile specimen with taxodont hinge teeth measures 8.3 mm in length.

Etymology.—To honor Gian Battista Vai in recognition of his leading role in the modern study of ‘Calcari a Lucina.’

Materials.—Eight specimens from Ca’ Carnè; six from Ca’ Piantè; three valves from Montepetra (MZB 60095), and one valve from Case Rovereti (MSF 1356); see Table 3 for measurements.

Remarks.—We have found mostly disarticulated specimens of this species. One specimen has been figured by Sami and Taviani (2015, fig. 7).

Channelaxinus oliveri Valentich-Scott and Coan in Coan and Valentich-Scott, 2012

Type species.—*Channelaxinus oliveri* Valentich-Scott and Coan in Coan and Valentich-Scott (2012), (by original designation); Recent, Bahía Santiago, Colima, México.

Description.—Shells subrectangular, thin-shelled, reaching 20 mm in length and 16 in height, only slightly inflated, sculptured by irregular growth lines and indistinct, blunt ridge running from umbo to postero-ventral corner; beak prosogyrate, projecting slightly above dorsal margin; anterior margin straight to slightly concave, ventral margin gently convex, postero-ventral corner well rounded, posterior margin gently convex below sulcus, postero-dorsal margin slightly convex, with deep sinus at end of posterior sulcus; posterior sulcus deep, bordered by sharp ridge, area between sulcus and postero-dorsal margin narrow, with narrow submarginal sulcus; anterior adductor muscle scar thin, elongate, weakly impressed, separated from pallial line, length just over half of shell length; interior radiating striae distinct.

Materials.—Three specimens from Ca’ Cavalmagra (MSF 1287, 2112, 2113).

Occurrence.—Only known so far from the late Langhian of Ca’ Cavalmagra.

Remarks.—A superficially similar thyasirid from the Miocene of the Turin Hills is *Thyasira michelottii* (Hörnes, 1875), but it clearly differs from *Channelaxinus* sp. reported here by having a much shorter anterior adductor muscle scar (Zuschin et al., 2001). The extant type species *Channelaxinus oliveri* differs from *Channelaxinus* sp. mainly by having a narrower angle between the anterior and dorsal margins and a blunter (less pointed) umbo (Coan and Valentich-Scott, 2012; Oliver and Frey, 2014). This is the first fossil record of *Channelaxinus*.

Family Lucinidae Fleming, 1828

Genus Meganodontia Bouchet and von Cosel, 2004

Type species.—*Meganodontia acetabulum* Bouchet and von Cosel, 2004 (by original designation); Recent, in 256–472 m depth off northern Taiwan.

Meganodontia hoernae (Des Moulins, 1868)

Figures 6, 7

1868 *Lucina hoernae* Des Moulins, p. 368.

1901 *Lucina globulosa* var. *hörnea* Sacco, p. 67, pl. 15, figs. 31–33, pl. 16, fig. 1.

1901 *Lucina globulosa* var. *alta* Sacco, p. 68, pl. 15, fig. 4.
1901 *Lucina globulosa* var. *perinaequilatera* Sacco, p. 68, pl. 15, fig. 5.
1966 *Lucina hoernea*; Moroni, p. 80, pl. 3, fig. 3.
2001 *Lucina* Taviani, fig. 20.1.
2011 “*Lucina*” sp. Taviani, fig. 3a.

Description.—Very large, globular shells, height/length-ratio 0.9; umbones elevated, prosogyrate; external sculpture of fine, irregular, commarginal growth lines, posterodorsal sulcus shallow but distinct; lunule lanceolate, bordered by sharp, smooth ridge. Hinge plate narrow to moderately broad, edentulous, ligament nymph narrow. Anterior adductor muscle scar elongate, detached from pallial line for ~80% of its length, angle of deviation ~30°, width about half the distance to pallial line, curved in the opposite direction as shell margin, reaching below midline to ~44% of total shell height; somewhat constricted posteriorly just below the point of detachment. Interior of shell with numerous pustules, often in rows radiating from umbo; pallial blood vessel scar visible.

Materials.—Eight specimens from Ca’ Piantè (MSF 1357; 2100–2104, 2110); 45 articulated shells from Deruta (as *Lucina globulosa* hoernea Desmoulins, Bellardi and Sacco collection in MRSN, PU 40597–40601); one articulated shell from Bersano (as *Lucina globulosa* [Deshayes] var *hoernea*, Bellardi and Sacco collection in MRSN, BS 154.01.001); one articulated shell from Albugnano (as *Lucina globulosa* [Deshayes] var *hoernea* Desmoulins, Bellardi and Sacco collection in MRSN, BS 154.01.002).
BS.154.01.002); two articulated shells from Pino Torinese (as Lucina globulosa [Deshayes] var hoernea Desmoulins, Bellardi and Sacco collection in MRSN, BS.154.01.003 and BS.154.01.004); one articulated shell from Pera del Gal, Turin Hills (as Lucina globulosa [Deshayes] taurofuchsi Sacco, 1901, Bellardi and Sacco collection in MRSN, BS.154.01.007); one articulated shell from Pino Torinese (as Lucina globulosa [Deshayes] alta Sacco, 1901, Bellardi and Sacco collection in MRSN, BS.154.01.008); one articulated shell from Pino Torinese (as Lucina globulosa [Deshayes] perinaequilatera Sacco, 1901, Bellardi and Sacco collection in MRSN BS.154.01.009); more than 20 articulated shells (molds) from Sasso delle Streghe (Modena), a dozen articulated shells from other localities of the Modena and Forlì Apennines; a dozen articulated shells from the Turin Hills (Sacco’s collection in MRSN); see Table 4 for measurements.

Occurrence.—Middle to late Miocene seep carbonates in Italy.

Remarks.—Bouchet and von Cosel (2004) considered “Lucina” hoernea not to belong to Meganodontia because it has more globose and prominent umbones than M. acetabulum and because internal features of “Lucina” hoernea were not known to them. Here, we show that “Lucina” hoernea has an edentulous and narrow hinge plate, as well as an elongate, blade-shaped anterior adductor muscle scar just like

<table>
<thead>
<tr>
<th>Locality</th>
<th>Specimen</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1357</td>
<td>124.5</td>
<td>123.5</td>
<td>83.0</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MGCC 23004</td>
<td>93</td>
<td>65 (incomplete)</td>
<td>29</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 2100</td>
<td>180</td>
<td>180</td>
<td>100</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 2101</td>
<td>170</td>
<td>160</td>
<td>90</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 2102</td>
<td>120</td>
<td>135</td>
<td>85</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 2103</td>
<td>150</td>
<td>140</td>
<td>90</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 2104</td>
<td>110</td>
<td>110</td>
<td>65</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 2110</td>
<td>130</td>
<td>140</td>
<td>83</td>
</tr>
</tbody>
</table>

Table 4. Measurements of Meganodontia hoernea (Des Moulins, 1868), all specimens from Ca’ Piantè, northern Italy; H = height, L = length, W = width of two valves, except when indicated otherwise.
Meganodontia acetabulum. Therefore we consider “Lucina” hoernea as belonging to Meganodontia, but as distinct from *M. acetabulum*. In addition to the differences mentioned above, *Meganodontia hoernea* has a less distinctive posterior adductor muscle scar than *Meganodontia acetabulum*. Moroni (1966) provided an extensive synonymy for *Meganodontia hoernea*. In the *Meganodontia* species from the early Miocene of Cuba (Kiel and Hansen, 2015), the anterior adductor muscle scar deviates from the pallial line at a broader angle, as in *M. hoernea*. Examination of Sacco’s type material showed that his “variations” *L. globulosa* var. alta Sacco, 1901 and *L. globulosa var. perinaequilatera* Sacco, 1901 represent deformed specimens of *Meganodontia hoernea* and should therefore be considered as synonyms.

Taylor et al. (2011) tentatively assigned *Meganodontia* to their new subfamily Pegophyseminae, whose species are united by some unusual morphological characters, including thin, globular, smooth shells, a narrow edentulous hinge with an internal and laterally extended ligament in most species (Taylor et al., 2011). *Meganodontia hoernea* is a common and widespread species in the Miocene of Italy, associated with ‘Calcari a Lucina’ limestones and reducing deep-sea marly sediments.

Genus Lucinoma Dall, 1901

Type species.—*Lucina filosa* Stimpson, 1851 (by original designation); Recent, northwest Atlantic.

Lucinoma perusina (Sacco, 1901)

1901 *Dentilucina perusina* Sacco, p. 83, pl. 19, figs. 12–14.

1901 *Dentilucina perusina var. pseudorotunda* Sacco, pl. 21, fig. 15.

1966 *Phacoides* (Lucinoma) *perusinus* (Sacco); Moroni, p. 82, pl. 5, figs. 1, 3, pl. 6, figs. 1, 2.

1996 *Lucinidae* Taviani, fig. 4b.

Description.—Medium- to large-sized *Lucinoma*, outline of shell oval in small specimens, becoming more round in large ones; umbones central, prosogyrate, elevated; surface sculptured by fine, irregular growth increments or commarginal ribs, posterior sulcus only weakly developed; lunule elongate, heart-shaped, moderately excavated, bordered by distinct angulation; escautcheon lanceolate, wide; anterior adductor muscle scar thin, elongate, reaching well below midline of shell, detached from pallial line for more than three-quarters of its length, deviates from pallial line by ~10°; posterior adductor muscle scar oval, dorsally pointed; hinge plate broad, two strong, radiating cardinal teeth in each valve, one anterior lateral tooth in each valve, posterior lateral teeth not seen.

Materials.—Ten specimens from Ca’ Piantè and six specimens from Santa Sofia; six shells from Montepetra, all articulated; one specimen on block with articulated *Archivesica* sp. (MSF 2111); four articulated shells (MSF 2114–2117) and a cluster (MSF 2118) from erratic blocks in Sintria Creek, near Ca’ Fornace; 26 articulated shells from Deruta (as *Dentilucina cf perusina* Deshayes, Bellardi and Sacco collection in the Turin Museum, PU 40604); ten articulated shells from Deruta (as *Lucina globulosa* Deshayes, Bellardi and Sacco collection in the Turin Museum, PU 40602); one articulated shell from Deruta (Bellardi and Sacco collection in the Turin Museum, as *Dentilucina perusina* Sacco *pseudorotunda* Sacco, 1901, BS.154.03.034) ; see Table 5 for measurements and specimen numbers.

Occurrence.—Middle to late Miocene seep carbonates, from northern Italy to Sicily.

Remarks.—There is no formal description of *Dentilucina perusina* in Sacco (1901); he used this name in the discussion of *Dentilucina barrandei* (Mayer, 1871), and illustrated three specimens as *D. perusina*, including one as *Dentilucina perusina var. pseudorotunda* Sacco, 1901; all specimens are from Deruta. The figured specimens of *D. perusina* sensu strictu are not present at MRSN and are presumably lost; here, we illustrate the specimen previously illustrated as *Dentilucina perusina var. pseudorotunda* Sacco (1901, pl. 21, fig. 15) and designate it as lectotype for *Dentilucina perusina*. Sacco’s illustrated specimens of *D. perusina* sensu strictu are more oval than the rather round *D. p. pseudorotunda*; however, virtually all of the 37 specimens of Bellardi and Sacco collection from Deruta (housed in MRSN) are of the round shape of *D. p. pseudorotunda*. Hence, we consider this as the typical shape of *D. perusina*. Moroni (1966) provided an extensive synonymy for this species.

Externally similar is the Miocene “Dentilucina” *barrandei* from the Turin Hills, but its cardinal teeth are smaller than in *L. perusina* and they are nearly parallel, in contrast to the radiating teeth in *D. perusina*. Among the extant species, *Lucinoma kazani* Salas and Woodside, 2002 living at seeps in the Mediterranean Sea, has a similar shell but less inflated, a similarly short and well-defined lunule, and similar fine commarginal ribs, whereas the North Atlantic-Mediterranean *L. borealis* has a broader and more elongate lunule, and its ribs are more lamellar than in *L. perusina* and *L. kazani* (Salas and Woodside, 2002). None of the *Lucinoma* species known from Japan are particularly similar to *L. perusina* (Okutani, 2000).

Family Vesicomyidae Dall and Simpson, 1901

Genus Archivesica Dall, 1908

Type species.—*Callocardia gigas* Dall, 1895 (by original designation); Recent, Gulf of California.

Remarks.—There is currently little consensus which species belong to the genus *Archivesica*. While the concept of Amano and Kiel (2007), which includes middle Eocene to Recent species is probably too broad (cf., Amano and Kiel, 2012), the view of Krylova and Sahling (2010) to include only two extant species in addition to the type, may be a little too narrow. In a recent molecular phylogenetic analysis (Audzijonyte et al., 2012), a monophyletic clade called the ‘gigas’ group emerged and included 14 named and five unnamed species, including the type species of *Archivesica*. Because the species described below are morphologically most similar to several members of this clade—*Archivesica soyoae* (Okutani, 1957) A. *kilmeri* (Bernard, 1974), A. *okutani*...
(Kojima and Ohta, 1997), and A. kawamurai (Kuroda, 1943)—we assign them to *Archivesica*. Other authors (Krylova and Janssen, 2006; Krylova and Sahling, 2010) have separated these species into the genera *Archivesica*, *Phreagena*, and *Akebiconcha*, but they have not consistently emerged as monophyletic groups in molecular phylogenetic studies (Audzijonyte et al., 2012; Valdés et al., 2013).

The first claim of the occurrence of large deep-water vesicomyids in the Mediterranean Miocene was based on the discovery in 1992 (Taviani et al., 1992; Taviani, 1996) of a bed containing ‘*Calyptogena*’ (= *Archivesica*) associated with turbidites in the Romagna Apennines (for details see Berti et al., 1994; Taviani, 2014). However, large vesicomyids such as those reported here are not rare in some well-studied outcrops and their occurrence could not have escaped the attention of former investigators. They most likely were identified as *Lutraria* or veneroideans, or, as in the case of the Bellardi and Sacco collection at MRSN from Deruta, as cf. “*Tellinidae*?”. In this respect, *Taurotapes craverii* (Michelotti, 1847) from the lower Miocene of the Turin area (Sacco, 1904) deserves special attention. Elongated bivalves were reported under this name from a putative Miocene hydrocarbon seep at Roccapalumba (Nicosia, 1956), which most likely represent *Archivesica*-like vesicomyids (unpublished observation, M. Taviani, 2016).

Archivesica aharoni new species

Figures 10, 11

1994 *Calyptogena* n. sp. Taviani, fig. 3e.
1996 ?*Calyptogena* sp. Taviani, figs. 3a, b.
2001 *Calyptogena* sp. Taviani, fig. 20.9b.
2011 *Calyptogena* n. sp. Taviani, fig. 3e.

Type specimens.—Holotype MGGC 21909 from Ca’ Piantè. Paratypes: three specimens from Ca’ Piantè (MSF 1048, 1051, 1053); one from Marmorito (MGGC 21928); two from Case Rovereti (MZB 23846, 28075); three from Verzino (MZB 28076, 28077, 23009); see Table 6 for measurements.

Diagnosis.—Large *Archivesica* with pointed posterior margin, often with posterior ridge and sulcus below; anterior adductor muscle scar large and round, right valve with three radiating, equally sized teeth.

Figure 8. *Lucinoma perusina* (Sacco, 1901) from the late Miocene type locality at Deruta, northern Italy: (1–3) lectotype (MRSN BS.154.03.034), originally illustrated as ‘*Dentilucina perusina var. pseudorotunda*’ (Sacco, 1901, pl. 19, fig. 15); (4) large internal mold (MRSN PU 40604.01) showing muscle scars and pallial line in right valve; (5) right valve of medium-sized specimen (MRSN PU 40604.02) with defoliated outer shell layer, giving it a smooth appearance; (6) right valve of small specimen (MRSN PU 40606.01) showing surface sculpture; (7) right valve of small specimen (MRSN PU 40606.02).
Occurrence.—Late Miocene seep carbonates in Italy.

Description.—Moderately large (up to 115 mm long), elongate-veneriform shell with umbo anterior at ~28% total shell length; anterior side strongly convex, slightly pointed; ventral side evenly curved; posterodorsal margin only slightly convex, transition to posterior margin at clear angulation; posterior margin pointed at its ventral side. Beak elevated, blunt, slightly prosogyrate; external sculpture of rough growth lines only; no lunula or lunular incision, escutcheon narrow with sharp edges, length about two-thirds of posteroventral margin. Anterior adductor muscle scar distinct and round, pallial line starting at...
its posteroventral corner, distinct only in anterior half of shell. Hinge plate high but short; RV with three equally strong cardinal teeth that radiate anteroventrally, a distinctive inverted-V-shaped groove between hinge teeth and nymph plate forms the subumbonal pit; cardinal 1 straight, oblique to anterodorsal margin, cardinals 3a and 3b not connected, 3a subparallel to anterodorsal margin, 3b almost at right angle to it; nymph plate narrow. LV with three teeth, cardinal 2a parallel to anterodorsal margin.

Table 5. Measurements of *Lucinoma perusina* (Sacco, 1901); H = height, L = length, W = width of two valves, except when indicated otherwise.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Specimen</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casa Piantè</td>
<td>MGGC 23006</td>
<td>52.5</td>
<td>50.4</td>
<td>31.3</td>
</tr>
<tr>
<td>Casa Piantè</td>
<td>MGGC 23007</td>
<td>43</td>
<td>43</td>
<td>11.4 (single)</td>
</tr>
<tr>
<td>Casa Piantè</td>
<td>MGGC unnumbered</td>
<td>35.5</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Casa Piantè</td>
<td>MGGC unnumbered</td>
<td>55.5</td>
<td>59</td>
<td>20.5 (single)</td>
</tr>
<tr>
<td>Casa Rovereti</td>
<td>MGGC unnumbered</td>
<td>44.5</td>
<td>45.6</td>
<td>10.8 (single)</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MGGC unnumbered</td>
<td>54</td>
<td>40 (incomplete)</td>
<td>15.4 (single)</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MGGC unnumbered</td>
<td>42</td>
<td>45</td>
<td>single</td>
</tr>
<tr>
<td>Ca’ Fornace</td>
<td>MSF 2118 (block with several specimens)</td>
<td>71</td>
<td>70</td>
<td>43</td>
</tr>
</tbody>
</table>

Figure 10. *Archivesica aharoni* new species from Miocene seep deposit in Italy: (1) holotype (MGGC 21909), semi-articulated specimen, internal mold of left valve showing anterior adductor muscle scar, and interior of right valve, from Ca’ Pianté; (2) paratype (MSF 1048), internal view of left valve, from Ca’ Pianté; (3) paratype (MSF 1051), right valve with partially preserved shell, from Ca’ Pianté; (4) paratype (MZB 23846), internal mold of left valve, from Ca’ Rovereti; (5) paratype (MSF 1046), exterior of left valve, from Ca’ Rovereti; (6) paratype (MGGC 21928), rubber cast of right valve showing hinge and the lacking pallial sinus, from Marmorito.
margin, wedge-shaped, tapering anteriorly, 2b short, perpendicular to 2a, 4 short, wedge-shaped, nearly perpendicular to ventral shell margin.

Etymology.—For Paul Aharon, Tuscaloosa, Alabama, in recognition of his relevant work on Gulf of Mexico recent cold seeps and *Calcarius Lucina* fossil counterparts.

Materials.—Two specimens from Ca’ Piantè (MSF 1055, 1358) and four shells from Verzino (MGGC 23002).

Remarks.—The two most similar species are the extant Japanese *Archivesica soyoae* and *A. kawamurai*. The former differs from *A. aharoni* n. sp. mainly by having a broader nymph plate and the teeth in the left valve are more elongate (Sasaki et al., 2005). In addition to the left valve teeth of *Archivesica kawamurai* being more elongate than in *A. aharoni* n. sp., the teeth of the right valve are more slender (Sasaki et al., 2005; Amano and Kiel, 2010). The geographically close *Phreaena* sp. from a ca. 25,000 years old vent field on the Mid-Atlantic Ridge (Lartaud et al., 2010) differs from *A. aharoni* n. sp. by having the anterior onset of the pallial line in a more anterior position, cardinal tooth 3b in the right valve points posteriorly rather than ventrally as in *A. aharoni* n. sp., and its escutcheon is much broader. The late Miocene *A. shikamai* Amano and Kiel, 2010 from Japan differs by generally having straighter and more parallel dorsal and ventral margins.

Archivesica aff. aharoni Kiel and Taviani, herein

Description.—Shells up to 94 mm long, elongate-veneriform shell with umbo anterior at ~26–35% total shell length; anterior margin either pointed or truncate; ventral margin evenly curved; posterodorsal margin almost straight to slightly convex, transition to posterior margin with clear angulation in specimens with truncate posterior margin, or more rounded in specimens with pointed posterior margin. Beak elevated, blunt, slightly proso-gyrate; external sculpture of rough growth lines only; no lunula or lunular incision. Anterior adductor muscle scar distinct and round, pallial line starting at its posteroventral corner, pallial sinus small, shallow; posterior adductor muscle scar large, round, with anteriorly pointed hook at dorsal margin. Hinge plate high but short; RV with three equally strong cardinal teeth that radiate anterioventrally; LV with three teeth, cardinal 2a wedge-shaped, tapering anteriorly, parallel to anterodorsal margin, 2b and 4 short.

Table 6. Measurements of *Archivesica aharoni* new species; *H* = height, *L* = length, *W* = width of two valves.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Specimen</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1048</td>
<td>85.0</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1055</td>
<td>65 (incomplete)</td>
<td>55.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1053</td>
<td>81.0</td>
<td>51.0</td>
<td>36</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1046</td>
<td>96.0</td>
<td>53.0</td>
<td>21 (single)</td>
</tr>
<tr>
<td>Ca’ Piantè</td>
<td>MSF 1051</td>
<td>88.0</td>
<td>51.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 23846</td>
<td>115.0</td>
<td>63.0</td>
<td>11 (single)</td>
</tr>
<tr>
<td>Case Rovereti</td>
<td>MZB 28075</td>
<td>85.0</td>
<td>51.0</td>
<td>33</td>
</tr>
<tr>
<td>Verzino</td>
<td>MZB 28077</td>
<td>95.0</td>
<td>54.0</td>
<td>39.5</td>
</tr>
<tr>
<td>Verzino</td>
<td>MZB 28076</td>
<td>90.0</td>
<td>53.0</td>
<td>19 (single)</td>
</tr>
<tr>
<td>Verzino</td>
<td>MGGC 23009</td>
<td>64 (incomplete)</td>
<td>38.0</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Figure 11. *Archivesica aharoni* new species from Miocene seep deposit in Italy: (1, 2) holotype (MGGC 21909) from Ca’ Piantè, dorsal view, and close-up of hinge of right valve, respectively; (3) paratype (MSF 1048) from Ca’ Piantè, close-up of hinge of left valve; (4) paratype (MGGC 21928) close-up of hinge of right valve; (5) paratype (MGGC 23009) from Verzino, close-up of hinge of left valve.

Figure 12.

Materials.—Four lots of articulated bivalves, mostly molds, but some with preserved portions of the shell, labeled as “cf. Tellinidae (?)” in the Bellardi and Sacco collection at MRSN (N40608: 20 specimens, largest specimen L × H × W = 100 × 54 × 35 mm; PU 40609: 25 specimens, largest specimen 82 × 38 × 20 mm; N40610: 30 specimens, largest specimen 79 × 40 × 24 mm; PU 40611: 16 specimens, largest specimen 45 × 22 × 6 mm); four additional specimens (MGGC 21930, 21931; MZB 60096, 60097).

Occurrence.—Middle Miocene (Serravallian) seep carbonate at Deruta in northern Italy.
Remarks.—These specimens share all features of *A. aharoni*, but are slightly smaller and consistently lack the posterior ridge and groove that can be seen in many specimens of *A. aharoni* from the type locality. Furthermore, the posterior part of the pallial line and the posterior adductor muscle scar can be more clearly seen than in specimens of *A. aharoni* from the type locality, but this might be a taphonomic artifact.

Archivesica strigarum new species

2001 *Calyptogena* sp. Taviani, fig. 20.8a.

Type specimens.—Holotype: MZB 28095, internal mold from Sasso delle Streghe (87 × 38 × 24.5 mm). Paratypes: MGGC 21929, specimen with partially preserved external features from Sasso delle Streghe; MRSN PU 40611, small specimen from Deruta (41 × 19 × 11.5 mm).

Diagnosis.—Elongate *Archivesica*, beak situated anteriorly at ~26% of total shell length; onset of pallial line at posteroventral margin of anterior adductor muscle scar; no pallial sinus.

Occurrence.—Middle Miocene seep carbonates in northern Italy.

Description.—Elongate veneriform shell (max. dimensions L = 95 mm, H = 45 mm, W = 30 mm) with beak situated in anterior third of shell; anterior margin well rounded, posterodorsal margin only slightly tapering, posterior margin broadly rounded, ventral margin gently rounded, shell surface smooth except for growth lines. Anterior adductor muscle scar broadly oval, bordered posteriorly by distinct ridge; pedal retractor scar oval, distinct from adductor muscle scar; onset of pallial line at posteroventral margin of anterior adductor muscle scar, obliquely cutting across anteroventral shell margin; pallial sinus small, shallow, pointed. RV hinge with thick cardinal 1; cardinal 3a thick, elongate; cardinal 3b thin and very long; LV hinge with cardinal 2a thick, elongate; cardinal 2b thin and close to almost equally shaped cardinal 4b.

Etymology.—For the type locality at Sasso delle Streghe (the witches’ rock; *Striga* Latin for witch).

Materials.—Slab with five decalcified shells from Sasso delle Streghe (MGGC 23000); one incomplete articulated mold (MSF 1357); one specimen from Deruta (MRSN PU 40610).

Figure 13. *Archivesica strigarum* new species from the middle to late Miocene seep deposits in northern Italy: (1) paratype (MGGC 21929) from Sasso delle Streghe, left valve showing the round anterior adductor muscle scar; (2–5) holotype (MZB 28095) from Sasso delle Streghe, internal mold; (2) left valve, (3) dorsal view, (4) close-up of hinge area, (5) silicon rubber cast of hinge area; (6, 7) paratype (MRSN PU 40611.01), small specimen from Deruta. Abbreviations: aprs, anterior pedal retractor scar; LV, left valve; RV, right valve.
Remarks.—Extant species with similar hinge dentition and pallial line include *Archivesica gigas*, *A. kawamura*, *A. kilmeri*, and *A. okutanii* (Dall, 1895; Kuroda, 1943; Bernard, 1974; Kojima and Ohta, 1997). Among the characters used to distinguish *Phreagena* from *Archivesica* was the anterior pedal retractor scar, which is deeply impressed in *Phreagena*, but shallow in *Archivesica* (Krylova and Janssen, 2006); in *A. strigrarum* it is deeply impressed. *Archivesica strigrarum* n. sp. is more elongate than *Archivesica aharoni* n. sp. and has a more oval (rather than round) anterior adductor muscle scar. It lacks the arched posterodorsal margin and posterodorsal ridge of *A. apenninica* n. sp. and its anterior adductor muscle scar is oval in contrast to the more quadratoe scar of *A. apenninica* n. sp. Compared to the elongate specimens of *A. apenninica* n. sp., it has a longer anterior portion. It is also more elongate than most other species of *Archivesica*, except the early Miocene *A. sakoi* Amano et al., 2014 from southern Japan.

Archivesica apenninica new species

Figure 14

Type specimens.—Holotype: MGGC 23001. Paratypes: MSF 2121, 2123, 2125, 2126; all types from Castelvecchio.

Diagnosis.—Large for the genus; dorsal margin broadly arched, ridge running from umbo to posterior margin; anterior adductor muscle scar oval with groove running toward umbo; no pallial sinus; three radiating and almost equally strong cardinal teeth in each valve.

Occurrence.—Only known from the middle Miocene (early Serravallian) seep carbonate at Castelvecchio in northern Italy.

Description.—Elongate-veneriform shell, up to 125 mm long, umbo broad, elevated, slightly prosogyrate, anterior at ~28–33% total shell length. Anterior shell margin strongly convex; ventral margin gently and evenly curved; posterodorsal margin broadly arched, transition to posterior margin indistinct, angulate only in very elongate specimens; posterior margin strongly convex and somewhat pointed. External sculpture of rough growth lines; distinct ridge or angulation from umbo to posterior margin; no
lunula or lunular incision, escutcheon narrow with sharp edges, length at least half of posteroventral margin. Anterior adductor muscle scar distinct, oval, somewhat pointed anteroventrally, most deeply impressed on posterior side, with groove extending toward umbo; anterior pedal retractor scar small, oval, distinct from adductor muscle scar; pallial line starting at posteroventral corner of anterior adductor scar, running oblique toward ventral shell margin in anterior half of shell, parallel to it afterward, sharply bent upward below center of posterior adductor scar, pallial sinus small, shallow. Hinge plate high but short; RV with three equally strong cardinal teeth that radiate toward ventral margin, cardinals 3a and 3b not connected, subumbonal pit present, nymph plate narrow; LV with three widely radiating teeth, cardinal 2a weak, 2b short, wedge-shaped, not connected to 2a, 4 short, nearly perpendicular to 2a.

Etymology.—For the Apennine Mountains, Italy.

Materials.—All specimens from Castelvecchio; MSF 2121–2132 and several fragmentary specimens at MSF; see Table 7 for measurements.

Remarks.—Archivesica apenninica n. sp. is variable in elongation, but the characteristic broadly arched posterodorsal margin, as well as the nearly equally strong hinge teeth are seen in all available specimens. A similar broadly arched posterodorsal margin is present in the Recent Japanese species *A. solidissima* (Okutani, Hashimoto, and Fujikura, 1992), *A. soyoae* (Okutani, 1957), and *A. okutanii* (Kojima and Ohta, 1997), but these species differ from *A. apenninica* either by having a concave ventral margin or by having more anteriorly pointing cardinal teeth (Sasaki et al., 2005). The pallial sinus is more pronounced in extant species than in *A. apenninica*.

Genus Pliocardia Woodring, 1925

Type species.—*Anomalocardia bowdeniana* Dall, 1903, late Pliocene Bowden Formation, Jamaica, by monotypy.

Remarks.—*Pliocardia* is currently a dustbin taxon used for small to moderately sized, oval and thick-shelled species with an *Archivesica*-like hinge dentition. Molecular phylogenetic studies indicate two separate groups among species with the general shape of *Pliocardia*: one includes the species *Vesicomya stearnsii*, *Calyptogena ponderosa*, *C. cordata*, and *Pliocardia* krylovata, the other includes *Vesicomya kuroshimana*, *V. crenulomarginata*, and specimens called “cf. venusta” (Kojima et al., 2004; Martin and Goffredi, 2011; Audzijonyte et al., 2012). Several additional extant species for which no molecular data are available are also included in this genus (Krylova and Sahling, 2010), as well as several fossil taxa (Amano and Kiel, 2007, 2012). As it is still unclear to which of those groups (if at all) the type species of *Pliocardia* belongs. The identity of this genus remains unclear and it is only used in quotation marks for the species reported below.

“Pliocardia” italica new species

Figure 15

Type specimens.—Holotype: MGGC 21909 (cast: MSF 1277). Paratype: MSF 1275; all types from the middle Miocene of Ca’ Cavalmagra.

Diagnosis.—Large, inflated *Pliocardia* with strong, protruding, prosogyrate beak, small anterior portion and broadly expanded posterior portion.

Occurrence.—Known only from Ca’ Cavalmagra.

Description.—Well-inflated specimens with large, protruding beak in anterior third of shell; anterior part of shell short, somewhat pointed, posterior part broadly expanded; anterior adductor muscle scar in ventral half of shell, broadly oval, onset

Table 7. Measurements of *Archivesica apenninica* new species, all specimens from Castelvecchio; H = height, L = length, W = width of two valves, except when indicated otherwise.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGGC 23001</td>
<td>96</td>
<td>64</td>
<td>19 (RV)</td>
</tr>
<tr>
<td>MSF 2123</td>
<td>123</td>
<td>61</td>
<td>20 (RV)</td>
</tr>
<tr>
<td>MSF 2127</td>
<td>122</td>
<td>69</td>
<td>17 (LV)</td>
</tr>
<tr>
<td>MSF 2122</td>
<td>122</td>
<td>50</td>
<td>17 (LV)</td>
</tr>
<tr>
<td>MSF 2126</td>
<td>120</td>
<td>62.5</td>
<td>45 (articulated)</td>
</tr>
<tr>
<td>MSF 2124</td>
<td>110</td>
<td>64</td>
<td>24 (LV)</td>
</tr>
<tr>
<td>MSF 2125</td>
<td>109</td>
<td>67</td>
<td>26 (LV)</td>
</tr>
<tr>
<td>MSF 2121</td>
<td>108</td>
<td>63</td>
<td>21 (RV)</td>
</tr>
<tr>
<td>MSF 2129</td>
<td>104</td>
<td>70</td>
<td>50 (articulated)</td>
</tr>
<tr>
<td>MSF 2131</td>
<td>103</td>
<td>71</td>
<td>51 (articulated)</td>
</tr>
<tr>
<td>MSF 2128</td>
<td>85 (incomp.)</td>
<td>57</td>
<td>19 (RV)</td>
</tr>
</tbody>
</table>

Figure 15. “Pliocardia” italica new species from the middle Miocene seep deposits at Ca’ Cavalmagra in northern Italy, holotype (MGGC 21909); (1) exterior of left valve; (2) ventral side; (3) anterior side.
of pallial line at its posteroventral corner, pallial sinus small and shallow, posterior adductor muscle scar indistinct, very close to posterior shell margin; interior of posterior part of shell with distinct radial grooves.

Etymology.—Refers to the geographic area that is the source of all studied material.

Materials.—One articulated specimen (MSF 1276) and nine isolated valves (MSF 1273, 1274, 1279, 2105–2109; MZB 60218); see Table 8 for measurements.

Remarks.—Most similar to “Pliocardia italica” n. sp. are two extant species from the central Indo-Pacific Ocean: “Pliocardia solidissima” (Prashad, 1932) and “Pliocardia ticaonica” (Dall, 1908). Both have a similarly large and prosogyrate umbo and broad posterior margin, but differ from the Italian Miocene “Pliocardia italica” n. sp. by having a more convex posterdorsal margin; in addition, P. ticaonica is shorter than “Pliocardia italica” n. sp. Among the taxa from the Caribbean Sea and the Gulf of Mexico, “Pliocardia caribaea” (Boss, 1967) has a broader anterior margin and has the anterior adductor muscle scar in a more dorsal position; “Pliocardia cordata” (Boss, 1968) is shorter and has a smaller and more pointed beak; and “Pliocardia ponderosa” (Boss, 1968) seems to have a steeper sloping posterdorsal margin.

Discussion

The present study is intended to provide a taxonomic baseline for future biogeographic and evolutionary studies. At first glance, the bivalve fauna of the ‘Calcari a Lucina’ seep deposits show a wide range of biogeographic links to places as distant as the Recent western Pacific (Bathymodiolois, Archivesica, and Meganodontia), the Recent Indian Ocean (“Pliocardia”), as well as the Miocene Caribbean seep faunas (Meganodontia). We identified 11 chemosymbiotic bivalve species from the middle to late Miocene ‘Calcari a Lucina’ methane-seep deposits in northern Italy, among them three mytilids, one thyasirid, two lucinids, and four or five vesicomyids.

Apart from Bathymodiolois (s.l.) moronae n. sp. and B. (s.l.) miomediterraneus n. sp. (two species that resemble extant bathymodioloids) the taxonomic affinity of the new genus and species Samiulosesicaribae n. sp. is unclear. This taxon might represent a rare case of a genus that occurs exclusively at deep-water methane seeps, but does not belong to the bathymodioloids. An interesting taphonomic aspect of the mytilids is the common occurrence of B. (s.l.) moronae n. sp. and Samiulosesicaribae n. gen. n. sp. as disarticulated shells, which is in contrast to the articulated mode of occurrence of the vast majority of other fossil seep-associated bathymodiolois (Squires and Goedert, 1991; Amano et al., 2010; Kiel et al., 2010; Saether et al., 2010; Amano and Jenkins, 2011; Kiel and Amano, 2013). Articulated shells, including juveniles and giant specimens up to 133 mm in length, indeed occur at Ca’ Pianté, as well as in Deruta, but this is rather an exception than the rule. At the well-sampled sites at Montepetra and Case Rovereti, where disarticulated mussel shells are common, the co-occurring vesicomyids and lucinids were found as articulated or semi-articulated shells. This excludes the possibility that the mussel shells disarticulated due to transport, but suggests in-situ disarticulation, either by the force of the ligament, or perhaps due to large scavengers.

In addition to the seep-inhabiting bathymodiolois reported here, a bathymodiolois named Adipicola apeminica Danise, Bertolaso, and Dominici, 2016 was recently described from a whale bone from the middle Miocene (Langhian) Panto Formaion in the vicinity of the town of Carpineti (Reggio Emilia province, northern Italy). Adipicola apeminica was reported as being very abundant, where the associated thyasirids and lucinids were rare (Danise et al., 2016).

Most Cretaceous to extant lucinids at methane seeps belong to either the Codakiinae or the Myrteinae (Taylor et al., 2011; Kiel, 2013). Thus, if the inclusion of Meganodontia in Pegophysinidae (cf., Taylor et al., 2011, 2014) is correct, it would be the third lucinid subfamily to have a considerable fossil history at methane seeps (Taylor et al., 2014; Kiel and Hansen, 2015).

The taxonomy of the Vesicomyidae is still in flux, partially due to the frequent convergence among their few shell characters (Krylova and Sahling, 2010). Amano and Kiel (2010) recently questioned Paleogene records of Archivesica, and Amano et al. (2014) identified the early Miocene Japanese A. sakoi Amano et al., 2014 as earliest member of Archivesica sensu strictu. The middle Miocene Archivesica strigaram n. sp. introduced here is thus among the earliest Archivesica species and is, just as A. sakoi, very elongate compared to extant Archivesica species.

Acknowledgments

This paper is a tribute to the late paleontologist M.A. Moroni for her intuition in the 60s that the Santa Sofia ‘Calcari a Lucina’ was a peculiar habitat of its own. We are grateful to P. Aharon, S. Conti, G.B. Vai, R. Barbieri, S. Cau, L. Angeletti, G. Bini, S. Gualtieri, for their cooperative work in recognizing and sampling ‘Calcari a Lucina’ limestones and their equivalents along the Italian Apennines over more than 25 years. Above all, we warmly thank M. Sami (Museo Civico di Scienze Naturali, Faenza) for the generous access to the vast collection of fossils from the ‘Calcari a Lucina’ deposits and for comments on various aspects of stratigraphy, and the collaborators of the Museo Civico di Scienze Naturali di Faenza, A. Benincetti, M. Diversi, and V. Liverani, for collecting part of the material. Thanks to D. Ormezzano (Museo Regionale di Scienze Naturali, Torino) for access to, and help with, the collection under his care, and S. Cavagna and G. Pavia for their cooperation.

Table 8. Material of “Pliocardia italica” n. sp., all specimens from Ca’ Cavalmagra; H = height, L = length, W = width of two valves.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>L (mm)</th>
<th>H (mm)</th>
<th>W (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGCG 21909 (holotype)</td>
<td>59.6</td>
<td>42.1</td>
<td>37</td>
</tr>
<tr>
<td>MSF 1275 (paratype)</td>
<td>56.6</td>
<td>39.4</td>
<td>31</td>
</tr>
<tr>
<td>MSF 1276</td>
<td>50</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>MSF 1274 (LV)</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSF 2105 (RV)</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSF 2104 (LV)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSF 2107 (RV)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSF 2108 (LV)</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSF 2109 (RV)</td>
<td>50</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>
Furthermore, we thank K. Amano (Joetsu) for discussions on vesicomyid systematics; A.G. Beu (Lower Hutt) for advice on the ICZN; E. Krylova (Moscow) for providing images of the subfossil vesicomyid from the Rainbow vent field; C.T.S. Little (Leeds) for donating a specimen from his collection; I. Zorn, M. Harzhauser, and O. Mandic (Vienna) for access to specimens in their care; G. Hundertmark (Göttingen) and J. Bouchal (Stockholm) for photography; and J.D. Taylor (London) for his constructive review of the manuscript. Research on the ‘Calcari a Lucina’ by MT was funded over the years by various projects supported by the Italian Ministry of Education, University and Research (MIUR), and CNR; additional financial support was provided by the Deutsche Forschungsgemeinschaft through grant Ki802/6-1 and the Alméns fund of the Kungliga Vetenskaps-Akademi en SK. This is ISMAR-CNR Bologna scientific contribution n. 1833.

References

Amano, K., and Jenkins, R.G., 2011, New fossil Bathymodiolus (s. l.) (Mytilidae, Bivalvia) from Oligocene seep-carbonates in eastern Hokkaido, Japan, with remarks on the evolution of Bathymodiolus (s. l.): The Nautilus, v. 125, pp. 29–35.

Fleming, J., 1828, A History of British Animals, exhibiting the descriptive characters and systematic arrangement of the genera and species of quadrupeds, birds, reptiles, fishes, Mollusca and Radiata of the United Kingdom; including the indigenous, extirpated, and extinct kinds; together with periodical and occasional visitants: Edinburgh, Bell & Bradfute, 554 p.

Downloaded from https://www.cambridge.org/core. IP address: 54.191.40.80, on 12 Sep 2017 at 19:21:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpa.2016.154
Okutani, T., 1957, Two new species of bivalves from the deep water in Sagami Bay collected by the R.V. Soyos-Maru: Bulletin of Tokai Regional Fisheries Research Laboratory, v. 17, p. 27–31.
Appendix

Details of localities (see Figure 1) of Miocene methane-seep bivalves reported in this paper. Regarding the localities from Piedmont mentioned here in the context of the Sacco collection at MRSN (Albugnano, Bersano, Pera del Gil, Pino Torinese, etc.), the reader must refer to the catalog edited by Merlino (2007). The material illustrated by Moroni (1966) was reported to have been stored in the Museo Geologico Giovanni Capellini, University of Bologna, with the S. Sofia collection (catalog numbers 121–140); however, the collection is not present in this museum and is possibly kept in the University of Palermo, but not traceable at present (G. Ruggieri, personal communication, 1996).

1. Abisso “Mornig”.—Micritic limestone blocks near the entrance of “Mornig” cave. SE of Castelnuovo, not far from Brisighella (Ravenna province), Romagna Appennine, northern Italy; coordinates: 44°13′40″N, 11°44′72″E; Tossignano marls, late Miocene (late Tortonian).

2. Ca’ Carnè.—Marly to micritic limestone deposits just S-SE of Ca’ Carnè (“Vena del Gesso Romagnola” Regional Park visit center), near Brisighella (Ravenna province), Romagna Appennine, northern Italy; coordinates: 44°13′40″N, 11°44′72″E; Tossignano marls, late Miocene (late Tortonian).

3. Ca’ Cavalmagra.—Limestone (calcarenitic) deposit SSE of Palazzuolo (Firenze province), Tuscan Romagna Appennine, northern Italy; coordinates: 44°05′58″N, 11°33′62″E; Marnoso-arenacea Formation, middle Miocene (upper Langhian).

4. Monticino-Limisano – Castelnuovo junction.—Few scattered limestone blocks near the junction between Castelnuovo street and Calbane street, not far from Brisighella (Ravenna province), Romagna Appennine, northern Italy; coordinates 44°14′03.07″N, 11°44′18.72″E; late Miocene (late Tortonian).

5. Ca’ Fornera.—Erratic limestone blocks in the Sintria Creek downstream of the bridge near Ca’ Fornera, near Brisighella (Ravenna province), Romagna Appennine, northern Italy; coordinates: 44°14′14″N, 11°44′40″E; late Miocene (late Tortonian).

6. Ca’ Piantè.—Scattered marly to micritic limestone blocks SW of Ca’ Piantè, not far from Ca’ Carnè and near Brisighella (Ravenna province), Romagna Appennine, northern Italy; late Miocene (late Tortonian); additional information can be found in Conti and Fontana (1998).

7. Case Rovereti.—Large isolated limestone block just NW of the small village of Raggio, near Santa Sofia (Forlì province), Romagna Appennine, Italy; coordinates: 43°55′43″N, 11°56′43″E; located on San Paolo Marls but not necessarily belonging to such stratigraphic unit, late Miocene (middle Tortonian–early Messinian). This deposit has previously been described in more detail (Moroni, 1966; Tavani, 1994; Terzi et al., 1994; Clari et al., 2004a).

8. Castelvecchio.—Limestone (calcarenitic) deposit just W of small village of Castelvecchio, Piancaldoli, near Firenzuola (Firenze province), Tuscan Romagna Appennine, northern Italy; coordinates: 44°11′53″N, 11°24′18″E; Marnoso-arenacea Formation, middle Miocene (early Serravallian).

9. Deruta.—Small blocks at Fosso Castelleone 2 km SE of Deruta (Perugia province), central Italy; coordinates: 42°58′15.47″N, 12°26′35.48″E. Upper Miocene (Serravallian). This area was described by Clari et al. (2004b).

10. Le Colline.—Scattered marly to micritic limestone blocks outcrop NE of Salecchio, near Palazzuolo (Firenze province), Tuscan Romagna Appennine, northern Italy; coordinates: 44°06′17″N, 11°34′53″E; Marnoso-arenacea Formation, middle Miocene (early Serravallian); further information on this outcrop is provided by Conti and Fontana (1998).

11. Marmorito.—Limestone deposits near the village of Marmorito in the Monferrato hills, east of Torino in the Piedmont Basin in northern Italy; coordinates: 45°03′24″N, 08°01′11″E; late Miocene.
12. Montepetra.—Large limestone deposit on the southeastern margin of the village of Montepetra (Forlì-Cesena province), northern Italy; coordinates: 43°55'50.67''N, 12°11'38.22''E. (late Tortonian). This deposit is well described in the literature (Taviani, 1994; Conti and Fontana, 1998; Clari et al., 2004b; Conti et al., 2010).

13. Sasso delle Streghe.—A 30 m high marly limestone peak near the village of Rocca Santa Maria (Modena province), northern Italy; coordinates: 44°28'40.02''N, 10°47'40.11''E; Termina Formation, Miocene (late Serravallian–Tortonian) (Taviani, 1994; Conti and Fontana, 1998; Taviani, 2001; Clari et al., 2004b; Conti et al., 2010). Also known in the past as ‘Sasso delle Cappe’ (Clams’ rock).

14. Verzino.—Small isolated outcrops in the Crotone basin along the steep right slope of the Vitravo river, between the villages of Verzino and Pallagorio at the localities of Maradera-Occhito (Crotone province), southern Italy; coordinates 39°31'90''N 16°87'32''E to 39°30'97''N 16°87'92''E (late Miocene: Tortonian to Messinian?). More information is reported by Gualtieri (1998).