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Abstract

We establish two results in the pointwise convergence problem of a trigonometric series
[An]

£ cne
inl with lim Hm £ I bTck | = 0

|n|< -x. * J-1 n-»oo \k\-n

for some nonnegative integer m. These results not only generalize Hardy's theorem, the Jordan test
theorem and Fatou's theorem, but also complement the results on pointwise convergence of those
Fourier series associated with known 1}-convergence classes. A similar result is also established for
the case that lim,,_,, £[y!"l"/7"'|A"'c,,| = 0, where (/„} satisfies certain conditions.
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Let {cn} be a sequence of complex numbers. Define Amcn (m > 0) by the
following recursive relations: for n > 0,

AO- _ . A0 _ .
a Cn ~ Cn> a C-n ~ C-n<

^n = cn-ca^, Ac_n = c _ n - c _ ^ 1 ;

A'"cn = AA"1"1^, Amc_n = AAm^Vw (m > 1).

We call Am the mth difference operator. It is clear that for n > 0 and m > 0,
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292 Pointwise convergence of trigonometric series [21

In this paper, we use Sn(t) and an{t) to denote the nth partial sum and the nth
Cesaro sum of the trigonometric series ^\n\<aocne'"'. If the series is the Fourier
series of an integrable function / , we write Sn(f, t) and <*„(/, t) instead of Sn(t)
and an(t), respectively. In [2], the ^-convergence property of a Fourier series was
discussed, and many L1-convergence classes were established there. In this paper,
the pointwise convergence property of these Fourier series will be established.
Indeed, the pointwise convergence property will be established for the following
more general case.

THEOREM 1. / / {cn} is a null sequence of complex numbers with

[X«]

(A) Urn lim £ |AMcJ = 0
X^X n-ao \k\ = n

for some nonnegative integer m, then, for 0 < |/0| < m, Sn(tQ) and on(t0) converge
together to the same limit, or they both diverge. Furthermore, let E be any subset of
T bounded away from 0, i.e.,

£ c { f : 8 < | / | < 7 r } for some 8 > 0.

Then Sn(t) converges uniformly on E if and only if an(t) converges uniformly on E.
Whenever m = 0, the conditions '0 < |?0| < TT ' and ' £ is bounded away from 0' can
be eliminated.

REMARK. Theorem 1 will apply to many particular cases. Before proving the
theorem, let us investigate these applications. The first case we want to investigate
is that in which

(i) ncn=O{\) ( | « | - » o o ) .

If condition (i) holds, then there exists an absolute constant M such that

lXn]

ck

(1 \
MI — + log X for all n > 1 and A > 1.

The above inequality implies that condition (A) corresponding to m = 0 holds.
Therefore, Theorem 1 can be applied to any trigonometric series satisfying
condition (i), in particular to the Fourier series of any function of bounded
variation. From the above result, we see that Theorem 1 generalizes a theorem of
Hardy, Theorem II.2.2 in [5].

The second case we want to investigate is the following Tauberian condition of
Hardy- Karamata kind:

[*«]

(ii) lim lim £ \kf |AcJ = 0 (1 < p < 2)
X^1 n-00 \k\ = n
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(3) Chang-Pao Chen 293

(cf. [2,4]). As shown in [2], case (ii) is a generalization of case (i). By the Holder
inequality, we get

[An]

\k\-n

[An] \l/P

£ l*r~W
\k\ = n

where \/p + \/q - 1. From this inequality, we infer that Theorem 1 can be
applied to any Fourier series satisfying condition (ii). From the following set of
implications

oc I Y°° \Ar f \1/p

L \,lP~l\\ P I ^\k\ = n\aCk\ 1 /,*.

\k\P |AcJ < o o = > « - u — ; = o ( l )

=>\2t \k\P\Ack\
P = o{\)

[An] _ t

=> lim lim £ \k\ |Ac^| = 0,
^ n—* oo |£| = n

we find that the conclusions of Theorem 1 hold for each of the classes <£p, t?*
and yp, defined in [1,7].

The third case we want to investigate is the following condition:

[An]

(iii) lim lim (log/i) £ |Ac;J=0.
*• ^ n-»oo l^l = n

This condition is the limit of condition (ii) as p -» 1+. It evidently implies
condition (A).

The fourth case we want to investigate is the following condition:
oc

(iv) L |AmcJ< oo (m>0).

It is clear that Theorem 1 will apply to this case. The special case of (iv)
corresponding to m = 1 says that Theorem 1 also applies to 3SV, the class of
bounded variation, defined in [2]. Let #, if and J^ be as in [2,7]. As shown in
[7], the following relations hold:

{even quasi-convex null-sequences} c y c j ^ c # n 38 y.

The notion of a quasi-convex sequence is a generalization of a convex sequence.
This concept was introduced by A. N. Kolmogorov in 1923 (cf. [2,6,7,9]). From
the above relations, we find that Theorem 1 can be applied to any of the
mentioned classes.
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294 Pointwise convergence of trigonometric series

The fifth case we want to investigate is the following condition:

{ cn} belongs to the class 2.Jt, i.e., {cn} is a null sequence such that
(v) for some a > 0, cn/n

a and c_n/n
a are monotonically decreasing as

n varies from 1 to oo

(cf. [2]). The quasi-monotonicity of { cn} yields

| AcJ < Acn + tfa— for all n * 0,
\n\

where K = max(2,2"). This implies that

\k\ = n
c_n~ c[Xn] + l - c _ | X n h l + M - + logA sup

where M — 2amax(2,2"). From the above inequality, we find that condition (A)
holds for m = 1.

The sixth case we want to investigate is the following condition:

Y,\n\<oocne"" is a lacunary series, i.e., l im^i^^c,, = 0, and there

(vi)
exists a sequence of positive integers, say {nk}™=1, such that
y = infknk+l/nk > 1, and such that cn = 0 except perhaps for
n = 0 , ±nk (k = 1,2,...).

The notion of a lacunary series was introduced by Hadamard in the study of the
'over-convergence' problem of a power series (cf. [5. 8]). From the definition, we
can easily obtain

[\n]

for all n > 1 and all A with 1 < X < y. So condition (A) holds.

The seventh case we want to investigate is the following condition:

(vii) {Ascn} n > 0 and {Asc_n} n > 0 are monotone sequences (s > 0).

It is clear that condition (vii) implies (A). A special case of condition (vii) is as
follows: {cn} is an even sequence with cn = 1/(2logn) for n ^ 2. For instance,
one may consider the famous example Y,n>2cosnt/\ogn, which does not belong
to any LP(T) for 1 < p < oo.
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PROOF OF THEOREM 1. Obviously, the first assertion of Theorem 1 is implied by
the second assertion. Therefore, to prove Theorem 1, it suffices to establish the
second assertion. Suppose that Sn(t) converges uniformly on E. Since each Sn(t)
is bounded on T, {Sn(t)} is uniformly bounded on E, and its limit function is
also bounded on E. Following the proof of [3, Theorem 5.3.1], except for a minor
modification, we see that an(t) converges uniformly on E. Conversely, assume
that an(t) converges uniformly on E. We claim that Sn(t) converges uniformly on
E. For X > 1, write Xn instead of [Xn]. From the definitions of Sn{t) and an(t),
we may easily see that

X+l X" X + 1 - I A-1
( \ V (f\ _ I t\ = " ( (t\ — ( t \ \ — V" n I * I ikt

It is clear that , for (X — \)n > 2, we have

This implies that , for each fixed X > 1, we have

X_ + 1 /• . . , x
(**) 0 uniformly on E as n ~* oo.

Now, we want to estimate the sum on the right side of the equation (*). Let E*(t)
be defined as in [2], i.e., for n > 0, define

£„*(>) =
1

2/e"/2sinf/2 A:=o 2/e"/2sinr/2

and define E*n(t) = E*(-t). By using summation by parts, we get

X" X + 1 - \c X" X + 1 - t-

E ~\—^~cke""= E -\— ck(Ek*{t) - E^i

where

We have

^ . - i

k=n

= 2- —i
-n

^E*^-K^C"E*{t) + X^-n

: r SUPI sin r/21 *>„
sup \ck\ for Xn > n + 1.
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This implies that for each fixed X > 1, ^(t, n, X) converges to 0 uniformly on

8 < \t| < IT as n -> oo. We want to show that

k = n "

ii/2 X»"2 X + 1 - k
= ^.pr E \tfckEk(t)+<t,2(t,n,\)2ismt/2 kJ^1 \ n - n * k ' 2V '

for some function <J>2(f,«, X) with the following property: for each fixed X > 1,
<j>2(t, n, X) converges to 0 uniformly on 5 < \t\ < IT as n -> oo. By using summa-
tion by parts, we get

K y l K + i - k ( ) e"/2 y x + i - f c t t
\n-n

2isiat/2 ~n \n - n

e"/2 ^ 2 A + 1 -

2isint/2 kj^_1 \ n - n

where

We have

| <j>2 ( t , n , X ) | < sup | Ack | for X „ > n + 1.
12sin//21 k>n-i

This implies that for each fixed X > 1, <t>2(t, n, X) converges to 0 uniformly on
§ < \t\ < IT as n -* oo. If we repeat the above procedure several times, we get,
finally:

, , / 2 \ « - i K - * x . + l - k ._ _

2/ sin r /2

where <j>(t, n, X) is of the form

il/2 \ I e"/2
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and where each (j>j(t,n,X) has the property: for any fixed X > 1, (pj(t,n,X)
converges to 0 uniformly on 8 < |/| < m as n -* oo. It is clear that <$>(t, n, X) has
the same property as fy(f, n, X), i.e., for any fixed X > 1, <j>(t, n, X) converges to
0 uniformly on 8 < \t\ ̂  IT as n -> oo. By the same argument as above, we can
show that

E , - i k t

- n

-2 / sin t/2

i - l Xn — n

E
A: = n — m - n

where ^(t, n,X) has the following property: for any fixed X > 1,
converges to 0 uniformly on 8 < | / | < w as « - » o o . Combining the last two
equations, we get

A Xn + 1 - | ) t |

m + l

| 2 s i n r / 2 f IAI-

m + 1

|2sinr/2f

eikt

• E | A %

\ 1*1-1

| ^ ( ' , « , X ) .

sup

Let K(n, X) be a constant, dependent on /? and X only, such that

| < / > ( / , H , X ) | + | * ( / , M , X ) | < K(n,X) for all 8 <

and such that

lim K(n,\) = 0 for each fixed X > 1.
n—* oc

Then

sup
K

E
Jkt

+ 1 | A % | + 2m sup
12 sin 8/21

By the hypotheses on {cn} and # ( « , X), we see that

+ K(n,X).

(***) lim lim sup
^ i 1 «->oc 8 < | / | <

-cLe
ikt = 0.
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From (*), (**) and (***), we find that Sn(t) converges uniformly on E. For

m = 0, it is easy to see from the above proof that the conditions on t0 and E can

be eliminated.

With the help of Lebesgue's theorem and Fejer's theorem, it is easy to see that

Theorem 1 has the following consequence.

COROLLARY 2. Let f e Ll(T) with the condition

lim Urn £ |AM/(*)I = 0
X J-1 n - > o o |Ar|— n

for some nonnegative integer m. Then the following conclusions hold.
(1) Sn(f, t0) converges tof(t0) for every value oft0 satisfying 0 < |/0| < -n and

lim-f
/>->o h Jo

dr = 0.2

In particular, Sn(f,t) converges to f(t) almost everywhere.
(2) Let E be any closed subinterval of T bounded away from 0. / / / is continuous

on E, then Sn(f,t) converges to f(t) uniformly on E.
(3) Whenever m = 0, the condition '0 < \tQ\ < m' in (1) and the condition 'E is

bounded away from 0' in (2) can be eliminated.

REMARK. AS explained in the remark after Theorem 1, we see that Corollary 2
can be applied to any of the cases (i) to (vii) stated there. Let us discuss a special
case of (i) as follows. Suppose that / is a function of bounded variation. It is a
well-known fact that «/(«) = 0(1) as \n\ -» oo. This implies that the condition
on {/(«)} in Corollary 2 corresponding to m = 0 holds for such a case. On the
other hand, it is well known that for any point /0, f(t() + 0) and /( /„ - 0) exist,
which implies that

hm T /
A-.o n Jo

-/(O = 0,2

where f(t0) = j{f(t0 + 0) + f(t0 - 0)}. The above discussion tells us that
Corollary 2 generalizes the Jordan test theorem, i.e., [8, Theorem 13.232] or [5,
Corollary II.2.2]. From the inequality

E I/Wk""1 E W(k)\,
n*i\k\si2n | / t |<2n

we see that Corollary 2 also generalizes Fatou's theorem in [3, Vol. 1, page 106].

We have seen how the proof of Theorem 1 goes through for the case \n = [\n].
Following the same proof, except for a minor modification, we can easily find
that the proof also works for the case \ n = n + [n/ln]. This means that the
following result is true.
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THEOREM 3. Let {cn} be a null sequence and let 0 < |/0| < TT. / / there exists a
sequence, say {/n}n > 0 . sucn that

(1)1 < /„ < n for all n,

(2) / X + iv/.iCo) ~ °n(to)\ = o(l) (n -» oo), and
(3) limn _ 00Eut|I"

//"1|Amc^| = 0 for some nonnegative integer m,
then Sn(t0) and an(t0) converge together to the same limit, or they both diverge.
Furthermore, suppose that condition (2) holds uniformly on E, where E is bounded
away from 0. Then Sn(t) converges uniformly on E if and only if on(t) converges
uniformly on E. Whenever m = 0, the conditions on t0 and E can be eliminated.

In [2], the /^-convergence property of a Fourier series satisfying one of the
following conditions was established:

(ii') ( i f - o o ) ,

Oog[«//J)

where 1 < p < 2, 1//? + 1/<7=1 and cn= f(n) for all n. Obviously, condition
(iii') implies condition (3) in Theorem 3 corresponding to m = 1. On the other
hand, by the Holder inequality, we get

+ [«/'„ « + [«//„]

where 1 < /? < 2 and 1//? + \/q = 1, which says that condition (ii') also implies
the same condition. In conclusion, Theorem 3 complements the results on
pointwise convergence of these Fourier series. It is obvious that Theorem 3 is
better than Theorem 1 for the case that the sequence {/„} exists. From the fact
that

and that

K( / ) - / L = 0{n~a) for/e Lipa(r),0 < a < 1,

- / L = O{\ogn/n) for/e LiPl(T),

we know that the sequence {ln} exists at least for functions satisfying a Lipschitz
condition. This shows that Theorem 3 makes sense at least for Lipschitz classes.
From the definition of {/„}, we know that the existence problem of the sequence
{/„} is completely dependent on the estimate of the quantity |oXn(

ro) ~ a«('o)l-
Therefore, obtaining a better estimate of the quantity \ax (t0) - on(t0)\ is a
problem of special significance.
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