REMARKS ON ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

BY CLÉMENT FRAPPIER

ABSTRACT. A classical result of Laguerre says that if *P* is a polynomial of degree *n* such that $P(z) \neq 0$ for |z| < 1 then $(\xi - z)P'(z) + nP(z) \neq 0$ for |z| < 1 and $|\xi| < 1$. Rahman and Schmeisser have obtained an extension of that result to entire functions of exponential type: if *f* is an entire function of exponential type τ , bounded on \mathbb{R} , such that $h_t(\pi/2) = 0$ then $(\xi - 1)f'(z) + i\tau f(z) \neq 0$ for $\operatorname{Im}(z) > 0$ and $|\xi| < 1$, whenever $f(z) \neq 0$ if $\operatorname{Im}(z) > 0$. We obtain a new proof of that result. We also obtain a generalization, to entire functions of exponential type, of a result of Szegö according to which the inequality $|P(Rz) - P(z)| \leq R'' - 1$, $|z| \leq 1$, $R \geq 1$, holds for all polynomials *P*, of degree $\leq n$, such that $|P(z)| \leq 1$ for $|z| \leq 1$.

1. Statement of the results. Let B_{τ} denote the class of entire functions of exponential type $\tau > 0$ bounded on the real axis. The Phragmén-Lindelöf indicator function of $f \in B_{\tau}$ is defined as

$$h_f(\theta) := \overline{\lim_{r \to \infty} \frac{\log |f(re^{i\theta})|}{r}}, \ 0 \le \theta \le 2\pi.$$

Rahman and Schmeisser [8] have proved the following result:

THEOREM 1. Let $f \in B_{\tau}$ such that $h_f(\pi/2) = 0$ and $f(z) \neq 0$ in Im(z) > 0. Then, for $|\xi| < 1$ and Im(z) > 0,

(1)
$$(\xi - 1)f'(z) + i\tau f(z) \neq 0.$$

This theorem represents an interesting generalization of a classical result of Laguerre (see [2] or [7, vol. II, chap. 2]) according to which

(2)
$$(\xi - z) P'(z) + nP(z) \neq 0, |\xi| < 1, |z| < 1,$$

for all polynomials $P(z) := \sum_{\ell=0}^{n} a_{\ell} z^{\ell}$ such that $P(z) \neq 0$ in |z| < 1. In [8] the theorem is proved by using a property of *B*-operators. Here, we prove (1) with a method of approximation due to Lewitan [6] in a form given by Hörmander [5]; it will be done by adding only one hypothesis on the roots of the function *f*. Using that method, we will also prove the

Received by the editors January 29, 1985.

AMS Subject Classification (1980): 30D15, 30A64.

Research supported by "La Fondation du Prêt d'Honneur Inc."

[©] Canadian Mathematical Society 1985.

CLÉMENT FRAPPIER

THEOREM 2. Let $f \in B_{\tau}$ such that $h_f(\pi/2) \le 0$. If $-\infty < X < \infty$, $-\infty < \eta < \infty$ and $Y \le -|\eta|$ then:

(3)
$$|e^{-\tau\eta} (f(X + iY - i\eta) - f(X - i\eta)) + e^{\tau\eta} (f(X + iY + i\eta)) - f(X + i\eta))| \le 2(e^{-\tau Y} - 1) \max_{-\infty < t < \infty} |f(t)|.$$

If $\eta = 0$ in Theorem 2 we obtain the inequality

(4)
$$|f(X + iY) - f(X)| \le (e^{-\tau Y} - 1) \max_{-x \le t \le x} |f(t)|, -\infty < X < \infty, Y \le 0.$$

In that inequality the hypothesis $h_f(\pi/2) \le 0$ is not necessary. In fact, it may be deduced from the classical inequality of Bernstein [1], $|f'(X)| \le \tau \max_{-\infty < t < \infty} |f(t)|$, $-\infty < X < \infty$, and the identity

(5)
$$f(X + iY) - f(X) = i \int_0^Y f'(X + iu) du$$

However, the example $f(z) = e^{-i\epsilon z}$, $0 < \epsilon \le \tau$, shows that, in (3), the inequality may not hold if $h_f(\pi/2) > 0$ (and $\eta \ne 0$).

For other recent results obtained with that method of approximation see [4, Theorem 1] and [3].

2. Some lemmas. Given $f \in B_{\tau}$, let

(6)
$$f_h(X) := \sum_{K=-\infty}^{\infty} \left(\frac{\sin \pi (hX+K)}{\pi (hX+K)} \right)^2 f\left(X+\frac{K}{h}\right), -\infty < X < \infty, h > 0.$$

We shall use the

LEMMA 1. [5] The functions f_h defined by (6) are trigonometric polynomials with period 1/h and degree less than $N := 1 + [\tau/2\pi h]$. When X is real we have $|f_h(X)| \le 1$ whenever $\max_{-\pi < t < \pi} |f(t)| \le 1$, and $f_h(z) \to f(z)$ uniformly in every bounded set when $h \to 0$.

In view of Lemma 1 we may write

(7)
$$f_h(X) = \sum_{m=-N}^{N} C_m(h) e^{2\pi i h m \lambda}$$

where

$$C_m(h) = h \int_0^{1/h} f_h(X) e^{-2\pi i h m X} dX.$$

We have also the

LEMMA 2. (See [4, proof of Theorem 1] or [3, Lemma 2]). If $h_f(\pi/2) \le 0$ then $C_m(h) = 0$ for $-N \le m \le -1$.

https://doi.org/10.4153/CMB-1986-056-4 Published online by Cambridge University Press

September

366

ENTIRE FUNCTIONS

Theorem 2 is in fact an extension of an inequality on algebraic polynomials which is a consequence of the following interpolation formula:

LEMMA 3. Let $P(z) := \sum_{\ell=0}^{n} a_{\ell} z^{\ell}$ be a polynomial of degree $\leq n$. If $\rho > 0$ is given then, for any number $R \geq (\rho^{n} + \rho^{-n})/(\rho^{n-1} + \rho^{-(n-1)})$ and any real γ , we have

(8)
$$e^{i\gamma} [\rho^{n} (P(Re^{i\theta}) - P(e^{i\theta})) + \rho^{-n} (P(R\rho^{2}e^{i\theta}) - P(\rho^{2}e^{i\theta}))] = \frac{1}{n} \sum_{K=1}^{2n} (-1)^{K} A_{K}(R, \gamma, \rho) P(e^{i(\theta + (K\pi + \gamma)/n)}),$$

for all real θ , where

$$A_{\kappa}(R,\gamma,\rho) := R^{n} - 1 + \sum_{j=1}^{n-1} (R^{n-j} - 1) (\rho^{j} + \rho^{-j}) \cos j \frac{(K\pi + \gamma)}{n}$$

The coefficients $A_{\kappa}(R, \gamma, \rho)$ are non negative and

(9)
$$\frac{1}{2n} \sum_{k=1}^{2n} A_k(R, \gamma, \rho) = R^n - 1.$$

PROOF. Substituting for $P(\rho e^{i(\theta + (k\pi + \gamma)/n)})$ and $A_k(R, \gamma, \rho)$ we have

$$\frac{1}{n} \sum_{k=1}^{2n} (-1)^k A_k(R, \gamma, \rho) P(\rho e^{i(\theta + (k\pi + \gamma)/n)})$$

$$= \frac{(R^n - 1)}{n} \sum_{k=1}^{2n} \sum_{\ell=0}^n (-1)^k a_\ell \rho^\ell e^{i\ell(\theta + (k\pi + \gamma)/n)}$$

$$+ \frac{1}{n} \sum_{k=1}^{2n} \sum_{j=1}^{n-1} \sum_{\ell=0}^n (-1)^k (R^{n-j} - 1) (\rho^j + \rho^{-j}) \cos j \frac{(k\pi + \gamma)}{n} a_\ell \rho^\ell e^{i\ell(\theta + (k\pi + \gamma)/n)}.$$

Interchanging the order of summation, replacing $\cos j(k\pi + \gamma)/n$ by $(e^{ij(k\pi + \gamma)/n} + e^{-ij(k\pi + \gamma)/n})/2$ and using the identity

$$\sum_{k=1}^{2n} e^{(mk\pi i)/n} = \begin{cases} 2n \text{ if } m \equiv 0 \pmod{2n} \\ 0 \text{ if } m \not\equiv 0 \pmod{2n} \end{cases}$$

three times (with an appropriate integer m), we obtain

$$\frac{1}{n} \sum_{k=1}^{2n} (-1)^k A_k(R, \gamma, \rho) P(\rho e^{i(\theta + (k\pi + \gamma)/n)})$$

$$= 2(R^n - 1) a_n \rho^n e^{in\theta + i\gamma} + \sum_{\substack{j=1\\j\neq\ell=n}}^{n-1} \sum_{\ell=0}^n (R^{n-j} - 1) a_\ell(\rho^j + \rho^{-j}) e^{i\ell\theta + i(j+\ell)\frac{\gamma}{n}}$$

$$= \sum_{\ell=1}^n (R^\ell - 1) a_\ell(\rho^n + \rho^{2\ell-n}) e^{i\ell\theta + i\gamma} = e^{i\gamma} [\rho^n (P(Re^{i\theta}) - P(e^{i\theta})) + \rho^{-n} \times (P(R\rho^2 e^{i\theta}) - P(\rho^2 e^{i\theta}))].$$

1986]

CLÉMENT FRAPPIER

September

The identity (9) follows from (8) if we set $P(z) = z^n$. To show that the coefficients $A_k(R, \gamma, \rho)$ are non negative we may use a result of Rogosinski and Szegö [9, p. 75] according to which

(10)
$$\lambda_0 + 2 \sum_{j=1}^n \lambda_j \cos j\theta \ge 0 \ (\theta \in \mathbb{R})$$

if $\lambda_n \ge 0$, $\lambda_{n-1} - 2\lambda_n \ge 0$ and $\lambda_{j-1} - 2\lambda_j + \lambda_{j+1} \ge 0$ for 0 < j < n. In order to verify the third condition we are led to show that

$$R^{n-j+1}\left\{\rho^{j-1}\left(1-\frac{\rho}{R}\right)^{2}+\frac{1}{\rho^{j-1}}\left(1-\frac{1}{\rho R}\right)^{2}\right\} \ge \rho^{j-1}\left(1-\rho\right)^{2}+\frac{1}{\rho^{j-1}}\left(1-\frac{1}{\rho}\right)^{2},$$
$$0 < j < n,$$

for $R \ge (\rho^n + \rho^{-n})/(\rho^{n-1} + \rho^{-(n-1)}) (\ge 1, \rho > 0)$. But the function $\phi(R) := \rho^{j-1}$ $(1 - \rho/R)^2 + (1/\rho^{j-1}) [1 - (1/\rho R)]^2$ is increasing for $R \ge (\rho^n + \rho^{-n})/(\rho^{n-1} + \rho^{-(n-1)})$ so that (10) is satisfied with $\lambda_i := (R^{n-j} - 1)(\rho^j + \rho^{-j})/2$. This completes the proof of the lemma.

It follows from Lemma 3 that if P is an algebraic polynomial of degree $\leq n$ such that $\max_{1 \le k \le 2n} |P(e^{(k\pi i)/n})| \le 1$ then, for all real θ ,

(11)
$$\left|\rho^{n}\left(P\left(\frac{Re^{i\theta}}{\rho}\right) - P\left(\frac{e^{i\theta}}{\rho}\right)\right) + \rho^{-n}\left(P(R\rho \ e^{i\theta}) - P(\rho \ e^{i\theta})\right)\right| \le 2(R^{n} - 1),$$

$$R \ge \frac{\rho^{n} + \rho^{-n}}{\rho^{n-1} + \rho^{-(n-1)}}, \ \rho > 0$$

REMARKS.

1. Szegö [10] had proved that the inequality

(12)
$$|P(Re^{i\theta}) - P(e^{i\theta})| \le (R^n - 1), R \ge 1, \theta \in \mathbb{R}$$

holds for all polynomials P such that $\max_{1 \le k \le 2n} |P(e^{(k\pi i)/n})| \le 1$. Using (12) we deduce that the left member of (11) is less or equal to $\rho^n(R^n-1)M_P(1/\rho) + \rho^{-n}(R^n-1)$ $M_P(\rho)$ where $M_P(\rho) := \max_{|z|=\rho} |P(z)|$. But, in view of Hadamard's three circles theorem, $2M_P(1) \le \rho^n M_P(1/\rho) + \rho^{-n} M_P(\rho)$ for all $\rho > 0$, so that (11) is effectively a refinement of (12).

2. If $S(\theta) := \sum_{m=-n}^{n} b_m e^{im\theta}$ is a trigonometric polynomial of degree $\leq n$ then for $\theta, \gamma \in \mathbb{R}, \rho > 0$ and $R \ge (\rho^n + \rho^{-n})/(\rho^{n-1} + \rho^{-(n-1)})$ we have

(13)
$$e^{i\gamma} \sum_{m=1}^{n} (R^{m} - 1) b_{m}(\rho^{n} + \rho^{2m-n}) e^{im\theta} + e^{-i\gamma} \sum_{m=-n}^{-1} (R^{-m} - 1)$$
$$\times b_{m}(\rho^{2m+n} + \rho^{-n}) e^{im\theta} = \frac{1}{n} \sum_{k=1}^{2n} (-1)^{k} A_{k}(R, \gamma, \rho)$$
$$\times S\left(\theta + \frac{k\pi + \gamma}{n} - i \log \rho\right).$$

Thus, the inequality

(14)
$$\left|\sum_{m=1}^{n} (R^{m}-1) b_{m}(\rho^{n}+\rho^{2m-n}) e^{i(m-n)\theta} + \sum_{m=-n}^{-1} (R^{-m}-1) b_{m}(\rho^{2m+n}+\rho^{-n}) e^{i(m+n)\theta}\right| \le 2(R^{n}-1) \max_{1\le k\le 2n} \left|S\left(\frac{k\pi}{n}-i\log\rho\right)\right|$$

is satisfied for

$$R \geq \frac{\rho^n + \rho^{-n}}{\rho^{n-1} + \rho^{-(n-1)}}, \quad \rho > 0, \quad \theta \in \mathbb{R}.$$

3. **Proof of the theorems**. As mentioned in the introduction we will prove Theorem 1 with an additional hypothesis on the roots of the function f. If f has some kind of zero at infinity it may happen that the approximating functions (7) have a sequence of zeros in Im(z) > 0 (which tends to infinity). In that case, since the transformation $z \mapsto e^{iz}$ maps any rectangle of the form $\{z \in \mathbb{C} : -X_0 \le Re(z) \le X_0, 0 \le \text{Im}(z) \le Y_0\}, X_0, Y_0 > 0$, on a domain contained in $\{z \in \mathbb{C} : |z| \le 1\}/\{0\}$, the following argument seems not to apply easily.

PROOF OF THEOREM 1. We shall prove the result by requiring that there is no curve C in the upper half-plane for which f(z) approaches zero as $|z| \rightarrow \infty$, $z \in C$.

Since $h_f(\pi/2) = 0$ we have (by Lemma 2) $f_h(z) = P_h(e^{2\pi h i z})$ where P_h is an algebraic polynomial of degree < N. If $f(z) \neq 0$ in $\text{Im}(z) \ge 0$ then $f_h(z) \neq 0$ in Im(z) > 0 whenever h is made sufficiently small. The polynomials $P_h(z)$ are thus $\neq 0$ in |z| < 1. Applying (2) we obtain that

(15)
$$(\xi - z) P'_h(z) + NP_h(z) \neq 0, \quad |z| < 1, \quad |\xi| < 1,$$

or, equivalently

(16)
$$(\xi - e^{iz}) P'_h(e^{iz}) + NP_h(e^{iz}) \neq 0, \quad \text{Im}(z) > 0, \quad |\xi| < 1,$$

that is

(17)
$$(\xi - e^{iz}) f'_h \left(\frac{z}{2\pi h}\right) + 2\pi h N i f_h \left(\frac{z}{2\pi h}\right) \neq 0, \quad \text{Im}(z) > 0, \quad |\xi| < 1.$$

If we change z to $2\pi hz$, in (17), we obtain that the functions $g_h(z) := (\xi - e^{2\pi hiz})$ $f'_h(z) + 2\pi hNi e^{2\pi hiz} f_h(z)$ have no zero in Im(z) > 0. In view of Hurwitz's theorem we conclude that $g(z) := \lim_{h\to 0} g_h(z)$ is different from 0 in Im(z) > 0, or $g(z) \equiv 0$. But (using Lemma 1) $g(z) = (\xi - 1)f'(z) + i\tau f(z) \equiv 0$ if and only if $f(z) = c e^{i\tau z/(1-\xi)}$ for some constant c (a function of that form is in B_{τ} if $|\xi - 1| \ge 1$) which are not admissible functions in (1). Thus, $(\xi - 1)f'(z) + i\tau f(z) \neq 0$ for Im(z) > 0 and $|\xi| < 1$.

Finally, if $f(z) \neq 0$ only in Im(z) > 0 then we may apply the result just proved to a function of the form $f(z + \epsilon i)$, $\epsilon > 0$, and the result follows.

369

1986]

CLÉMENT FRAPPIER

REMARKS. It is possible to find many $f \in B_{\tau}$ such that $h_f(\pi/2) = 0$, $f(z) \neq 0$ in $\operatorname{Im}(z) > 0$, but $\lim_{r \to \infty} f(ri) = 0$; an example is $f(z) = (e^{i\tau z} - 1)/z$. Also, in the case $h_f(\pi/2) < 0$, we have necessarily $\lim_{r \to \infty} f(ri) = 0$ (if we let $\delta > 0$ such that $h_f(\pi/2) = -\delta$ then $|f(ri)| < e^{-(\delta \tau)/2}$, $r \to \infty$); in that case it is known [8] that (1) may not hold.

It is also to be noted that if the polynomials $P_h(z)$ happens to have a zero of multiplicity k at z = 0, with $\lim_{h\to 0} kh = 0$, then the preceeding argument may be used; we need only to observe that (2) may then be applied to the polynomials $P_h(z)/z^k$ instead of $P_h(z)$.

PROOF OF THEOREM 2. If $h_f(\pi/2) \le 0$ then (by Lemma 2) $f_h(z/(2\pi h)) = P_h(e^{iz})$ where P_h is an algebraic polynomial of degree < N. Applying (11) and Lemma 1 we readily obtain (we may assume that $\max_{-\infty < t < \infty} |f(t)| \le 1$):

(18)
$$\left| \rho^{N} \left(P_{h} \left(\frac{Re^{i\theta}}{\rho} \right) - P_{h} \left(\frac{e^{i\theta}}{\rho} \right) \right) + \rho^{-N} \left(P_{h} (R\rho \ e^{i\theta}) - P_{h} (\rho \ e^{i\theta}) \right) \right|$$
$$\leq 2 \left(R^{N} - 1 \right), R \geq \frac{\rho^{N} + \rho^{-N}}{\rho^{N-1} + \rho^{-(N-1)}}, \quad \theta \in \mathbb{R}.$$

That inequality may be written in the form

(19)
$$\left| \rho^{N} \left(f_{h} \left(\frac{\theta - i \log R/\rho}{2\pi h} \right) - f_{h} \left(\frac{\theta + i \log \rho}{2\pi h} \right) \right) + \rho^{-N} \left(f_{h} \left(\frac{\theta - i \log R\rho}{2\pi h} \right) \right) - f_{h} \left(\frac{\theta - i \log \rho}{2\pi h} \right) \right) \right| \leq 2(R^{N} - 1), R \geq \frac{\rho^{N} + \rho^{-N}}{\rho^{N-1} + \rho^{-(N-1)}}, \quad \theta \in \mathbb{R}.$$

Put $\theta = 2\pi hX$ and change R to $R^{2\pi h}$, ρ to $\rho^{2\pi h}$; we obtain that

(20)
$$|\rho^{2\pi hN}(f_h(X - i \log R + i \log \rho) - f_h(X + i \log \rho)) + \rho^{-2\pi hN}(f_h(X - i \log R - i \log \rho)) | = 2(R^{2\pi hN} - 1),$$
$$R^{2\pi h} \ge \frac{\rho^{2\pi hN} + \rho^{-2\pi hN}}{\rho^{2\pi h(N-1)} + \rho^{-2\pi h(N-1)}}, -\infty < X < \infty.$$

The condition

$$R^{2\pi h} \ge \frac{\rho^{2\pi hN} + \rho^{-2\pi hN}}{\rho^{2\pi h(N-1)} + \rho^{-2\pi h(N-1)}}$$

is certainly satisfied if $R \ge \rho$ in the case $\rho \ge 1$ and if $R \ge 1/\rho$ in the case $\rho \le 1$. Thus, letting $h \rightarrow 0$ in (20) (and using Lemma 1) we are led to the inequality

(21)
$$\left| \rho^{\tau} \left(f(X + iY + i \log \rho) - f(X + i \log \rho) \right) + \rho^{-\tau} \left(f(X + iY - i \log \rho) - f(X - i \log \rho) \right) \right| \le 2(e^{-\tau Y} - 1), -\infty < X < \infty, \rho > 0,$$

where $e^{-\gamma} := R \ge e^{|\log \rho|}$, from which (3) follows (with $\eta := \log \rho$).

ENTIRE FUNCTIONS

REFERENCES

1. S. N. Bernstein, Sur une propriété des fonctions entières, Comptes rendus de l'Académie des sciences, Paris, 176 (1923), pp. 1602-1605.

2. N. G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Wetensch. Proc., 50 (1947), pp. 1265-1272.

3. C. Frappier, Inequalities for entire functions of exponential type, Canadian Mathematical Bulletin, 27, 4 (1984).

4. T. G. Genčev, Inequalities for asymmetric entire functions of exponential type, Soviet Math. Dokl., **19** (1978), no. 4, pp. 981-985.

5. L. Hörmander, Some inequalities for functions of exponential type, Math. Scand., 3 (1955), pp. 21-27.

6. B. M. Lewitan, Über eine Verallgemeinerung der Ungleichunger von S. Bernstein und H. Bohr, Doklady Akad. Nauk SSSR, 15 (1937), pp. 169-172.

7. G. Polyá and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin (1925).

8. Q. I. Rahman, and G. Schmeisser, Extension of a theorem of Laguerre to entire functions of exponential type, to appear.

9. W. Rogosinski and G. Szegö, Über die Abschnitte von Potenzreihen die in einen Kreisse beschränkt, Math. Z., **28** (1928), pp. 73-94.

10. G. Szegö, Über einen Satz des Herrn Serge Bernstein, Schr. Königsb. gelehrt. Ges., 22 (1928), pp. 59-70.

Département de mathématiques et de statistique Université de Montréal C.P. 6128, Succursale "A" Montréal, Québec, Canada H3C 3J7