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1. Introduction

In recent years there has been an increasing interest in studying p-Laplacian systems with
various types of boundary conditions. We mention here the contributions of Gasinski and
Papageorgiu [5], Jebelean and Moroşanu [7, 8], Manásevich and Mawhin [10, 11] and
Mawhin [14]. The methods used in these papers to prove the existence of (multiple, but
finitely many) solutions of p-Laplacian systems are based on degree theory, on minimax
results, on fixed-point theorems or on continuation methods of Leray–Schauder type.
Using the symmetric version of a mountain-pass-type theorem, Jebelean proved in [6]
that, under certain assumptions, ordinary p-Laplacian systems with nonlinear boundary
conditions have infinitely many solutions.

In [17] Ricceri developed a general variational principle which can be applied to prove
that, for example, certain Neumann-type problems have infinitely many solutions (see
also [18]). This new method of Ricceri has been extended to the non-smooth case by
Marano and Motreanu [12]. Applications of Ricceri’s, and Marano and Motreanu’s meth-
ods can be found, for example, in [4] and [9], respectively. In this sense we also mention
Di Falco’s contributions in proving (using Ricceri’s method) the existence of infinitely
many solutions for p, q-Laplacian-type problems with Neumann [2] and Dirichlet [3]
boundary conditions, respectively.
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10 B. E. Breckner and C. Varga

The aim of the present paper is to study systems of differential inclusions with vari-
ous types of boundary conditions using Marano and Motreanu’s non-smooth version of
Ricceri’s method. The main results of the paper ensure the existence of infinitely many
solutions of these systems, thus completing the results obtained in the papers mentioned
at the beginning of this section. The price we have to pay to get infinitely many solutions
is that we impose more restrictive boundary conditions than in these papers. On the
other hand, we do not require (as in [6]) that the nonlinear term should satisfy certain
symmetry properties, but it has to have an oscillating behaviour.

2. Prerequisites

Definition 2.1. Let (X, d) be a metric space and f : X → R be a real-valued function.
We say that

(i) f satisfies the Lipschitz condition on a subset M of X provided there exists a real
number L > 0 (depending on M) such that

|f(x) − f(y)| � Ld(x, y) for all x, y ∈ M.

(ii) f is locally Lipschitz if, for every x ∈ X, there exists a neighbourhood U of x such
that f satisfies the Lipschitz condition on U .

Remark 2.2. A standard argument yields that, in the case of a locally compact metric
space X, a function f : X → R is locally Lipschitz if and only if f satisfies the Lipschitz
condition on every compact subset of X.

For the rest of this section assume that (X, ‖ · ‖) is a real normed space and X� is its
topological dual.

Definition 2.3. Let f : X → R be a locally Lipschitz function. The generalized direc-
tional derivative of f at the point x ∈ X in the direction y ∈ X is defined as

f◦(x; y) := lim sup
z→x,τ→0+

f(z + τy) − f(z)
τ

.

The generalized gradient of f at x ∈ X is the set

∂f(x) := {x� ∈ X� : x�(y) � f◦(x; y) for all y ∈ X}.

Remark 2.4. Let f : X → R be a locally Lipschitz function and let x ∈ X. It can
be shown that f◦(x; y) ∈ R for every y ∈ X. Also, the functional f◦(x, ·) : X → R is
subadditive and positively homogeneous, and there exists a real number L > 0 such that
|f◦(x; y)| � L‖y‖ for every y ∈ X. Thus, due to the Hahn–Banach Theorem, the set
∂f(x) is non-empty.

Consider now h : X → R to be locally Lipschitz, j : X → ]−∞, +∞] to be convex,
proper and lower semicontinuous, and define Φ : X → ]−∞, +∞] as Φ = h + j. The
following type of critical point was introduced in [16] (in fact, it is the non-smooth
analogue of the notion of the critical point introduced by Szulkin in [19]).
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Definition 2.5. A point x ∈ X is a critical point of Φ if

h◦(x; y − x) + j(y) − j(x) � 0 for all y ∈ X.

Define D(j) := {x ∈ X | j(x) < +∞}. A straightforward argument yields the following
result (see also [13, Proposition 2.1]).

Lemma 2.6. Each local minimum of Φ lying in D(j) is a critical point of Φ.

Suppose now that X and Y are real Banach spaces such that X is compactly embed-
ded in Y . Let h1 : Y → R and h2 : X → R be locally Lipschitz functions, and let
j1 : X → ]−∞, +∞] be convex, proper and lower semicontinuous. Define the maps
Φ : X → ]−∞, +∞] and Ψ : X → R as

Φ(x) = h1(x) + j1(x), Ψ(x) = h2(x) for all x ∈ X.

Assume that
Ψ−1( ]−∞, ρ[) ∩ D(j1) �= ∅ for all ρ > inf

X
Ψ. (2.1)

For every ρ > infX Ψ set

φ(ρ) := inf
u∈Ψ−1( ]−∞,ρ[)

Φ(u) − infv∈(Ψ−1( ]−∞,ρ[))w
Φ(v)

ρ − Ψ(u)
, (2.2)

where (Ψ−1( ]−∞, ρ[))w is the weak closure of Ψ−1( ]−∞, ρ[),

γ := lim inf
ρ→+∞

φ(ρ), (2.3)

δ := lim inf
ρ→(infX Ψ)+

φ(ρ). (2.4)

The main results of this paper are obtained applying the following Critical Point
Theorem of Marano and Motreanu (see [12, Theorem 1.1]). In fact, this theorem is a
non-smooth version of a (smooth) critical point result of Ricceri [17, Theorem 2.5].

Theorem 2.7. Suppose that X is reflexive, Ψ is weakly sequentially lower semicon-
tinuous and coercive, and (2.1) is satisfied. Then the following assertions hold.

(i) For every ρ > infX Ψ and every λ > φ(ρ) the function Φ + λΨ has a critical point
(more exactly, a local minimum) lying in Ψ−1( ]−∞, ρ[) ∩ D(j1).

(ii) If γ < +∞, then, for each λ > γ, either

(a) Φ + λΨ has a global minimum or
(b) there is a sequence (un) of critical points (more exactly, local minima) of

Φ + λΨ lying in D(j1) and such that limn→∞ Ψ(un) = +∞.

(iii) If δ < +∞, then, for every λ > δ, either

(a) Φ + λΨ has a local minimum which is also a global minimum of Ψ or
(b) there is a sequence (un) of pairwise distinct critical points (more exactly, local

minima) of Φ + λΨ lying in D(j1) and such that (un) converges weakly to a
global minimum of Ψ and limn→∞ Ψ(un) = infX Ψ .
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3. The main results

Let n � 1 be a natural number, and let T and p be reals such that T > 0 and p > 1.
The space R

n is equipped with a fixed norm | · |. If x ∈ R
n, then x1, . . . , xn will always

denote the components of x, i.e. x = (x1, . . . , xn). Similarly, if u : M → R
n is a vector-

valued map defined on a non-empty set M , then u1, . . . , un are the components of u,
i.e. u(x) = (u1(x), . . . , un(x)) for every x ∈ M . The zero vector in R

n is denoted by 0n.
Also, we define the following binary relation on R

n: for x, y ∈ R
n, let

x ∗ y := (x1y1, . . . , xnyn).

Throughout this section we assume the following.

(C1) F : R
n → R is locally Lipschitz.

(C2) S ⊆ R
n × R

n is a closed convex set with {(x, x) | x ∈ R
n} ⊆ S.

(C3) γ1, . . . , γn ∈ L∞( ]0, T [ , R) are such that ess inf γi > 0, for i = 1, n; we set γ :=
(γ1, . . . , γn).

(C4) α ∈ L1( ]0, T [ , R) is such that α(t) � 0 a.e. in ]0, T [ ,

(C5) X is the Sobolev space W 1,p( ]0, T [ , Rn) equipped with the usual norm

‖u‖ =
( ∫ T

0
|u(t)|p dt +

∫ T

0
|u′(t)|p dt

)1/p

.

Recall that X is isomorphic to (W 1,p( ]0, T [ , R))n [15, Paragraph 1.4].

Remark 3.1. According to Remark 2.2, condition (C1) is equivalent to the fact that
F satisfies the Lipschitz condition on every open (or closed) ball centred at 0n, i.e.

∀r > 0 ∃Lr > 0: |F (x) − F (y)| � Lr|x − y| for all x, y ∈ R
n with |x|, |y| < r. (3.1)

Convention.

It is well known that for every f ∈ W 1,q( ]0, T [ , R) (where 1 � q � +∞) there exists a
unique continuous function f̃ ∈ C([0, T ], R) such that f = f̃ a.e. in ]0, T [. When necessary
(e.g. to give meaning to f(0) or f(T )) we will replace f by its continuous representative
f̃ ; for simplicity we will denote this continuous representative of f with the same letter f .

Denote by ξp : R
n → R

n the isomorphism defined as

ξp(x) =

{
|x|p−2x, x �= 0n,

0n, x = 0n.

The aim of this section is to show that under certain hypotheses there exist infinitely
many u ∈ X with (u(0), u(T )) ∈ S and such that u satisfies the following differential
inclusion problem:

−[ξp(u′)]′ + γ ∗ ξp(u) ∈ α(t)∂F (u),

(ξp(u′)(0),−ξp(u′)(T )) ∈ NS(u(0), u(T )),

}
(P)
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where NS(x, y) denotes the normal cone∗ of S at (x, y) ∈ S. Every such function u ∈ X

is called a solution of (P).

Remark 3.2.

(i) By the proof of [7, Proposition 3.2], for u ∈ W 1,p( ]0, T [ , Rn), the map ξp ◦ u′

belongs to W 1,1( ]0, T [ , Rn); thus, the function (ξp ◦ u′)′ in problem (P) exists.

(ii) Choosing S = {(x, x) | x ∈ R
n}, we get periodic boundary conditions in (P):

u(0) = u(T ) and ξp(u′)(0) = ξp(u′)(T ).

(iii) In the case when S = R
n × R

n we obtain Neumann-type boundary conditions
ξp(u′)(0) = ξp(u′)(T ) = 0n.

The first step in the study of (P) is to establish the corresponding energy function.
For this some preparation is needed.

• For every i ∈ {1, . . . , n} denote by Xi the Sobolev space W 1,p( ]0, T [ , R) equipped
with the norm ‖ · ‖i, where

‖f‖i =
( ∫ T

0
γi(t)|f(t)|p dt +

∫ T

0
|f ′(t)|p dt

)1/p

.

Since ess inf γi > 0 it follows that ‖ · ‖i is equivalent to the usual norm on
W 1,p( ]0, T [ , R).

• Let Y be the real Banach space C([0, T ], Rn) endowed with the supremum norm
‖·‖s. For simplicity we will denote the supremum norm on every space C([0, T ], Rm),
m ∈ N, by the same symbol ‖ · ‖s.

• Set
Σ := {u ∈ X | (u(0), u(T )) ∈ S}.

Note that Σ is a closed convex subset of X containing the constant functions.

• Define h1 : Y → R by

h1(u) =
∫ T

0
α(t)F (u(t)) dt for every u ∈ Y,

h2 : X → R by

h2(u) =
1
p
(‖u1‖p

1 + · · · + ‖un‖p
n) for every u ∈ X

and j1 : X → ]−∞, +∞] by

j1(u) =

{
0, u ∈ Σ,

+∞, u /∈ Σ.

∗ If A is a non-empty convex subset of R
m (m ∈ N) and a′ ∈ A, then the normal cone of A at a′ is

the set defined as
NS(a) := {x ∈ R

m | 〈x, a′ − a〉 � 0 for all a ∈ A},

where 〈· , ·〉 is the usual inner product on R
m.
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Lemma 3.3. The following assertions hold:

(i) the above defined maps h1 : Y → R and h2 : X → R are locally Lipschitz;

(ii) the map j1 : X → ]−∞, +∞] is convex, proper and lower semicontinuous.

Proof. (i) To show that h1 is locally Lipschitz, pick an arbitrary function u0 ∈ Y .
According to (3.1) there is a constant L � 0 such that

|F (x) − F (y)| � L|x − y| for all x, y ∈ R
n with |x|, |y| < 1 + ‖u0‖s. (3.2)

If u ∈ Y is so that ‖u − u0‖s < 1, then

|u(t)| � ‖u‖s � ‖u − u0‖s + ‖u0‖s < 1 + ‖u0‖s for all t ∈ [0, T ]. (3.3)

Consider now u, v ∈ Y with ‖u − u0‖s < 1 and ‖v − u0‖s < 1. Then, according to (3.2)
and (3.3), the following inequalities hold:

|h1(u) − h1(v)| �
∫ T

0
|α(t)| |F (u(t)) − F (v(t))| dt

� L

∫ T

0
|α(t)| |u(t) − v(t)| dt

� L‖α‖L1‖u − v‖s.

Thus, h1 is locally Lipschitz.
Since p > 1, the map h2 : X → R is convex. Obviously, h2 is bounded above on every

ball; thus, h2 is locally Lipschitz by [1, Proposition 2.2.6].

Assertion (ii) is straightforward. �

Define now Φ : X → ]−∞, +∞] and Ψ : X → R by

Φ(u) = h1(u) + j1(u), Ψ(u) = h2(u) for every u ∈ X. (3.4)

Proposition 3.4. If u ∈ Σ is a critical point (in the sense of Definition 2.5) of the
map

Φ + Ψ = (h1 + h2) + j1 : X → ]−∞, +∞],

then u is a solution of problem (P).

Proof. See Proposition 3.2 of [7]. �

Our aim is to apply Theorem 2.7 to the maps Φ and Ψ defined in (3.4). For this we
first observe that all assumptions required in Theorem 2.7 are satisfied:

• X, Y are real Banach spaces; X is reflexive and X is compactly embedded in Y ;

• h1 : Y → R, h2 : X → R are locally Lipschitz and j1 is convex, proper and lower
semicontinuous (according to Lemma 3.3);
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• Ψ = h2 : X → R is weakly sequentially lower semicontinuous (being convex and
continuous) and coercive;

• since infX Ψ = 0 and since Σ contains the constant functions, condition (2.1) is
satisfied.

Furthermore, we have to introduce some suitable subsets of R
n. For this, note that,

since Xi can be embedded in C([0, T ], R), there exist ci > 0, i = 1, n, such that

‖f‖s � ci‖f‖i for every f ∈ Xi. (3.5)

For every r > 0 let

A(r) :=
{

x ∈ R
n :

1
p

n∑
i=1

1
cp
i

|xi|p � r

}
,

B(r) :=
{

x ∈ R
n :

1
p

n∑
i=1

|xi|p
∫ T

0
γi(t) dt � r

}
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.6)

Remark 3.5.

(i) For every r > 0 the inclusion B(r) ⊆ A(r) holds. To see this we observe first that
(3.5) implies that

1 � ci

( ∫ T

0
γi(t) dt

)1/p

for i = 1, n.

Now pick an arbitrary x ∈ B(r). Then

1
p

n∑
i=1

1
cp
i

|xi|p � 1
p

n∑
i=1

|xi|p
∫ T

0
γi(t) dt � r;

hence x ∈ A(r).

(ii) Since the map

x ∈ R
n →

n∑
i=1

|xi|p
∫ T

0
γi(t) dt ∈ R

is convex, we have that, for every r > 0,

IntB(r) =
{

x ∈ R
n :

1
p

n∑
i=1

|xi|p
∫ T

0
γi(t) dt < r

}
.

Theorem 3.6. If r > 0 is such that

min
x∈A(r)

F (x) = min
x∈Int B(r)

F (x),

then the following assertions hold:

https://doi.org/10.1017/S001309150900073X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150900073X


16 B. E. Breckner and C. Varga

(i) φ(r) = 0, where φ is defined by (2.2);

(ii) problem (P) has a solution u ∈ Σ satisfying the condition Ψ(u) < r.

Proof. (i) We have φ(r) � 0, by definition. To show the converse inequality choose
x0 ∈ IntB(r) so that

F (x0) = min
x∈Int B(r)

F (x) = min
x∈A(r)

F (x),

and let u0 : X → R
n be the function taking the constant value x0. For every i ∈ {1, . . . , n}

we have that

‖u0
i ‖i = |x0

i |
( ∫ T

0
γi(t) dt

)1/p

;

thus,

Ψ(u0) =
1
p

n∑
i=1

|x0
i |p

∫ T

0
γi(t) dt < r,

i.e. u0 ∈ Ψ−1( ]−∞, r[). Since Ψ−1( ]−∞, r]) is convex and closed (in the norm topology),
it is closed also in the weak topology; hence,

(Ψ−1( ]−∞, r[))w ⊆ Ψ−1( ]−∞, r]).

Now pick an arbitrary element v ∈ (Ψ−1( ]−∞, r[))w. Then Ψ(v) � r. Therefore, using
also (3.5),

1
p

n∑
i=1

1
cp
i

|vi(t)|p � 1
p

n∑
i=1

1
cp
i

‖vi‖p
s � 1

p

n∑
i=1

‖vi‖p
i = Ψ(v) � r for all t ∈ [0, T ].

We conclude that v(t) ∈ A(r) for every t ∈ [0, T ]. Hence,

F (x0) � F (v(t)) for every t ∈ [0, T ].

It follows that

Φ(u0) = h1(u0) =
∫ T

0
α(t)F (x0) dt �

∫ T

0
α(t)F (v(t)) dt = h1(v) � Φ(v).

Since v ∈ (Ψ−1( ] − ∞, r[))w was chosen arbitrarily, we conclude that

inf
v∈(Ψ−1( ]−∞,r[))w

Φ(v) = Φ(u0).

This implies, according to the definition of φ in (2.2), that

φ(r) � Φ(u0) − Φ(u0)
r − Ψ(u0)

= 0,

and hence φ(r) = 0.

https://doi.org/10.1017/S001309150900073X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150900073X


Systems of differential inclusions 17

(ii) Since φ(r) = 0, we can apply Theorem 2.7 (i) for λ = 1 and conclude that the map
Φ + Ψ has a critical point u lying in Σ and such that Ψ(u) < r. The assertion follows
now from Proposition 3.4. �

Theorem 3.7. Assume that

(i) there exists a sequence (rk)k∈N of positive reals such that lim rk = +∞ and

min
x∈A(rk)

F (x) = min
x∈Int B(rk)

F (x) for every k ∈ N,

(ii) the following inequality holds:

lim inf
|x|→+∞

F (x)
∫ T

0 α(t) dt∑n
i=1 |xi|p

∫ T

0 γi(t) dt
< −1

p
.

Then problem (P) has an unbounded sequence of solutions.

Proof. Assumption (i) implies, according to Theorem 3.6 (i), that φ(rk) = 0 for every
k ∈ N. Let γ be defined as in (2.3). Since φ(r) � 0 for every r > 0, we conclude that

γ = lim inf
r→+∞

φ(r) = 0.

Applying Theorem 2.7 (ii) for λ = 1, we conclude that either assertion (a) or assertion (b)
of this part of the theorem must hold. Next we show that (a) of part (ii) is not satisfied,
i.e. we prove that Φ + Ψ is unbounded below. For this fix a real number q such that

lim inf
|x|→+∞

F (x)
∫ T

0 α(t) dt∑n
i=1 |xi|p

∫ T

0 γi(t) dt
< q < −1

p
.

Now choose a sequence (xk)k∈N in R
n such that lim |xk| = +∞ and

F (xk)
∫ T

0 α(t) dt∑n
i=1 |xk

i |p
∫ T

0 γi(t) dt
< q for every k ∈ N.

For every k ∈ N denote by uk : X → R
n the constant function taking the value xk. Then

the following relations hold for every k ∈ N:

Φ(uk) + Ψ(uk) = F (xk)
∫ T

0
α(t) dt +

1
p

n∑
i=1

|xk
i |p

∫ T

0
γi(t) dt

<

(
q +

1
p

) n∑
i=1

|xk
i |p

∫ T

0
γi(t) dt.

Since |xk| → +∞, ∫ T

0
γi(t) dt > 0 for every i ∈ {1, . . . , n}

https://doi.org/10.1017/S001309150900073X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150900073X


18 B. E. Breckner and C. Varga

and q + 1/p < 0, we conclude that limk→∞(Φ(uk) + Ψ(uk)) = −∞. Thus, Φ + Ψ is
unbounded below. The assertion follows now from part (b) of Theorem 2.7 (ii), the defi-
nition of Ψ and Proposition 3.4. �

Theorem 3.8. Assume that

(i) there exists a sequence (rk)k∈N of positive reals such that lim rk = 0 and

min
x∈A(rk)

F (x) = min
x∈Int B(rk)

F (x) for every k ∈ N,

(ii) the following inequality holds:

lim inf
x→0n

F (x)
∫ T

0 α(t) dt∑n
i=1 |xi|p

∫ T

0 γi(t) dt
< −1

p
.

Then problem (P) has a sequence of pairwise distinct solutions which converges strongly
to the zero function θX ∈ X.

Proof. We first observe that θX is the only global minimum of Ψ . Assumption (i) and
Theorem 3.6 (i) imply that φ(rk) = 0 for every k ∈ N. Let δ be defined as in (2.4). Since
φ(r) � 0 for every r > 0, we conclude that

δ = lim inf
r→0+

φ(r) = 0.

Applying Theorem 2.7 (iii) for λ = 1, we conclude that either assertion (a) or assertion
(b) of this part of the theorem must hold. Next we show that part (a) of Theorem 2.7 (iii)
is not satisfied, i.e. we prove that θX is not a local minimum of Φ + Ψ . For this fix a real
number q such that

lim inf
x→0n

F (x)
∫ T

0 α(t) dt∑n
i=1 |xi|p

∫ T

0 γi(t) dt
< q < −1

p
.

Now choose a sequence (xk)k∈N in R
n such that limxk = 0n and

F (xk)
∫ T

0 α(t) dt∑n
i=1 |xk

i |p
∫ T

0 γi(t) dt
< q for every k ∈ N.

In particular, the above inequalities imply that F (0n) = limk→∞ F (xk) = 0, and hence
Φ(θX) = 0.

For every k ∈ N denote by uk : X → R
n the constant function taking the value xk.

Then the following relations hold for every k ∈ N:

Φ(uk) + Ψ(uk) = F (xk)
∫ T

0
α(t) dt +

1
p

n∑
i=1

|xk
i |p

∫ T

0
γi(t) dt

<

(
q +

1
p

) n∑
i=1

|xk
i |p

∫ T

0
γi(t) dt � 0

= Φ(θX) + Ψ(θX).
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We have that lim ‖uk‖ = 0, and thus θX is not a local minimum of Φ + Ψ . Part (b)
of Theorem 2.7 (iii) and Proposition 3.4 imply now the existence of a sequence (ũk) of
pairwise distinct solutions of (P) such that limΨ(ũk) = 0. Since Ψ is a norm on X which
is equivalent to the norm ‖ · ‖, we conclude that (ũk) converges strongly to θX in X. �

4. Applications

We now specialize some of the data from the previous section in order to obtain applica-
tions of Theorems 3.7 and 3.8. Throughout this section let n � 1 be a natural number,
T = 1, p > 1 be a real number, S ⊆ R

n ×R
n be a set satisfying condition (C2), γi be the

function taking the constant value 1, for every i ∈ {1, . . . , n}, and let α ∈ L1( ]0, T [ , R)
be such that ∫ 1

0
α dt > 1

and α(t) � 0 a.e. in ]0, 1[. In this case every norm ‖ · ‖i, i = 1, n, reduces to the usual
norm on W 1,p( ]0, 1[ , R), and all the constants ci, i = 1, n, in (3.5) can be considered to
be equal to a suitable real number c > 0. Furthermore, we assume in this section that
R

n is endowed with the p-norm

|x| =
( n∑

i=1

|xi|p
)1/p

.

Thus, for r > 0, the sets A(r) and B(r) defined in (3.6) become

A(r) =
{

x ∈ R
n :

1
p

· 1
cp

|x|p � r

}
and B(r) =

{
x ∈ R

n :
1
p
|x|p � r

}
.

Example 4.1. We now give an application of Theorem 3.7. In order to define F : R
n →

R, we consider a function f : [0, +∞[ → [0, +∞[ with the following properties:

(i) f is surjective;

(ii) f is strictly increasing;

(iii) limt→+∞ f(t + π)/f(t) > cp;

(iv) f−1 is locally Lipschitz.

Note that the above properties imply that f(0) = 0, that f−1 is also strictly increasing
and that

lim
t→+∞

f(t) = lim
t→+∞

f−1(t) = +∞.

An example of a differentiable function satisfying properties (i)–(iv) is the function

t ∈ [0, +∞[ → at − 1 ∈ [0, +∞[ ,

where a real a > 1 is chosen so that aπ > cp.
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Fix a real number q ∈ [0, 1[ and define F : R
n → R by

F (x) =
1
p
|x|p min{q, sin(f−1(|x|p))} for every x ∈ R

n.

A straightforward argument yields that F is locally Lipschitz (i.e. it satisfies condition
(C1)).

We next show that the assumptions (i) and (ii) of Theorem 3.7 are satisfied: to verify
Theorem 3.7 (i), observe that (by (iii) above), for every sufficiently large k ∈ N,

f((2k + 1)π)
f(2kπ)

> cp. (4.1)

For these values of k set

rk :=
f((2k + 1)π)

pcp
.

Then lim rk = +∞. Furthermore,

min
x∈A(rk)

F (x) = min
|x|p�f((2k+1)π)

F (x). (4.2)

If f(2kπ) � |x|p � f((2k + 1)π), then

2kπ � f−1(|x|p) � (2k + 1)π;

hence,
sin(f−1(|x|p)) � 0,

and thus F (x) � 0. Taking into account that F (0n) = 0, it follows that

min
|x|p�f((2k+1)π)

F (x) = min
|x|p�f(2kπ)

F (x). (4.3)

On the other hand, if x ∈ R
n is such that |x|p � f(2kπ), then, in view of (4.1), we have

1
p
|x|p � 1

p
f(2kπ) <

f((2k + 1)π)
pcp

= rk. (4.4)

Using (4.2)–(4.4), we conclude that

min
x∈A(rk)

F (x) = min
x∈Int B(rk)

F (x),

i.e. assumption (i) of Theorem 3.7 is satisfied. For assumption (ii) of this theorem note
that

lim inf
|x|→+∞

F (x)
∫ 1
0 α(t) dt∑n

i=1 |xi|p
= lim inf

|x|→+∞

1
p

sin(f−1(|x|p))
∫ 1

0
α(t) dt = −1

p

∫ 1

0
α(t) dt < −1

p
.

Theorem 3.7 now yields that problem (P) has an unbounded sequence of solutions.

https://doi.org/10.1017/S001309150900073X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150900073X


Systems of differential inclusions 21

Example 4.2. To get an application of Theorem 3.8, consider a function f : ]0, +∞[ →
]0, +∞[ with the following properties:

(i) f is surjective;

(ii) f is strictly increasing;

(iii) f is differentiable on ]0, +∞[;

(iv) the map t ∈ ]0, +∞[ → (f ′(1/t)/t) ∈ R is bounded on every interval ]0, a[ , a > 0;

(v) limt→+∞ f−1(t + π)/f−1(t) > cp.

Observe that it follows from above that f−1 is also strictly increasing, and that
limt→+∞ f−1(t) = +∞. An example of a function satisfying properties (i)–(v) is the
function

t ∈ ]0, +∞[ → loga(t + 1) ∈ ]0, +∞[ ,

where a real a > 1 is chosen so that aπ > cp.
Define g : [0, +∞[ → R by

g(t) =

⎧⎪⎨
⎪⎩

t sin
(

f

(
1
t

))
, t �= 0,

0, t = 0.

This map has the following properties.

• g is continuous on [0, +∞[.

• g is differentiable on ]0, +∞[; g is not differentiable at 0.

• g′ is bounded on every interval ]0, a[ , a > 0. This follows from property (iv) of f

and the fact that for every t > 0 we have

g′(t) = sin
(

f

(
1
t

))
− cos

(
f

(
1
t

))(
1
t
f ′

(
1
t

))
.

Now define F : R
n → R by

F (x) =
1
p
g(|x|p) for every x ∈ R

n.

To show that F is locally Lipschitz, let r > 0 and x, y ∈ R
n with |x|, |y| < r. By the

Mean-Value Theorem there exists ξ ∈ ]0, r[ such that

|F (x) − F (y)| = ξp−1|g′(ξp)| · ‖x| − |y‖ � rp−1|g′(ξp)| · |x − y|.

Since g′ is bounded on the interval ]0, rp[ , it follows that F satisfies the Lipschitz condi-
tion on the open ball centred at 0n and with radius r. Since r > 0 was chosen arbitrarily,
it follows that F is locally Lipschitz.
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We next show that F satisfies conditions (i) and (ii) of Theorem 3.8. To verify (i),
observe that (by (v) above), for every sufficiently large k ∈ N,

f−1((2k + 1)π)
f−1(2kπ)

> cp. (4.5)

For these values of k set
rk :=

1
pcp

· 1
f−1(2kπ)

.

Then lim rk = 0. Furthermore,

min
x∈A(rk)

F (x) = min
|x|p�1/f−1(2kπ)

F (x). (4.6)

If
1

f−1((2k + 1)π)
� |x|p � 1

f−1(2kπ)
,

then

2kπ � f

(
1

|x|p

)
� (2k + 1)π;

hence,

sin
(

f

(
1

|x|p

))
� 0,

and thus F (x) � 0. Taking into account that F (0n) = 0, it follows that

min
|x|p�1/f−1(2kπ)

F (x) = min
|x|p�1/f−1((2k+1)π)

F (x). (4.7)

On the other hand, if x ∈ R
n is such that |x|p � 1/f−1((2k + 1)π), then, in view of (4.5),

we have that
1
p
|x|p � 1

p

1
f−1((2k + 1)π)

<
1

pcp
· 1
f−1(2kπ)

= rk. (4.8)

Using (4.6)–(4.8), we conclude that

min
x∈A(rk)

F (x) = min
x∈Int B(rk)

F (x),

i.e. assumption (i) of Theorem 3.8 is satisfied. For assumption (ii) of this theorem note
that

lim inf
x→0n

F (x)
∫ 1
0 α(t) dt∑n

i=1 |xi|p
= lim inf

x→0n

1
p

sin
(

f

(
1

|x|p

)) ∫ 1

0
α(t) dt = −1

p

∫ 1

0
α(t) dt < −1

p
.

According to Theorem 3.8, problem (P) has a sequence of pairwise distinct solutions
which converges strongly to the zero function θX ∈ X.
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8. P. Jebelean and Gh. Moroşanu, Ordinary p-Laplacian systems with nonlinear bound-

ary conditions, J. Math. Analysis Applic. 313 (2006), 738–753.
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