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THE SUPREMUM OF A RANDOM WALK
WITH HEAVY-TAILED INCREMENTS

YUEBAO WANG,∗ Soochow University

KAIYONG WANG,∗∗ University of Science and Technology of Suzhou

Abstract

Under some relaxed conditions, in this paper we obtain some equivalent conditions on
the asymptotics of the density of the supremum of a random walk with heavy-tailed
increments. To do this, we investigate the asymptotics of the first ascending ladder height
of a random walk with heavy-tailed increments. The results obtained improve and extend
the corresponding classical results.
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1. Introduction

It is well known that the asymptotics of the density of the supremum of a random walk with
heavy-tailed increments is an important subject to which researchers pay close attention. Here
we present some equivalent conditions on such asymptotics, under some relaxed conditions.

Let {ξi : i ≥ 1} be independent, identically distributed proper random variables with common
distribution F on (−∞, ∞) and finite negative mean µF = −m. Write

F(x) = 1 − F(x), x ∈ (−∞, ∞).

Let S0 = 0 and Sn = ∑n
i=1 ξi, n ≥ 1, define a random walk. Then M = supn≥0 Sn, the

supremum of the random walk, is almost surely a random variable, with distribution W such
that 0 < p = W(0) < 1. If W is absolutely continuous, let w denote its density.

Because the asymptotics of W is related to the first ascending ladder height of the random
walk, we give some concepts about, and notation for, the latter. Let

τ+ = inf{n ≥ 1 : Sn > 0}
be the first ascending ladder epoch of the above random walk. It is well known that, when
m = −µF > 0, τ+ is a defective random variable, i.e. P(τ+ < ∞) < 1. Let {ηi : i ≥ 1} be
independent proper random variables with common distribution G such that

G(x) = P(η1 ≤ x) = P(Sτ+ ≤ x | τ+ < ∞);
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here Sτ+ is (said to be) the first ascending ladder height of the above random walk. If G is
absolutely continuous, let g denote its density.

Since the asymptotics of W is also related to F , we introduce some common distribution
classes. To do so, we assume that, unless stated otherwise, all limiting relationships in this paper
hold as x → ∞ . If a(x)b(x)−1 → 1, we write a(x) ∼ b(x); if lim supx→∞ a(x)b(x)−1 < ∞,
we write a(x) = O(b(x)); and if a(x) = O(b(x)) and b(x) = O(a(x)), we write a(x) ≈ b(x).
A nonnegative function l on (−∞, ∞) is said to be long tailed, written l ∈ Ld, if l is eventually
positive and l(x + y) ∼ l(x) uniformly for |y| ≤ 1. If

l ∈ Ld,

∫ ∞

0
l(y) dy < ∞, and

∫ x

0
l(x − y)l(y) dy ∼ 2

∫ ∞

0
l(y) dy l(x),

then we write l ∈ Sd . For a proper distribution L on (−∞, ∞), if 1 − L = L ∈ Ld then
we write L ∈ L; if L ∈ Sd then we write L ∈ S∗; and if

∫ x

0 L(x − y)L( dy) ∼ 2L(x) then
we write L ∈ S. It is well known that S and S∗ are the spaces introduced by Chistyakov
(1964) and Klüppelberg (1988), respectively. They are two of the most important heavy-tailed
distribution classes and have the following proper relationship: S∗ ⊂ S ⊂ L. Finally, for a
proper distribution L on (−∞, ∞), let

LI (x) = min

{
1,

∫ ∞

x

L(y) dy

}
, x ≥ 0.

Theorem 1.1. Assume that F ∈ L has density f (x) = f1(x)f2(x), x ∈ (−∞, ∞), where
f1 ∈ Ld and f2 is an eventually positive, nonincreasing function. Then G and W are absolutely
continuous and the following statements are equivalent: (i) F ∈ S∗; (ii) g ∈ Sd; (iii) w ∈ Sd;
(iv) w(x) ∼ m−1F(x).

Remark 1.1. Under the conditions that F ∈ S∗ and f ∈ Ld, Theorem 4 of Asmussen et al.
(2003) stated part (iv) of our Theorem 1.1. Obviously, the latter theorem improves and extends
this result. However, we must point out that the idea of the proof comes from Asmussen et al.
(2003) and Asmussen et al. (2002). The main difference is that we divide f into two factors.

In Section 2 we will prove Theorem 1.1. For this, we need a lemma on the asymptotics of
the first ascending ladder height. In Section 3 we will extend the lemma of Section 2 and show
that it is independently significant and can be used to give new proofs of some classical results.

2. Proof of Theorem 1.1

We use the following lemma to prove Theorem 1.1.

Lemma 2.1. Under the conditions of Theorem 1.1 we have

I (x) :=
∞∑

n=1

E f (x − Sn) 1(An)

∼ (1 − p)m−1F(x), (2.1)

where An = {Sj ≤ 0 : j = 0, . . . , n}, n ≥ 0.

Proof. We consider the taboo renewal function H(B) = ∑∞
n=0 Hn(B), B ⊂ (−∞, 0],

where H0(B) = 1(0 ∈ B) and Hn(B) = P(An, Sn ∈ B), n ≥ 1. According to Blackwell’s
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renewal theorem, for each a ∈ (−∞, ∞) we have

H(−x + a) − H(−x) → m−1a(1 − p). (2.2)

For sufficiently large x, since f1 ∈ Ld and f2 is eventually nonincreasing, we have

I (x) = −
∞∑

j=0

∫ j+1

j

f1(x + z)f2(x + z)H(−dz)

∼ −
∞∑

j=0

f1(x + j)

∫ j+1

j

f2(x + z)H(−dz)

≤
∞∑

j=0

f (x + j)(H(−j) − H(−j − 1)) (2.3)

and

I (x) ∼ −
∞∑

j=0

f1(x + 1 + j)

∫ j+1

j

f2(x + z)H(−dz)

≥
∞∑

j=0

f (x + 1 + j)(H(−j) − H(−j − 1)). (2.4)

Since f1 ∈ Ld we furthermore know that

H(f1) := {h(x) : [0, ∞) → [0, ∞) : h(x) ↑ ∞, x−1h(x) → 0, and

f1(x − y) ∼ f1(x) uniformly for |y| ≤ h(x)}
�= ∅,

and if h ∈ H(f1) then, for any h1 : [0, ∞) → [0, ∞), if h1(x) ↑ ∞ and h1(x) ≤ h(x),
we have h1 ∈ H(f1) (see Foss and Zachary (2003), for example). We thus can choose an
integer-valued function h ∈ H(f1) such that

f (x)h(x) = o(F (x)) and h(x) = O(h(x − 1)). (2.5)

By (2.2), Toeplitz’s lemma (see Stout (1974, p. 120)), and (2.5), when x is sufficiently large we
have

h(x)∑
j=0

f (x + j)(H(−j) − H(−j − 1)) ∼ f1(x)

h(x)∑
j=0

f2(x + j)(H(−j) − H(−j − 1))

≤ f (x)h(x)h(x)−1
h(x)∑
j=0

(H(−j) − H(−j − 1))

∼ (1 − p)m−1f (x)h(x)

= o(F (x)). (2.6)
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Furthermore, by (2.2), (2.5), and F ∈ L, when x is sufficiently large we have

∞∑
j=h(x)+1

f (x + j)(H(−j) − H(−j − 1))

∼ (1 − p)m−1
∞∑

j=h(x)+1

f1(x + j)f2(x + j)

≤ (1 − p)m−1
∞∑

j=h(x)+1

f1(x + j)

∫ j+1

j

f2(x − 1 + y) dy

∼ (1 − p)m−1
∞∑

j=h(x)+1

∫ j+1

j

f (x − 1 + y) dy

≤ (1 − p)m−1
∫ ∞

0
f (x − 1 + y) dy. (2.7)

It follows from (2.3), (2.6), (2.7), and F ∈ L that

lim sup
x→∞

I (x)F (x)−1 ≤ (1 − p)m−1. (2.8)

Similarly, using (2.4) we can prove that

lim inf
x→∞ I (x)F (x)−1 ≥ (1 − p)m−1. (2.9)

Thus, (2.1) follows from (2.8) and (2.9).

Proof of Theorem 1.1. By definition of τ+, we have

G(x) = P(Sτ+ > x | τ+ < ∞)

= p−1
∞∑

n=1

P(Sn > x, An−1)

= p−1
∞∑

n=1

∫ 0

−∞

∫ ∞

x−y

f (z) dz dP(Sn−1 ≤ y, An−1).

Thus, G is absolutely continuous and, by Lemma 2.1, we know that its density is

g(x) = p−1
∞∑

n=1

∫ 0

−∞
f (x − y) dP(Sn−1 ≤ y, An−1)

= p−1
∫ 0

−∞
f (x − y)H(dy)

= p−1I (x)

∼ (1 − p)m−1p−1F(x). (2.10)

It follows from (2.10) that (i) ⇐⇒ (ii). Also by (2.10), we know that g ∈ Ld. Thus, by
Theorem 3.2 of Klüppelberg (1989), we have (ii) ⇐⇒ (iii) ⇐⇒ (iv), completing the proof.

https://doi.org/10.1239/jap/1158784953 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784953


878 Y. WANG AND K. WANG

3. Extension of Lemma 2.1 and applications

Lemma 2.1 is the key to proving Theorem 1.1. In fact, Lemma 2.1 is of independent
significance. In order to explain this, we extend Lemma 2.1 and obtain a general result. For any
given function u and some T , 0 < T ≤ ∞, let v(x) := u(x)−u(x+T ), U(x) := ∫ ∞

x
u(y) dy,

and V (x) := U(x) − U(x + T ), for x ∈ (−∞, ∞). We then have the following proposition.

Proposition 3.1. Assume that U(0) < ∞ and V ∈ Ld; that u on (−∞, ∞) is an eventually
positive, nonincreasing function for 0 < T < ∞; and that u(x) = u1(x)u2(x), x ∈ (−∞, ∞),
for T = ∞, where u1 ∈ Ld and u2 is an eventually positive, nonincreasing function. Then

I (x) :=
∞∑

n=1

E v(x − Sn) 1(An) ∼ (1 − p)m−1V (x),

where An = {Sj ≤ 0 : j = 0, . . . , n}, n ≥ 0.

If we take v = f and T = ∞ in Proposition 3.1, then we recover Lemma 2.1. If we take
u = F in Proposition 3.1, then we obtain the following result.

Corollary 3.1. Let V (x) = FI (x) − FI (x + T ), x ∈ (−∞, ∞), for some T , 0 < T ≤ ∞.
Assume that V ∈ Ld . Then

G(x) − G(x + T ) ∼ (1 − p)p−1m−1(F I (x) − FI (x + T )). (3.1)

In order to prove Proposition 3.1 we need the following lemmas. We omit their proofs.

Lemma 3.1. Assume that u(x) = u1(x)u2(x), x ∈ (−∞, ∞), where u1 ∈ Ld and u2 is an
eventually positive, nonincreasing function. For 0 < T < ∞, we have u ∈ Ld ⇐⇒ V ∈ Ld,
each side of which implies that V (x) ∼ T u(x). For T = ∞, we have U ∈ Ld ⇐⇒ u(x) =
o(U(x)).

Lemma 3.2. Assume that U(0) < ∞ and that u satisfies the condition of Lemma 3.1. Then
u(x) → u(∞) = v(∞) = U(∞) = V (∞) = 0 and V (x) = U(x), for T = ∞.

Proof of Proposition 3.1. For T = ∞, the proof is similar to the proof of Lemma 2.1. For
0 < T < ∞, we can prove the proposition using Lemma 3.1 and Lemma 3.2, following the
lines of the proof of Lemma 3 of Asmussen et al. (2002). We omit the details.

In Corollary 3.1, from (3.1) and Lemma 3.1 we have

G(x) − G(x + T ) ∼ T (1 − p)p−1m−1F(x) (3.2)

for 0 < T < ∞; (3.2) is Lemma 3 of Asmussen et al. (2002). Furthermore, if F ∈ S∗ then,
using a standard method, it is easy to prove that

W(x) − W(x + T ) ∼ m−1T F(x),

which is Theorem 1 of Asmussen et al. (2002).
In Corollary 3.1, from Lemma 3.2, if U = V = FI ∈ L then

G(x) ∼ (1 − p)p−1m−1FI (x) (3.3)
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for T = ∞. Thus, we obtain another known result, Theorem 10 of Borovkov (1976, Chapter 4),
by a different method. Furthermore, if FI ∈ S then, using (3.3) and a standard method, it is
easy to prove that

W(x) ∼ m−1F(x). (3.4)

It is well known that (3.4) is Theorem 2(B) of Veraverbeke (1977).
We expect that for different choices of u we can obtain other results.
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