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Abstract

Suppose that (/>„) is an infinitely divisible distribution on the non-negative integers having Levy
measure (vn). In this paper we derive a necessary and sufficient condition for the existence of the limit
lim;,—ooPn/"n- We also derive some other results on the asymptotic behaviour of the sequence (pn)
and apply some of our results to the theory of fluctuations of random walks. We obtain a necessary
and sufficient condition for the first positive ladder epoch to belong to the domain of attraction of a
spectrally positive stable law with index a, a G (1,2).
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1. Introduction

This paper is primarily concerned with infinitely divisible distributions (/?„) on
the non-negative integers. In this case the Levy-Hincin representation takes the
form

(1) P(z)= 2 />„*" = exp
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where (Vj) is the Levy measure and X — 2 Vj is finite. It will be convenient to write
(1) in the form

(2) Pnz" = exp\-\(l - 2 V 7 )

so that ay = Vj/X is a probability measure with a0 = 0. Let d — g.c.d.{7': a- > 0}.
Then (pn) is supported by the set of multiples of d, and pkd is positive for all
sufficiently large k. Thus, by considering ay = ajd/d and /?„ = pnd we may
suppose that d = 1 and that pn is positive for all sufficiently large n. This
assumption is made throughout this paper. The identity (2) can also be written as
the infinite system of equations

(3) npn = \ 2 J<*jPn-j, n = 1,2,...,

with/>0 = e~x.
There are a number of results that relate the behaviour of the tails of the

measures (/>„) and (vn). For example Embrechts et al. (1979), Theorem 1 implies
the equivalence of the statements:

(i) ^k^[x\ Pk belongs to S;
(ii) 1k^x] ak belongs to S; and
(iii) 2As,n pk ~ XIk>n ak (n -> oo).

(Here S denotes the class of subexponential distribution functions on [0, oo), that
is those F satisfying l imx^M(l - F ( 2 ) ( J C ) ) / ( 1 - F(x)) - 2). The theorem of
Embrechts et al., holding for tails of general infinitely divisible probability
measures on [0, oo), generalized work of Cohen (1973), Feller (1971), Pakes
(1975) and Teugels (1975).

In this paper our main concern is with the asymptotic behaviour of pn/an, as
opposed to that of (2k>n Pk)/(^k»n <**)• Special cases have already been consid-
ered by Hawkes et al. (1978) (in particular in Theorem 3.1). E. M. Wright (1967)
works with the system of equations (3) but with the side conditions po= 1, X = 1
and 2 a, = oo, he proved that the following statements are equivalent:

( 0 / > „ - « „ ( « - °°);
(ii) 20<,-<« «/««-.• = ° 0 K (" -" °°); a n d

(iii) 20<«« PiPn-i = P(l)Pn (" -+ °°)-
To make the comparison with Wright's work more pertinently, consider qn = expn,
/?„ = Xan hence the recurrence relation (3) becomes

<70= U Wn= 1
7 = 1
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as in Wright (1967). Our Theorem 1 gives conditions such that

lim (<7n//O = exp(2&)
n—' oo

when /?„+]//?„ — 1 and Ej8B is finite. So all limit values > 1 are possible in this
case, while by Wright (1967) qn/Pn — 1 can occur only if 2/Jn = oo. Since
Wright's work arose out of an enumeration problem, it was natural to take
qo= I. While this is not natural in the probabilisitic context, it does emphasize
the difference between the two limits (namely exp(2/?n) and 1).

We let (a*b)n = 20s^«;n ^kK-k denote the convolution product of two se-
quences and a*k be the kth convolution power of the sequence (an). Our
principal result is the following:

THEOREM 1. The following three statements are equivalent:
(i) a*2 ~ 2an and an+, ~ an(n-* oo);
(n)p*2 ~ 2pn andpn+] ~ pn(n -> oo); and
(iii) pn ~ \an and a n + , ~ an (« - oo).

The convolution condition should be compared with that in the result due to E.
M. Wright, quoted above. One consequence of our result is that (/>„) is regularly
varying if and only if (j»n) is the same. In view of the above result by Embrechts,
Goldie and Veraverbeke a similar statement can be made about the tails of the
measures (pn) and {vn). It follows that by constructing a suitable Levy measure
one can produce an example of an infinitely divisible distribution (pn) such that
^k»n Pk n a s regular variation but that (pn) itself is not regularly varying.

The following (superficially stronger) result is equivalent to that of Theorem 1.

THEOREM 2. Suppose that R > 1. Then the following three statements are
equivalent:

(i) a(R) is finite, a*2 ~ 2&(R)an, and an ~ Ran+] (n -» oo);
(ii)p(R) is finite, p*2 ~ 2p(R)pn, andpn ~ Rpn+] (n -> oo); and
(hi)pn~\p(R)an, anda,,~ Ran+] (n -> oo).

Theorem 2 is proved by applying Theorem 1 to the infinitely divisible probabil-
ity measurepnR"/p(R), which corresponds to the Levy measure VjRJ.

When p(z) has radius of convergence R, R > 1, we can use Theorem 2 in the
case wherep(R) < oo. When/?(./?) = oo we cannot make use of the Chover, Ney
and Wainger results. In this situation the results of Hawkes et al. (1978) can be
used to give information about the behaviour of pn.

To translate the results of that paper to the present situation one lets bn —
R"pn/p0 and a, — jRJvy One can, for example, apply Theorem 4.2 to obtain the
following criteria for pn to be asymptotically geometric.

https://doi.org/10.1017/S1446788700024976 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024976


[ 4 ] Tails of infinitely divisible laws 415

LEMMA I. If R > \, each of the following statements implies its successor:
(i) 2(RjVj — \/j) converges absolutely to L;

L(ii)pn ~pQeLR~" as n -» oo; and
(iii) 2,(RJf>j — \/j) converges to L.

The following beautiful result, due to Chover, Ney and Wainger plays a crucial
role in our investigations. Since its proof relies on a deep argument involving
Banach algebra techniques it is in some ways unsatisfactory from the point of
view of real analysis. We therefore prefer to minimize the number of occasions on
which we appeal to it.

PROPOSITION 1. Suppose that the probability measure (fin) satisfies the three
conditions:

(a) \imn^xfi*
2/fin — c exists and is finite;

(/?) limn_>aopa+i/pn = \/R exists and is positive; and
(y) d = (i(R) is finite.

Assume also that O(w) is a function analytic in a region containing the range of (i(z)
for \z\<R.

Then there exists a measure (^(ft)n) with

) = 2 *(M)^" = *(A(Z)) for\z\<R,

and for which

lim
n-* oo

/ / moreover $(K>) = 1j^0 CjWJ for | w \ < 1, where 2y3>01
 cj I 's finite, then we can

identify the measure $(ju) with jx = 2J>0
 cjf-*j- Finally we must have c = Id in (a).

For details and examples of sequences satisfying (a), (/?) and (y) see Chover et
al. (1973a), Theorem 1 and Remark 1. A similar result is proved in Borovkov
(1976), Appendix.

2. Proof of Theorem 1

For simplicity we will only consider the case where X = 1. First we show that
(iii) implies (ii). Let N be a fixed positive integer and define

I = I(N,n) = {j:n- N*ij*Zn}.
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Then, sincepn +, ~ pn, we have

2,PjPn-J=Pn(l+°M) 2 Pj
ye/

=ph- 2 p

Hence for some integer no = no(N) we have

(4)

Now, by (3),

(5)

We have

2 />,•/»„-; ~Pn< 2pn 2 Pj n > «0.

Pn = 2j«jPn-j=[ 2 + 2 )j«jPn-j-
xje/ jar'

2 JajPn-j = " 0 + 0(0) 2 «//>„-,•

= n{\ + o{\)) 2 Pjpn-j (as an~pn)
ye/

2 A/'n-y =

Thus, by (5),

(6)

Let «2 be such that for_/ > n2 we have /?, < 2aj. Define

- 2 /»J.

+ o(\)) 2 /̂
j>N

>n 2 /*> f°r n ** n\ - ni(W) say.

J = J(N, n) = j: -n^j^n- N

so that if n s* n0 + n] + 2n2

2 PjPn-j ^ 2 " 2 yPy/'n-y ^ 4 " Z J
yey ye/

< 4/1 ~' 2! JajPn~j

(8) A 2 Pj,
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If we combine the inequali t ies (4) a n d (8) we ob ta in

2 Pj

417

for sufficiently large n. It follows that/)*2 ~ 2pn (n -* oo). Thus (iii) implies (ii).
We now show that (ii) implies (iii). Let c(z) be the power series defined by

Then applying Proposition 1 with the function O(w) — (1 — w)/w we see that 2c,
is absolutely convergent with 2c, = 0, cn pn (n -» oo), so that \cn\^2pn for

n 3= «3, say. It follows from (2) and the definition of c that

a' = p' + ^ 'c .

Thus if we define d — p'c — 2 ^ 0 dkz
k we have

Now fix J¥ > n3. Then

(9)

(10)

for sufficiently large n, and

2 (J + l)^+ic,

(11)

Pj+\Pn-j

ye /
{(> + 1 )/>;+! - nPnVn-j + nPn 1 cj

"Pn\ \Cn-j

= o(l)npn + npn 2
y«A

If we combine (9), (10) and (11) we obtain

lim sup \dn\/npn < 8 2 />y +

As the latter can be made arbitrarily small we have dn — o(\)npn. Since
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and pn+x ~ pn it follows that an~ pn, with the result that statements (ii) and (iii)
are equivalent. The argument of the first part of the proof shows that (iii),
together with its equivalent form (ii), implies (i).

There remains the problem of showing that statement (i) implies (ii). First we
state a preliminary lemma.

LEMMA 2. Suppose that an is a probability measure on the non-negative integers
such that an~ an+x and a*2 ~ 2an as n -> oo. Then if c > 1 there is a positive
constant A such that

a*n
k < Ackan for each k and n.

The proof of this lemma is very similar to that of Lemma 1 of Chover et al.
(1973b), so we just give an outline. If 1 < d < c we can choose integers N and K
such that

2 otj(xn-j<dan iin^K.

Next we let Mk = supnS0 a*k/an, define

B = sup a~' + sup a '

and show that Mk+X < B + Mkd. Then if A 3= 1 + Bc/(c — d) one sees by
induction that Mk< Ack.

We now complete the proof of the theorem. It follows from (2) that

(12) Pn/*n = e~X 2 {<k/an)/kl

The hypotheses on a imply that a** ~ kan (see Chover et al. (1973a), Lemma 5).
Thus by Lemma 2 we can use dominated convergence to deduce that/?,, ~ an. The
Theorem is thus proved.

We remark that the last part of the proof could have been derived by applying
Proposition 1 with the measure an and the function $(w) = e~X(]~w). However
our approach has avoided the implicit use of Banach algebra methods. One can in
fact use Lemma 2 to show that if $(»v) = Sfyv-' has radius of convergence R,
R > 1, then

and il>n/an -» 1k<t>k — $'(0- So the whole situation is much simpler for these
functions. This observation does not help us in the second part of the proof where
we worked with <J>(w) = (1 — w)/w.
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Regarding the conditions in Theorem 1 we have not been able to construct a
probability measure (an) satisfying a*2 ~ 2an but not an+t ~ an. Conversely
Rudin (1973) gives an example of a log-convex sequence (<*„) with 1nan infinite
which satisfies on + 1 ~ an but not a*2 ~ 2an.

3. Fluctuation theory

Let (Xt) be a sequence of independent identically distributed random varia-
bles and let So = 0 and Sn = 2 ! < > < n Xt. We now quote some of the definitions
and results from the fluctuation theory of random walks. (For more details the
reader should consult Feller (1971).) The first ladder epochs are defined by
L+ = min{A:: Sk > 0} and L~ = min{k > 1: Sk < 0}. The number of positive
and non-positive terms in the random walk are given by

Nn+ = # i k <n: Sk> 0} and N~ = #{k: 1 < k < n, Sk < 0}

respectively. If we define

>n), and qH = P(N~ = n) = P(L+> n)

then the generating functions satisfy

f(*) = exp[ 2 (sn/n)P(Sn>0)

and

(13) ^(5)

Also it is known that P(N~ = k) — rn_kqk. Finally the following statements are
equivalent:

( i ) £ L + < o o ;

(iii) Sn drifts to + oo almost surely; and
(iv) supn A^ < oo almost surely.

We remark that in the case where EL+ is finite the relation (13) is precisely the
equation (2) with a, = P(Sj < 0)/(y log EL+ ),X = log EL+ , and pn = qn/EL+ .
In these circumstances we will be able to apply Theorem 1.

The following result due to Rogozin (1971) and Spitzer (1956) summarizes the
known properties concerning the asymptotic behaviour of the distributions of the
random variables L+ and N~ .
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PROPOSITION 2. Suppose that EL+ — oo and that 0 < a < 1. Then the following
statements are equivalent:

(i) L+ belongs to the domain of attraction of a spectrally positive stable law with
index a;

(14) (ii) lim - 2 P(S(. < 0) = 1 - a;

and

(iii) Mm P(N~ ^ nx) = Fa(x)
n-*oo

where Fa is the generalized arc-sine distribution function (that is the Beta (a, 1 — a)
distribution).

Rogozin has other results for the case where (14) holds with o = 1. Doney
(1977) has several results on the condition (14) in particular in the case where
a = 0. We now apply our result to obtain more information about the domains of
attraction of L+ .

THEOREM 3. Suppose that EL+ < oo and let N~ — \imn^xN~ . If 1 < a < 2 the
following statements are equivalent:

(i) L + belongs to the domain of attraction of a spectrally positive stable law with
index a;

(ii) P(Sn < 0) ~ «' ~aL(n) as n -> oo where L is a slowly varying function, and
(iii) N~ belongs to the domain of attraction of a spectrally positive stable law with

index a — \.

PROOF. The equivalence of (i) and (ii) follows by applying Theorem 1 to
sequences of regular variation and the necessary and sufficient criteria for a
distribution to belong to the domain of attraction of a stable law (see Feller
(1971), 574-581 for details).

Since / ) (A^ - k) - rn_kqk and rn -> (EL+)"' (apply Theorem 4.2 of Hawkes
et al. (1978)) we have P(N~ = k) = qk{EL+)"'. As qk = P(L+ > k) is decreas-
ing P(N~ > k) ~ kx'aL{k) is equivalent to

P(N~ = k) = P(L+ > k)(EL+ ) " ' - ( « - \)k~aL(k).

The equivalence of (i) and (iii) follows immediately, and the theorem is proved.

We have not been able to determine a necessary and sufficient condition for
L+ to belong to the domain of attraction of a stable law of index 1. A necessary
condition is that (14) holds with a = 1. There remains the problem of showing
that the conditions of our theorem are satisfied in nontrivial situations.
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EXAMPLE. Suppose that 1 < a < 2 and that (Yt) is a sequence of independent
r andom variables each having the symmetric stable dis t r ibut ion of index a.
Let Xj = Yj+ \ and let Sn be the r a n d o m walk corresponding to Xt. Then
(Sn — n)n~l/a has the symmetric stable dis tr ibut ion of index a. Thus

P{Sn < 0) = P({Sn - n)n~i/a < -n1-' /")

= p(y <-«•-'/•)

as n -» oo (where C is a positive constant) . By the s t rong law of large number s Sn

tends to + oo and so the theorem is indeed non vacuous.
It is possible to derive other information about the behaviour of the tail

P{L+ > /?). We now consider r a n d o m walks generated by Xt with JU. = EXi > 0
and var A", = 1. Let Tn = Sn — «ft. Nagaev (1979) has many results which are
sufficient to ensure that

P(Sn < 0) = P{Tn ^ -nM) ~ nP(X < - (n

Thus provided in addition P{X ^ -{n — l)ft) has sufficiently smooth asymptotic
behaviour (as defined by Theorem 1)

(15) P(L+ >n)~EL

The reader will be able to show that (15) is valid if
(i)P(X< -x) ~ exp(-xa) (x -* oo), 0 < « < 1 / 2 , if
(ii) E\X\2+s<ao for some 5 > 0 and P{X < -x) ~ x "L{x) as x ^ oo,

where a > 2 and L is slowly varying; or under some of the other conditions given
by Nagaev.

If (15) holds it follows that for each k > 1

(16) E{L+)k < oo if and only if E(X A 1)* < oo.

Bingham and Goldie (private communication) have shown that (16) always holds
provided one has EX2 < oo.
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