ON A PERIODIC MUTUALISM MODEL

YONGKUN LI ${ }^{1}$

(Received 4 October 1996; revised 18 July 2000)

Abstract

Sufficient conditions are obtained for the existence of a globally attracting positive periodic solution of the mutualism model $$
\begin{aligned} & \frac{\mathrm{d} N_{1}(t)}{\mathrm{d} t}=r_{1}(t) N_{1}(t)\left[\frac{K_{1}(t)+\alpha_{1}(t) N_{2}\left(t-\tau_{2}(t)\right)}{1+N_{2}\left(t-\tau_{2}(t)\right)}-N_{1}\left(t-\sigma_{1}\right)\right], \\ & \frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t}=r_{2}(t) N_{2}(t)\left[\frac{K_{2}(t)+\alpha_{2}(t) N_{1}\left(t-\tau_{1}(t)\right)}{1+N_{1}\left(t-\tau_{1}(t)\right)}-N_{2}\left(t-\sigma_{2}\right)\right], \end{aligned}
$$

where $r_{i}, K_{i}, \alpha_{i} \in C\left(R, R^{+}\right)$and $\alpha_{i}>K_{i}, i=1,2, \tau_{i}, \sigma_{i} \in C\left(R, R_{+}\right), i=1,2$ and r_{i}, $K_{i}, \alpha_{i}, \tau_{i}, \sigma_{i}(i=1,2)$ are functions of period $\omega>0$.

1. Introduction

Consider the mutualism model

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} N_{1}(t)}{\mathrm{d} t}=r_{1} N_{1}(t)\left[\frac{K_{1}+\alpha_{1} N_{2}(t)}{1+N_{2}(t)}-N_{1}(t)\right] \tag{1.1}\\
\frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t}=r_{2} N_{2}(t)\left[\frac{K_{2}+\alpha_{2} N_{1}(t)}{1+N_{1}(t)}-N_{2}(t)\right]
\end{array}\right.
$$

where $r_{i}, K_{i}, \alpha_{i} \in R^{+}$are constants and $\alpha_{i}>K_{i}, i=1,2$. Depending on the nature of $K_{i}(i=1,2)$, system (1.1) can be classified as facultative, obligate or a combination of both. For more details of mutualistic interactions we refer to Vandermeer and Boucher [7], Boucher et al. [2], Dean [3], Wolin and Lawlor [8] and Boucher [1]. A

[^0]modification of system (1.1) leads to the time-lagged model
\[

\left\{$$
\begin{array}{l}
\frac{\mathrm{d} N_{1}(t)}{\mathrm{d} t}=r_{1} N_{1}(t)\left[\frac{K_{1}+\alpha_{1} N_{2}\left(t-\tau_{2}\right)}{1+N_{2}\left(t-\tau_{2}\right)}-N_{1}(t)\right] \tag{1.2}\\
\frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t}=r_{2} N_{2}(t)\left[\frac{K_{2}+\alpha_{2} N_{1}\left(t-\tau_{1}\right)}{1+N_{1}\left(t-\tau_{1}\right)}-N_{2}(t)\right]
\end{array}
$$\right.
\]

where $\tau_{1}, \tau_{2} \in[0, \infty)$ are constants. In system (1.2) the mutualistic or cooperative effects are not realized instantaneously but take place with time delays. For further ecological applications of system (1.2), we refer to [5] and the references cited therein.

The effects of a periodically varying environment are important for evolutionary theory as the selective forces on systems in a fluctuating environment differ from those in a stable environment. Thus, the assumptions of periodicity of the parameters are a way of incorporating the periodicity of the environment (such as seasonal effects of weather, food supplies, mating habits and so forth). We refer to Pianka [6] for a discussion of the relevance of periodic environments to evolutionary theory. The purpose of this article is to consider the model

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} N_{1}(t)}{\mathrm{d} t}=r_{1}(t) N_{1}(t)\left[\frac{K_{1}(t)+\alpha_{1}(t) N_{2}\left(t-\tau_{2}(t)\right)}{1+N_{2}\left(t-\tau_{2}(t)\right)}-N_{1}\left(t-\sigma_{1}(t)\right)\right] \tag{1.3}\\
\frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t}=r_{2}(t) N_{2}(t)\left[\frac{K_{2}(t)+\alpha_{2}(t) N_{1}\left(t-\tau_{1}(t)\right)}{1+N_{1}\left(t-\tau_{1}(t)\right)}-N_{2}\left(t-\sigma_{2}(t)\right)\right]
\end{array}\right.
$$

together with the initial conditions:

$$
\begin{gather*}
N_{i}(t)=\varphi_{i}(t) \geq 0, \quad t \in\left[-\tau^{*}, 0\right], \quad \varphi_{i}(0)>0 \\
\varphi_{i} \in C\left(\left[-\tau^{*}, 0\right), R_{+}\right), \quad i=1,2 \tag{1.4}
\end{gather*}
$$

where $r_{i}, K_{i}, \alpha_{i} \in C\left(R, R^{+}\right), \alpha_{i}>K_{i}, i=1,2, \tau_{i}, \sigma_{i} \in C\left(R, R_{+}\right), i=1,2, r_{i}, K_{i}$, $\alpha_{i}, \tau_{i}, \sigma_{i}(i=1,2)$ are functions of period $\omega>0$ and

$$
\tau^{*}=\max _{1 \leq i \leq 2}\left\{\max _{t \in[0, \omega]} \tau_{i}(t), \max _{t \in[0, \omega]} \sigma_{i}(t)\right\}
$$

In Section 2 we discuss the existence of a positive ω-periodic solution of (1.3)(1.4), in Section 3 we study the uniqueness and global attractivity of the positive periodic solution of (1.3)-(1.4) and in Section 4 we give an example to illustrate that the conditions of our results can be realized.

2. Existence of a positive periodic solution

In this section we use Mawhin's continuation theorem to show the existence of at least one positive periodic solution of (1.3)-(1.4). To do so, we need to introduce the following notation.

Let X, Y be real Banach spaces, $L: \operatorname{Dom} L \subset X \rightarrow Y$ a Fredholm mapping of index zero and $P: X \rightarrow X, Q: Y \rightarrow Y$ continuous projectors such that $\operatorname{Im} P=$ $\operatorname{Ker} L, \operatorname{Ker} Q=\operatorname{Im} L$ and $X=\operatorname{Ker} L \bigoplus \operatorname{Ker} P, Y=\operatorname{Im} L \bigoplus \operatorname{Im} Q$. Let L_{P} denote the restriction of L to $\operatorname{Dom} L \bigcap \operatorname{Ker} P, K_{P}: \operatorname{Im} L \rightarrow \operatorname{Ker} P \bigcap \operatorname{Dom} L$ the inverse (to L_{P}) and $J: \operatorname{Im} Q \rightarrow \operatorname{Ker} L$ an isomorphism of $\operatorname{Im} Q$ onto $\operatorname{Ker} L$.

For convenience, we introduce Mawhin's continuation theorem [4, page 40] as follows.

LEMMA 2.1. Let $\Omega \subset X$ be an open bounded set and $N: X \rightarrow Y$ be a continuous operator which is L-compact on $\bar{\Omega}$ (that is, $Q N: \bar{\Omega} \rightarrow Y$ and $K_{P}(I-Q) N: \bar{\Omega} \rightarrow Y$ are compact). Assume
(a) for each $\lambda \in(0,1), x \in \partial \Omega \cap \operatorname{Dom} L, L x \neq \lambda N x$;
(b) for each $x \in \partial \Omega \bigcap \operatorname{Ker} L, Q N x \neq 0$, and $\operatorname{deg}\{J Q N, \Omega \bigcap \operatorname{Ker} L, 0\} \neq 0$.

Then $L x=N x$ has at least one solution in $\bar{\Omega} \bigcap \operatorname{Dom} L$.

Lemma 2.2. Let

$$
f(x, y)=\left(a_{1}-\frac{a_{1}-b_{1}}{1+e^{y}}-c_{1} e^{x}, a_{2}-\frac{a_{2}-b_{2}}{1+e^{x}}-c_{2} e^{y}\right)
$$

(and $\Omega=\left\{(x, y)^{T} \in R^{2}:|x|+|y|<M\right\}$, where $M, a_{i}, b_{i}, c_{i} \in R^{+}$are constants, $a_{i}>b_{i}, i=1,2$, and $M>\max \left\{\left|\ln \left(a_{i} / c_{i}\right)\right|,\left|\ln \left(b_{i} / c_{i}\right)\right|, i=1,2\right\}$. Then

$$
\operatorname{deg}\{f, \Omega,(0,0)\} \neq 0
$$

Proof. Set

$$
H(x, y, \mu)=\left(a_{1}-\frac{a_{1}-b_{1}}{1+\mu e^{y}}-c_{1} e^{x}, a_{2}-\frac{a_{2}-b_{2}}{1+\mu e^{x}}-c_{2} e^{y}\right), \quad 0 \leq \mu \leq 1
$$

It is then easy to see that, for $(x, y, \mu)^{T} \in R^{2} \times[0,1]$,

$$
\begin{array}{ll}
a_{1}-\frac{a_{1}-b_{1}}{1+\mu e^{y}}-c_{1} e^{x} \leq a_{1}-c_{1} e^{x}<0 & \text { as } \quad x \geq \frac{M}{2} \\
a_{2}-\frac{a_{2}-b_{2}}{1+\mu e^{x}}-c_{1} e^{y} \leq a_{2}-c_{2} e^{y}<0 \quad \text { as } \quad y \geq \frac{M}{2} \\
a_{1}-\frac{a_{1}-b_{1}}{1+\mu e^{y}}-c_{1} e^{x} \geq b_{1}-c_{1} e^{x}>0 & \text { as } \quad x \leq-\frac{M}{2}
\end{array}
$$

and

$$
a_{2}-\frac{a_{2}-b_{2}}{1+\mu e^{x}}-c_{2} e^{y} \geq b_{2}-c_{2} e^{y}>0 \quad \text { as } \quad y \leq-\frac{M}{2} .
$$

Hence

$$
H(x, y, \mu) \neq 0 \quad \text { for } \quad(x, y, \mu) \in \partial \Omega \times[0,1]
$$

It follows from the property of invariance under a homotopy that

$$
\operatorname{deg}\{f(x, y), \Omega,(0,0)\}=\operatorname{deg}\{H(x, y, 0), \Omega,(0,0)\}
$$

By a straightforward computation, we find

$$
\operatorname{deg}\{H(x, y, 0), \Omega,(0,0)\}=-1 \neq 0
$$

The proof is complete.
We now come to the fundamental theorem of this paper.
THEOREM 2.3. The initial value problem (1.3)-(1.4) has at least one positive ω periodic solution.

Proof. Since solutions of (1.3)-(1.4) remain positive for $t \geq 0$, we can let

$$
\begin{equation*}
x(t)=\log \left[N_{1}(t)\right] \quad \text { and } \quad y(t)=\log \left[N_{2}(t)\right] \tag{2.1}
\end{equation*}
$$

and derive that

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=r_{1}(t)\left[\frac{K_{1}(t)+\alpha_{1}(t) e^{y\left(t-\tau_{2}(t)\right)}}{1+e^{y\left(t-\tau_{2}(t)\right)}}-e^{x\left(t-\sigma_{1}(t)\right)}\right] \tag{2.2}\\
\frac{\mathrm{d} y(t)}{\mathrm{d} t}=r_{2}(t)\left[\frac{K_{2}(t)+\alpha_{2}(t) e^{x\left(t-\tau_{1}(t)\right)}}{1+e^{x\left(t-\tau_{1}(t)\right)}}-e^{y\left(t-\sigma_{2}(t)\right)}\right]
\end{array}\right.
$$

Take

$$
X=Y=\left\{(x(t), y(t))^{T}: x(t), y(t) \in C(R, R), x(t+\omega)=x(t), y(t+\omega)=y(t)\right\}
$$

and

$$
\left\|(x, y)^{T}\right\|=\max _{0 \leq t \leq \omega}|x(t)|+\max _{0 \leq t \leq \omega}|y(t)|
$$

With this norm, X is a Banach space. Let

$$
\begin{aligned}
& N\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
r_{1}(t)\left[\frac{K_{1}(t)+\alpha_{1}(t) e^{y\left(t-\tau_{2}(t)\right)}}{1+e^{y\left(t-\tau_{2}(t)\right)}}-e^{x\left(t-\sigma_{1}(t)\right)}\right] \\
r_{2}(t)\left[\frac{K_{2}(t)+\alpha_{2}(t) e^{x\left(t-\tau_{1}(t)\right)}}{1+e^{x\left(t-\tau_{1}(t)\right)}}-e^{y\left(t-\sigma_{2}(t)\right)}\right]
\end{array}\right], \\
& L\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{d} x(t)}{\mathrm{d} t} \\
\frac{\mathrm{~d} y(t)}{\mathrm{d} t}
\end{array}\right], \quad P\left[\begin{array}{l}
x \\
y
\end{array}\right]=Q\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\omega} \int_{0}^{\omega} x(t) \mathrm{d} t \\
\frac{1}{\omega} \int_{0}^{\omega} y(t) \mathrm{d} t
\end{array}\right], \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \in X .
\end{aligned}
$$

Since $\operatorname{Ker} L=R^{2}$ and $\operatorname{Im} L$ is closed in X, L is a Fredholm mapping of index zero. Furthermore, we have that N is L-compact on $\bar{\Omega}$ (see [4]), where Ω is any open bounded set in X. Corresponding to the equation $L x=\lambda N x$, we have

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda r_{1}(t)\left[\frac{K_{1}(t)+\alpha_{1}(t) e^{\left.y\left(t-\tau_{2}(t)\right)\right)}}{1+e^{y\left(t-\tau_{2}(t)\right)}}-e^{x\left(t-\sigma_{1}(t)\right)}\right] \tag{2.3}\\
\frac{\mathrm{d} y(t)}{\mathrm{d} t}=\lambda r_{2}(t)\left[\frac{K_{2}(t)+\alpha_{2}(t) e^{\left.x\left(t-\tau_{1}(t)\right)\right)}}{1+e^{x\left(t-\tau_{1}(t)\right)}}-e^{y\left(t-\sigma_{2}(t)\right)}\right]
\end{array}\right.
$$

Assume that $(x(t), y(t))^{T} \in X$ is a solution of system (2.4) for a certain $\lambda \in(0,1)$. By integrating (2.3) over $[0, \omega]$, we obtain

$$
\begin{equation*}
\int_{0}^{\omega} r_{1}(t)\left[\frac{K_{1}(t)+\alpha_{1}(t) e^{y\left(t-\tau_{2}(t)\right)}}{1+e^{y\left(t-\tau_{2}(t)\right)}}-e^{x\left(t-\sigma_{1}\right)}\right] \mathrm{d} t=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\omega} r_{2}(t)\left[\frac{K_{2}(t)+\alpha_{2}(t) e^{x\left(t-\tau_{1}(t)\right)}}{1+e^{x\left(t-\tau_{1}(t)\right)}}-e^{y\left(t-\sigma_{2}\right)}\right] \mathrm{d} t=0 \tag{2.5}
\end{equation*}
$$

It is easy to see that we can rewrite (2.4) and (2.5) respectively as

$$
\begin{equation*}
\int_{0}^{\omega} \frac{r_{1}(t)\left(\alpha_{1}(t)-K_{1}(t)\right)}{1+e^{y\left(t-\tau_{2}(t)\right)}} \mathrm{d} t+\int_{0}^{\omega} r_{1}(t) e^{x\left(t-\sigma_{1}\right)} \mathrm{d} t=\int_{0}^{\omega} r_{1}(t) \alpha_{1}(t) \mathrm{d} t \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\omega} \frac{r_{2}(t)\left(\alpha_{2}(t)-K_{2}(t)\right)}{1+e^{x\left(t-\tau_{1}(t)\right)}} \mathrm{d} t+\int_{0}^{\omega} r_{2}(t) e^{y\left(t-\sigma_{2}\right)} \mathrm{d} t=\int_{0}^{\omega} r_{2}(t) \alpha_{2}(t) \mathrm{d} t . \tag{2.7}
\end{equation*}
$$

Thus from (2.3) and (2.6), it follows that

$$
\begin{aligned}
\int_{0}^{\omega}\left|x^{\prime}(t)\right| \mathrm{d} t & <\lambda \int_{0}^{\omega} r_{1}(t)\left[\frac{K_{1}(t)+\alpha_{1}(t) e^{y\left(t-\tau_{2}(t)\right)}}{1+e^{y\left(t-\tau_{2}(t)\right)}}+e^{x\left(t-\sigma_{1}\right)}\right] \mathrm{d} t \\
& <\int_{0}^{\omega} r_{1}(t) \alpha_{1}(t) \mathrm{d} t+\int_{0}^{\omega} \frac{r_{1}(t)\left(\alpha_{1}(t)-K_{1}(t)\right)}{1+e^{y\left(t-\tau_{2}(t)\right)}} \mathrm{d} t+\int_{0}^{\omega} r_{1}(t) e^{x\left(t-\sigma_{1}\right)} \mathrm{d} t \\
& =2 \int_{0}^{\omega} r_{1}(t) \alpha_{1}(t) \mathrm{d} t \stackrel{\text { def }}{=} M_{1}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\int_{0}^{\omega}\left|x^{\prime}(t)\right| \mathrm{d} t<M_{1} \tag{2.8}
\end{equation*}
$$

Similarly, by (2.3) and (2.7) we have

$$
\begin{equation*}
\int_{0}^{\omega}\left|y^{\prime}(t)\right| \mathrm{d} t<2 \int_{0}^{\omega} r_{2}(t) \alpha(t) \mathrm{d} t \stackrel{\text { def }}{=} M_{2} \tag{2.9}
\end{equation*}
$$

Moreover, from (2.6) it follows that

$$
\int_{0}^{\omega} r_{1}(t) \alpha_{1}(t) \mathrm{d} t \geq \int_{0}^{\omega} r_{1}(t) e^{x\left(t-\sigma_{1}\right)} \mathrm{d} t \geq \int_{0}^{\omega} r_{1}(t) K_{1}(t) \mathrm{d} t
$$

which implies that there exists a point $t_{1}^{\prime} \in[0, \omega]$ and a constant $C_{1}>0$ such that

$$
\left|x\left(t_{1}^{\prime}-\sigma_{1}\left(t_{1}^{\prime}\right)\right)\right|<C_{1}
$$

Suppose that $t_{1}^{\prime}-\sigma_{1}\left(t_{1}^{\prime}\right)=t_{1}+n \omega, t_{1} \in[0, \omega]$ and n is an integer, then

$$
\begin{equation*}
\left|x\left(t_{1}\right)\right|<C_{1} \tag{2.10}
\end{equation*}
$$

Similarly, by (2.7) we can obtain that there exists a point $t_{2} \in[0, \omega]$ and a constant $C_{2}>0$ such that

$$
\begin{equation*}
\left|y\left(t_{2}\right)\right|<C_{2} \tag{2.11}
\end{equation*}
$$

Therefore it follows from (2.8)-(2.11) that

$$
\begin{aligned}
& \max _{r \in[0, \omega]}|x(t)| \leq\left|x\left(t_{1}\right)\right|+\int_{0}^{\omega}\left|x^{\prime}(t)\right| \mathrm{d} t<C_{1}+M_{1} \\
& \max _{t \in[0, \omega]}|y(t)| \leq\left|y\left(t_{1}\right)\right|+\int_{0}^{\omega}\left|y^{\prime}(t)\right| \mathrm{d} t<C_{2}+M_{2}
\end{aligned}
$$

Clearly M_{i} and $C_{i}(i=1,2)$ are independent of λ. Denote $M=M_{1}+M_{2}+C_{1}+C_{2}+D$, where $D>0$ is taken sufficiently large such that $M>\max \left\{\left|\ln \left(a_{i} / c_{i}\right)\right|,\left|\ln \left(b_{i} / c_{i}\right)\right|\right.$, $i=1,2\}$. Now we take $\Omega=\left\{(x(t), y(t))^{T} \in X:\left\|(x, y)^{T}\right\|<M\right\}$. This satisfies condition (a) in Lemma 2.1.

When $(x, y)^{T} \in \partial \Omega \bigcap \operatorname{Ker} L=\partial \Omega \bigcap R^{2},(x, y)^{T}$ is a constant vector in R^{2} with $|x|+|y|=M$. Then

$$
Q N\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
\overline{r_{1} \alpha_{1}}-\frac{\overline{r_{1} \alpha_{1}}-\overline{r_{1} K_{1}}}{1+e^{y}}-\bar{r}_{1} e^{x} \\
\overline{r_{2} \alpha_{2}}-\frac{\overline{r_{2} \alpha_{2}}-\overline{r_{2} K_{2}}}{1+e^{x}}-\bar{r}_{2} e^{y}
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

where

$$
\bar{r}_{i}=\frac{1}{\omega} \int_{0}^{\omega} r_{i}(t) \mathrm{d} t, \quad \overline{r_{i} \alpha_{i}}=\frac{1}{\omega} \int_{0}^{\omega} r_{i}(t) \alpha_{i}(t) \mathrm{d} t, \quad \overline{r_{i} K_{i}}=\frac{1}{\omega} \int_{0}^{\omega} r_{i}(t) K_{i}(t) \mathrm{d} t
$$

$i=1$, 2. Furthermore, take $J=I: \operatorname{Im} Q \rightarrow \operatorname{Ker} L,(x, y)^{T} \mapsto(x, y)^{T}$. By Lemma 2.2, we have

$$
\operatorname{deg}\left\{J Q N(x, y)^{T}, \Omega,(0,0)\right\}=\operatorname{deg}\left\{Q N(x, y)^{T}, \Omega,(0,0)\right\} \neq 0
$$

We now know that Ω verifies all the requirements in Lemma 2.1 and thus that (2.2) has at least one ω-periodic solution. By (2.1), we easily see that (1.3) -(1.4) has at least one positive ω-periodic solution. The proof is complete.

3. Uniqueness and global attractivity

We first obtain certain upper and lower estimates for solutions of (1.3)-(1.4). For convenience we introduce the notation:

$$
\begin{aligned}
r_{11} & =\max _{t \in[0, \omega]} r_{1}(t), & r_{21}=\max _{t \in[0, \omega]} r_{2}(t), \\
\alpha_{11} & =\max _{t \in[0, \omega]} \alpha_{1}(t), & \alpha_{21}=\max _{t \in[0, \omega]} \alpha_{2}(t), \\
K_{12} & =\min _{t \in[0, \omega]} K_{1}(t), & K_{22}=\min _{t \in[0, \omega]} K_{2}(t), \\
\sigma_{11} & =\max _{t \in[0, \omega]} \sigma_{1}(t), & \sigma_{21}=\max _{t \in[0, \omega]} \sigma_{2}(t),
\end{aligned}
$$

LEMMA 3.1. If $\left(N_{1}(t), N_{2}(t)\right)$ is a solution of the initial value problem (1.3)-(1.4) then there exist numbers T_{1} and T_{2} such that

$$
B_{1} \leq N_{1}(t) \leq A_{1} \quad \text { for } t \geq T_{1}
$$

and

$$
B_{2} \leq N_{2}(t) \leq A_{2} \quad \text { for } t \geq T_{2}
$$

in which $A_{1}=\alpha_{11} \exp \left(\alpha_{11} r_{11} \sigma_{11}\right), A_{2}=\alpha_{21} \exp \left(\alpha_{21} r_{21} \sigma_{21}\right), B_{1}=K_{12} \exp \left[r_{11} \sigma_{11}\left(K_{12}-\right.\right.$ $\left.\left.A_{1}\right)\right]$ and $B_{2}=K_{22} \exp \left[r_{21} \sigma_{21}\left(K_{22}-A_{1}\right)\right]$.

Proof. It is easy to see that N_{1} and N_{2} satisfy

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} N_{1}(t)}{\mathrm{d} t} \leq r_{1}(t) N_{1}(t)\left[\alpha_{11}-N_{1}\left(t-\sigma_{1}(t)\right)\right] \tag{3.1}\\
\frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t} \leq r_{2}(t) N_{2}(t)\left[\alpha_{21}-N_{2}\left(t-\sigma_{2}(t)\right)\right]
\end{array}\right.
$$

Now either $N_{1}(t)$ is oscillatory about α_{11} or it is nonoscillatory. In the case where $N_{1}(t)$ is oscillatory about α_{11}, we let $\left\{t_{n}\right\}$ be the sequence such that $\lim _{n \rightarrow \infty} t_{n}=\infty$ and $\alpha_{11}-N_{1}\left(t_{n}\right)=0$. Let $N_{1}\left(t_{n}^{*}\right)$ be the local maximum of $N_{1}(t)$ on $\left(t_{n}, t_{n+1}\right)$. Then

$$
0=N_{1}^{\prime}\left(t_{n}^{*}\right) \leq r_{1}\left(t_{n}^{*}\right) N_{1}\left(t_{n}^{*}\right)\left[\alpha_{11}-N_{1}\left(t_{n}^{*}-\sigma_{1}\left(t_{n}^{*}\right)\right)\right] .
$$

Now $N_{1}\left(t_{n}^{*}-\sigma_{1}\left(t_{n}^{*}\right)\right) \leq \alpha_{11}$; so let ξ be the zero of $\alpha_{11}-N_{1}(t)$ in $\left[t_{n}^{*}-\sigma_{1}\left(t_{n}^{*}\right), t_{n}^{*}\right]$. By integrating (3.1) from ξ to t_{n}^{*}, we have

$$
\log \frac{N_{1}\left(t_{n}^{*}\right)}{N_{1}(\xi)} \leq \int_{\xi}^{t_{n}} \alpha_{11} r_{1}(t) \mathrm{d} t
$$

or

$$
N_{1}\left(t_{n}^{*}\right) \leq \alpha_{11} \exp \left[\alpha_{11} \int_{\xi}^{t_{n}^{*}} r_{1}(t) \mathrm{d} t\right] \leq \alpha_{11} \exp \left(\alpha_{11} r_{11} \sigma_{11}\right)
$$

that is,

$$
\begin{equation*}
N_{1}(t) \leq \alpha_{11} \exp \left(\alpha_{11} r_{11} \sigma_{11}\right)=A_{1} \text { for } t \geq \mathrm{t}_{1}+2 \sigma_{11} \tag{3.2}
\end{equation*}
$$

Next suppose that $N_{1}(t)$ is nonoscillatory about α_{11}. Then it is easy to see that for every $\varepsilon>0$ there exists a $T_{1}^{\prime}=T_{1}^{\prime}(\varepsilon)$ such that

$$
N_{1}(t)<\alpha_{11}+\varepsilon \quad \text { for } t>T_{1}^{\prime}
$$

This together with (3.2) implies that there exists a T_{2}^{\prime} such that

$$
N_{1}(t) \leq A_{1} \quad \text { for } t>T_{2}^{\prime}
$$

On the other hand, from (1.3) we find

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} N_{1}(t)}{\mathrm{d} t} \geq r_{1}(t) N_{1}(t)\left[K_{12}-N_{1}\left(t-\sigma_{1}(t)\right)\right] \tag{3.3}\\
\frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t} \geq r_{2}(t) N_{2}(t)\left[K_{22}-N_{2}\left(t-\sigma_{2}(t)\right)\right]
\end{array}\right.
$$

Let $N_{1}(t)$ be an oscillatory solution about K_{12} and let $\left\{s_{n}\right\}$ be a sequence such that $\lim _{n \rightarrow \infty} s_{n}=\infty$ and $\left.N_{(} s_{n}\right)-K_{12}=0$. Suppose that $N_{1}\left(s_{n}^{*}\right)$ is a local minimum of $N_{1}(t)$ on $\left(s_{n}, s_{n+1}\right)$. Then

$$
0=N_{1}^{\prime}\left(s_{n}^{*}\right) \geq r_{1}\left(s_{n}^{*}\right) N_{1}\left(s_{n}^{*}\right)\left[K_{12}-N_{1}\left(s_{n}^{*}-\sigma_{1}\left(s_{n}^{*}\right)\right)\right]
$$

So $K_{12}-N_{1}\left(s_{n}^{*}-\sigma_{1}\left(s_{n}^{*}\right)\right) \leq 0$, that is, there exists a point $\eta \in\left[s_{n}^{*}-\sigma_{1}\left(s_{n}^{*}\right)\right.$, $\left.s_{n}^{*}\right]$ such that $N_{1}(\eta)=K_{12}$. Note that $K_{12}-A_{1}<0$, then

$$
\log \frac{N_{1}\left(s_{n}^{*}\right)}{K_{12}} \geq \int_{\eta}^{s_{n}^{*}} r_{1}(t)\left(K_{12}-A_{1}\right) \mathrm{d} t \geq r_{11} \sigma_{11}\left(K_{12}-A_{1}\right)
$$

Hence

$$
N_{1}\left(s_{n}^{*}\right) \geq K_{12} \exp \left[r_{11} \sigma_{11}\left(K_{12}-A_{1}\right)\right]
$$

that is,

$$
\begin{equation*}
N_{1}(t) \geq K_{12} \exp \left[r_{11} \sigma_{11}\left(K_{12}-A_{1}\right)\right]=B_{1} \quad \text { for } t \geq t_{1}+2 \sigma_{11} \tag{3.4}
\end{equation*}
$$

Next, suppose that $N_{1}(t)$ is nonoscillatory about K_{12}. One can easily prove in this case that for every positive ε there exists a $T_{3}^{\prime}=T_{3}^{\prime}(\varepsilon)$ such that

$$
N_{1}(t)>K_{12}-\varepsilon \quad \text { for } t \geq T_{3}^{\prime}
$$

This together with (3.4) implies that there exists a T_{4}^{\prime} such that

$$
N_{1}(t) \geq B_{1} \quad \text { for } \quad t \geq \mathrm{T}_{4} .
$$

Similarly, one can prove that there exists a T_{2} such that

$$
B_{2} \leq N_{2}(t) \leq A_{2} \quad \text { for } t \geq T_{2}
$$

The proof of Lemma 3.1 is complete.
We will now proceed to derive sufficient conditions under which (1.3)-(1.4) has a unique positive ω-periodic solution $\left(N_{1}^{*}(t), N_{2}^{*}(t)\right)$ which globally attracts all other positive solutions of (1.3)-(1.4).

Let $\left(N_{1}^{*}(t), N_{2}^{*}(t)\right)$ be a positive ω-periodic solution of (1.3)-(1.4), whose existence is given by Theorem 2.1. We set

$$
\begin{equation*}
N_{1}(t)=N_{1}^{*}(t) e^{x(t)} \quad \text { and } \quad N_{2}(t)=N_{2}^{*}(t) e^{y(t)} \tag{3.5}
\end{equation*}
$$

and derive that

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=F\left[x\left(t-\sigma_{1}(t)\right), y\left(t-\tau_{2}(t)\right)\right]-F(0,0) \tag{3.6}\\
\frac{\mathrm{d} y(t)}{\mathrm{d} t}=G\left[x\left(t-\tau_{1}(t)\right), y\left(t-\sigma_{2}(t)\right)\right]-G(0,0)
\end{array}\right.
$$

where

$$
\begin{aligned}
& F(u, v)=-N_{1}^{*}\left(t-\sigma_{1}(t)\right) e^{u}-\frac{\alpha_{1}(t)-K_{1}(t)}{1+N_{2}^{*}\left(t-\tau_{2}(t)\right) e^{v}} \\
& G(u, v)=-N_{2}^{*}\left(t-\sigma_{2}(t)\right) e^{v}-\frac{\alpha_{2}(t)-K_{2}(t)}{1+N_{1}^{*}\left(t-\tau_{1}(t)\right) e^{u}}
\end{aligned}
$$

By the mean value theorem of differential calculus, we can rewrite (3.6) in the form

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=-a_{11}(t) x\left(t-\sigma_{1}(t)\right)+a_{12}(t) y\left(t-\tau_{2}(t)\right) \tag{3.7}\\
\frac{\mathrm{d} y(t)}{\mathrm{d} t}=a_{21}(t) x\left(t-\tau_{1}(t)\right)-a_{22}(t) y\left(t-\sigma_{2}(t)\right)
\end{array}\right.
$$

where

$$
\begin{array}{ll}
a_{11}(t)=\eta_{1}(t), & a_{12}(t)=\frac{\left(\alpha_{1}(t)-K_{1}(t)\right) \eta_{2}(t)}{\left(1+\eta_{2}(t)\right)^{2}} \\
a_{22}(t)=\eta_{3}(t), & a_{21}(t)=\frac{\left(\alpha_{2}(t)-K_{2}(t)\right) \eta_{4}(t)}{\left(1+\eta_{4}(t)\right)^{2}} \tag{3.8}
\end{array}
$$

and $\eta_{1}(t)$ lies between $N_{1}^{*}\left(t-\sigma_{1}(t)\right)$ and $N_{1}\left(t-\sigma_{1}(t)\right), \eta_{2}(t)$ lies between $N_{2}^{*}\left(t-\tau_{2}(t)\right)$ and $N_{2}\left(t-\tau_{2}(t)\right), \eta_{3}(t)$ lies between $N_{2}^{*}\left(t-\sigma_{2}(t)\right)$ and $N_{2}\left(t-\sigma_{2}(t)\right)$, and $\dot{\eta}_{4}(t)$ lies
between $N_{1}^{*}\left(t-\tau_{1}(t)\right)$ and $N_{1}\left(t-\tau_{1}(t)\right)$. By Lemma 3.1, we can conclude that there exists a number T^{*} such that for all $t \geq T^{*}$, we have

$$
\begin{array}{ll}
B_{1} \leq a_{11}(t) \leq A_{1}, & \frac{\left(\alpha_{1}(t)-K_{1}(t)\right) B_{2}}{\left(1+A_{2}\right)^{2}} \leq a_{12}(t) \leq \frac{\left(\alpha_{1}(t)-K_{1}(t)\right) A_{2}}{\left(1+B_{2}\right)^{2}} \leq C_{12} \\
B_{2} \leq a_{22}(t) \leq A_{2}, & \frac{\left(\alpha_{2}(t)-K_{2}(t)\right) B_{1}}{\left(1+A_{1}\right)^{2}} \leq a_{21}(t) \leq \frac{\left(\alpha_{2}(t)-K_{2}(t)\right) A_{1}}{\left(1+B_{1}\right)^{2}} \leq C_{21}
\end{array}
$$

where

$$
C_{12}=\frac{\left(a_{11}-K_{12}\right) A_{2}}{\left(1+B_{2}\right)^{2}}, \quad C_{21}=\frac{\left(a_{21}-K_{22}\right) A_{1}}{\left(1+B_{1}\right)^{2}}
$$

With the above preparation we formulate our second fundamental result.

THEOREM 3.2. Assume that every solution of (3.7)-(3.8) satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[x^{2}(t)+y^{2}(t)\right]=0 \tag{3.9}
\end{equation*}
$$

Then there exists a unique positive ω-periodic solution $\left(N_{1}^{*}(t), N_{2}^{*}(t)\right)$ of (1.3)-(1.4) such that all other positive solutions of (1.3)-(1.4) satisfy

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\{N_{1}(t), N_{2}(t)\right\}=\left\{N_{1}^{*}(t), N_{2}^{*}(t)\right\} \tag{3.10}
\end{equation*}
$$

Proof. The existence of at least one positive ω-periodic solution of (1.3)-(1.4) is a consequence of Theorem 2.1. The uniqueness of the periodic solution will follow from (3.10). But every solution $(x(t), y(t))$ of (3.7)-(3.8) satisfies (3.9), which implies (3.10). This completes the proof.

Next, assume that $\tau_{i}(t) \equiv \tau_{i}, \sigma_{i}(t) \equiv \sigma_{i}(i=1,2)$ are constants, and define two numbers μ_{1}^{*} and μ_{2}^{*} which satisfy

$$
\begin{aligned}
\mu_{1}^{*}= & B_{1}-\left[A_{1}\left(A_{1} \sigma_{1}+C_{12} \tau_{2}\right)+C_{21}\left(C_{21} \tau_{1}+A_{2} \sigma_{2}\right)+A_{1} \sigma_{1}\left(A_{1}+C_{12}\right)\right. \\
& \left.+C_{21} \tau_{1}\left(C_{21}+A_{2}\right)\right] \\
\mu_{2}^{*}= & B_{2}-\left[C_{12}\left(A_{1} \sigma_{1}+C_{12} \tau_{2}\right)+C_{21}\left(C_{21} \tau_{1}+A_{2} \sigma_{2}\right)+C_{12} \tau_{2}\left(A_{1}+C_{12}\right)\right. \\
& \left.+A_{2} \sigma_{2}\left(C_{21}+A_{2}\right)\right]
\end{aligned}
$$

Then we have the following result.
COROLLARY 3.3. Assume the following conditions hold:
(i) $\tau_{i}(t) \equiv \tau_{i}, \sigma_{i}(t) \equiv \sigma_{i}(i=1,2)$ are constants;
(ii) $\mu_{1}^{*}>0, \mu_{2}^{*}>0$;
(iii) the quadratic form

$$
Q(x, y)=[x, y]\left[\begin{array}{cc}
B_{1} & -\left(C_{12}+C_{21}\right) \\
-\left(C_{12}+C_{21}\right) & B_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

is nonnegative.
Then (1.3)-(1.4) has a unique positive ω-periodic solution $\left(N_{1}^{*}(t), N_{2}^{*}(t)\right)$, and all other positive solutions of (1.3)-(1.4) satisfy (3.10).

Proof. Entirely similar to the proof of [5, Theorem 4.3.6], one can obtain that every solution of (3.7)-(3.8) satisfies (3.9). Therefore the conclusions of the theorem follow from Theorem 3.1. The proof is complete.

4. An example

Finally, as an application of our main results, we consider the system

$$
\left\{\begin{align*}
\frac{\mathrm{d} N_{1}(t)}{\mathrm{d} t}= & \left(\frac{1}{2}+\frac{1}{2} \sin ^{2}\left(t+\phi_{1}\right)\right) N_{1}(t) \tag{4.1}\\
& \times\left[\frac{100+\frac{1}{2} \cos ^{2} t+\left(101+\sin ^{2} t\right) N_{2}\left(t-e^{-100}\right)}{1+N_{2}\left(t-e^{-100}\right)}-N_{1}\left(t-e^{-100}\right)\right] \\
\frac{\mathrm{d} N_{2}(t)}{\mathrm{d} t}= & \left(\frac{1}{2}+\frac{1}{2} \cos ^{2}\left(t+\phi_{2}\right)\right) N_{2}(t) \\
& \times\left[\frac{100+\frac{1}{2} \sin ^{2} t+\left(101+\cos ^{2} t\right) N_{1}\left(t-e^{-100}\right)}{1+N_{1}\left(t-e^{-100}\right)}-N_{2}\left(t-e^{-100}\right)\right]
\end{align*}\right.
$$

together with the initial conditions (1.4), where $\phi_{i}, i=1,2$, are constants. One can easily verify that (4.1)-(1.4) satisfies all the conditions of Corollary 3.1. Therefore, system (4.1) has a unique positive ω-periodic solution, which attracts all other positive solutions of (4.1)-(1.4).

Acknowledgments

This work was partially supported by the ABF of Yunnan Province of China. The author is grateful to a referee for his careful reading of the manuscript and his suggestions for improving the presentation of its contents.

References

[1] D. H. Boucher, The biology of mutualism: Ecology and evolution (Croom Helm, London, 1985).
[2] D. H. Boucher, S. James and K. H. Keeler, "The ecology of mutualism", Ann. Rev. Syst. 13 (1982) 315-347.
[3] A. M. Dean, "A simple model of mutualism", Amer. Natural. 121 (1983) 409-417.
[4] R. E. Gaines and J. L. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Math. 568 (Springer, Berlin, 1977).
[5] K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics (Kluwer Academic Publishers, Boston, 1992).
[6] E. R. Pianka, Evolutionary ecology (Harper and Row, New York, 1974).
[7] J. H. Vandermeer and D. H. Boucher, "Varieties of mutualistic interaction models", J. Theor. Biol. 74 (1978) 549-558.
[8] C. L. Wolin and L. R. Lawlor, "Models of facultative mutualism: density effects", Amer. Natural. 144 (1984) 843-862.

[^0]: ${ }^{1}$ Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People's Republic of China.
 (C) Australian Mathematical Society 2001, Serial-fee code 0334-2700/01

