
Can. J. Math., Vol. XXII , No. 5, 1970, pp. 933-938 

LINES AND HYPERPLANES ASSOCIATED WITH 
FAMILIES OF CLOSED AND BOUNDED SETS IN 

CONJUGATE BANACH SPACES 

M. EDELSTEIN 

1. Introduction. Let se be a family of sets in a linear space X. A hyper-
plane 7T is called a ^-secant of s/ if -IT intersects exactly k members of s/. 
The existence of ^-secants for families of compact sets in linear topological 
spaces has been discussed in a number of recent papers (cf. [3-7]). For X 
normed (and S$ a finite family of two or more disjoint non-empty compact 
sets) it was proved [5] that if the union of all members of S$ is an infinite 
set which is not contained in any straight line of X, then se has a 2-secant. 
This result and related ones concerning intersections of members of stf by 
straight lines have since been extended in [4] to the more general setting of a 
Hausdorff locally convex space. 

In the present note we show that in a certain class of conjugate Banach 
spaces the above-mentioned result remains true when compactness is replaced 
by closed-and-boundedness. 

2. Preliminaries. In [3] we have referred to an example due to V. Klee 
which shows that there is a Banach space, namely c0, in which two closed and 
bounded disjoint sets exist such that no closed hyperplane in that space 
intersects exactly one set. It clearly follows that any Banach space which 
contains a closed subspace isomorphic to c0 must also contain a pair of such 
sets. Further, the above example can be modified in an obvious manner so as 
to yield a finite family of at least three non-empty disjoint closed and bounded 
sets which has no 2-secant. Since the methods used in [4] and [5] depended on 
the extremal structure of compact convex sets, the phenomenon underlying 
the example given by Klee seems to stem from the fact that corresponding 
properties are, in general, lacking for closed and bounded sets in Banach 
spaces. However, for certain classes of conjugate Banach spaces Bessaga and 
Pelczynski [2], Namioka [9], and Asplund [1] have recently proved analogues 
of the Kreïn-Milman theorem for not necessarily norm-compact convex sets. 
Thus, Asplund proved [1] that any weak*-compact convex set in a space 
which is the conjugate of a strong differentiability space [1, p. 31] is the 
weak*-closed convex hull of those of its points which are strongly exposed by 
functionals from E. We note that, as shown by Asplund, the strong differen-
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tiability spaces comprise all those Banach spaces whose conjugate is separable 
along with those which admit an equivalent Fréchet differentiable norm. Now, 
clearly, if x is an extreme point of a convex set if in a conjugate space £* 
which is strongly exposed by a functional from E, then the identity mapping 
i: (K, weak*) —> (K, norm) is continuous at x. Also, if 5 C £* is closed, 
K = w*-clco S, the weak*-closed convex hull of S, and x is an extreme point 
of K at which i is continuous, then x Ç S (cf. [9, p. 150]). Thus for a strong 
differentiability space E the following is true: 

(*) If S is a closed and bounded set in E*, then w*-clco S = w*-clco Z, 
where Z is the set of those extreme points of K = ?£;*-clco S at which 
i: (K, weak*) —•» (if, norm) is continuous. 

We find that (*) (which may possibly hold for all closed and bounded sets 5 
in a wider class of Banach spaces) is the property needed for the proofs of the 
main results of this paper. This motivates the following. 

Definition. A conjugate Banach space X is said to have property (e) provided 
(*) holds for every closed and bounded subset of X. 

3. Main results. 

THEOREM 1. Let se be a finite family of at least two closed and bounded disjoint 
sets in a conjugate Banach space X having property (e) and suppose that 
A = \J{B: B G s/} is not contained in any finite-dimensional sub space of X. 
Then two distinct members A\, A2 G <$f, a finite subset H of A ~ Ui=iAi} 

and a straight line L exist such that 

(1) LC^A^tt (i = 1,2), 

(2) LC\ w*-clco(U{£: 5 Ç j / , 5 ^ Aui = 1,2} — H) = 0, 

and 

(3) LC\H = 0. 

Theorem 1 will be shown to be equivalent to the following. 

THEOREM 2. With the hypotheses and notation of Theorem 1 there is a weak*-
closed hyperplane w such that (1), (2), and (3) hold with L replaced by ir. 

Proof of the equivalence of Theorems 1 and 2. It is obvious that Theorem 2 
implies Theorem 1. On the other hand, if a straight line L exists satisfying 
(1), (2), and (3), then a weak*-closed hyperplane 7n, through L, exists which 
is disjoint from 

M = w*-c\co({J{B: B esf,B 9*At,i= 1,2} ~ H). 

We may assume that H C\ in j£ 0. Let n = card H and suppose, first, that H 
is a singleton {h\. Since w*-clco(Af U {h}) is clearly weak*-compact and dis
joint from L, there is a hyperplane -K as desired. Assuming the conclusion of 
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Theorem 2 t rue whenever n g m — 1 let card H = m. Wi th xi as before, let 
h Ç H P 7Ti and suppose tha t 7r2 is a weak*-closed hyperplane through L 
which is disjoint from w*-c\co(M U {A}). Since ca rd ( i7^ - ' {h}) = m — 1, the 
inductive assumption applies and the result follows. 

Remark. Since every finite-dimensional Banach space has proper ty (e) and 
in such spaces closed-and-boundedness is identical with compactness, the 
results of [4] and [5] apply when the assumption t ha t A spans an infinite 
subspace is replaced by the weaker one tha t A is an infinite set which is not a 
subset of a straight line. 

4. LEMMA 1. Let A be a closed and bounded set in a conjugate Banach space X 
and set K = w*-clco A. Suppose that F is a finite-dimensional flat with the 
property that w*-c\co(A ~ 0) is disjoint from F for any open set 0 containing F. 
Then all extreme points ofKH\F belong to A. 

Proof. Suppose, for a contradiction, t ha t an extreme point x of K P F exists 
which is not in A. This, together with the fact t ha t x is not in the compact set 
A C\ F, implies t h a t x $ co(Fr\ A) ( = w*-clco(FH A)). T h u s a weak*-
closed hyperplane a exists strictly separating x and A P F. Let a+ be the 
open half-space determined by a which contains x and set a~ = X ~ a+. Let 
U be an open set containing the closure of F Pi a+ and disjoint from A. Since 
F C U U a~ and U C\ A = 0, we have, by hypothesis, 

(>*-clco04 ~cr))C\F = 0 

so t ha t a weak*-closed hyperplane $ exists which separates F and A ^ or. I t 
follows t h a t a+ P\ /3+, where /5+ is the open half-space determined by /3 which 
contains F, is a weak*-open neighbourhood of x which is disjoint from A. 
Hence x is not in the weak*-closure of A and therefore, by a theorem of 
Milman [8, p . 335], not an extreme point of K, contradict ing the fact t h a t 
extreme points oi K C\ F must clearly be extreme points of K. 

COROLLARY. With the hypotheses of Lemma 1 we have K C\ F = co (A Pi F). 

Indeed, co(A (^ F) C K C\ F since A Pi F C K C\ F; conversely, since the 
extreme points Z of K P F belong toA,Kr^F = coZ<Z co(A P F). 

L E M M A 2. Let A be a closed and bounded set in a conjugate Banach space X 
and let K = w*-clco A. Let F be a finite-dimensional flat with the property that 
w*-o\co(A ~ 0) is disjoint from F for every open set 0 containing F. Suppose 
that the set C of accumulation points of A is non-empty and let u be an extreme 
point of the convex hull of F C\ C. If U is an open neighbourhood of u, there 
exists a weak*-closed hyperplane w and a finite set H C F such that A ^ (U^J H) 
and u are strictly separated by w. 

Proof. T h e (weak*-closed) convex hull of F P C ~ U is disjoint from {u}. 
Hence, a hyperplane a in F exists which strictly separates u and F P C ~ U. 
Let a+ be the closed half-space in F determined by a which contains u. Since 
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o& ~ U contains no accumulation points of A, the set H = A C\ (a+ ~ U) is 
finite and A ~ {U VJ H) is a closed subset of A which is disjoint from a+. If 
A\ = A ~ (U U H) and Kx = w*-c\<zo Ax then, by the preceding corollary, 
K\C\ F (Z F ^ a+ so that u (? K\ and therefore a hyperplane T exists satisfying 
the conclusion of the lemma. 

LEMMA 3. Let A be a non-empty closed and bounded set in a conjugate Banach 
space X having property (e) and let u £ X ~ K, where K = w*-c\co A. Let F 
be aflat of finite dimension k containing no accumulation point of A and such that 

(i) F is spanned by u and F C\ A; 
(ii) if 0 is an open set containing F C\ K, then w*-clco(^4 ~ 0) is disjoint 

from F. 
Then a (k + 1)-dimensional flat G containing F exists such that conditions 

(i) and (ii) hold with F replaced by G. 

Proof. Let w be a weak*-closed hyperplane strictly separating u and K and 
let C be the cone spanned by u and K. The set G = C P\ w is convex, closed, 
and contained in co({^} U K) ; hence also bounded. Let w be an extreme 
point of C\ at which i: (G, weak*) —» (G, norm) is continuous and suppose 
that G is the 1-dimensional flat spanned by u and w. If 0 is an open set con
taining K C\ G, then it follows from the compactness of this set that an open 
set U, containing w, exists such that the cone spanned by u and U is disjoint 
from A ~ 0. By the continuity of i at w there is a weak*-open basic neigh
bourhood V such that V Pi G C U H G so that the cone spanned by u 
and V r\ 7T is a weak*-neighbourhood of K C\ G which is disjoint from A ~ 0. 
It follows that 0 = w*-c\co(A ~ 0) C\ G since, if non-empty, this set would 
have to contain extreme points of w*-c\co(A ^ 0) but these are contained in 
the weak*-closure of A ~ 0. Thus the lemma is true for k = 0 as {u) is the 
only O-dimensional flat for which all the hypotheses of the lemma are satisfied. 
Assuming the lemma true for k = m è 0, let F be (m + 1)-dimensional and 
set Fi = F C\ ir. Suppose that w is an extreme point of Fi P\ C. Let A x be the 
intersection of the cone spanned by A U {u\ with T. Since w is not in the 
(weak*-compact) convex hull of the finite set ( f i H i i ) ~ {w} there is a 
weak*-closed hyperplane a strictly separating w and the above convex set. 
Also by (ii) and the fact that F contains no accumulation point of A it is 
readily seen that a weak*-closed hyperplane ($ exists strictly separating F and 
A ^ F. Clearly a and ft determine a weak*-open set containing w and disjoint 
from Ai ~ {w), so that w is not in the weak*-closure of Ai ~ {w}. It follows 
that w $ Ki, where Ki = w*-clco(Ai ~ {w}) as otherwise w would be an 
extreme point of Ki which is not in w*-c\(Ai ~ {w}). Since F± is an m-dimen-
sional flat satisfying the assumptions of the lemma with A, u, and F replaced 
by Aly w, and Fiy it follows that a flat G\ of dimension m + 1 exists containing 
Fi and satisfying conditions (i) and (ii) (with F, A, u, and K replaced by 
Fi, Ai, w, and Kx). Let G be the flat spanned by G± W {u}. Then G is (m + 1)-
dimensional, contains F, and is spanned by u and G C\ A. (The last assertion 
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follows from the easily verified fact that w G Ai.) If now 0 is open and con
tains G r\ K, let M be an open cone emanating from u, containing G C\ K 
and such that M C\ A CO. We know that w*-clco(Ai ~ M) is disjoint from 
Gi but this clearly implies that w*-clco(A ~ M) P\ G = 0, completing the 
proof of this lemma. 

5. Proof of Theorem 1. We distinguish between two cases, 
(i) There exists a finite-dimensional flat F such that w*-clco(^4 ~ 0) is 

disjoint from F for every open set 0 containing F, and F contains an 
accumulation point of A. 

(ii) There is no such flat. 
In case (i) let u be an extreme point of the convex hull of the accumulation 

points of A which are in F and let U be an open neighbourhood of u which 
intersects exactly one member, say Au of S$. Then by Lemma 2 there is a finite 
set H C ^such that u and A ~ (U \J H) are separated by some weak*-closed 
hyperplane T. If D = U{^>: B G se, B =̂  Au\ is contained in F, there must 
be an x in Au ~ F. The straight line joining x with an extreme point of co D is 
then as required. Otherwise, let K = W*-C\QO(D ~ H), C the cone spanned 
by K and u, and let G = C Pi ir. If C\ is a singleton, then K is a compact 
line segment. Let w be an extreme point of i^and choose u' ^ u in Au <^ F±} 

where F\ is the linear hull of F\J K. The straight line L joining u' with w is 
then as required. Hence wre may assume that C\ is not a singleton and two 
distinct points pi, p2 exist such that both are extreme points of G at which 
the identity mapping 

i\ (G, weak*) —» (G, norm) 

is continuous. By [3, Lemma 1], the extreme points of Rt C\ K, where Rt is 
the ray through Pt emanating from u, belong to D ~ H. By [3, Lemma 2], 
there exist weak*-open neighbourhoods Wu i — 1, 2, of u such that for each 
p G Wt ^^ Ru where Rt is the straight line spanned by Ri, there exists at 
least one extreme point qt of R C\ K such that the straight line through p 
and qt intersects exactly one member Bqi oi âë = {B ~ H: B G stf ^ {Au}} 
and is disjoint from weak*-clco(U{£: B G 3ê, B ^ Bai}). It follows that the 
collection of such lines through points of Au C\ W\ C\ W2 is infinite and r 

therefore, must contain a line which misses H. Such a line clearly satisfies 
the requirements of the theorem. 

In case (ii) let u G X ~ w*-clco A. A repeated application of Lemma 3 
yields a flat F of dimension ûve which is spanned by {u} U (A C\ F) and 
satisfies the hypotheses of that lemma. If A C\ F contains points of at least 
two members of s/, then, by [5, Theorem 2.1], F contains a line L which 
intersects exactly two members of s/. It is readily seen that it also satisfies 
condition (2). If not, let Ax G s/ be such that i i H F ^ B . Clearly F is 
disjoint from ^*-clco(^4 ~ A\) and, again by Lemma 3, there is a 6-dimen-
sional flat G containing F and such that G is spanned by F and (A ~ Ai) C\ G 
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and satisfies the conclusion of that lemma. If there is an accumulation point 
of Ai in X ~ w*-c\co{A ~ A\) or there is an accumulation point in G of 
any member of se, then a construction such as used in case (i) will produce 
an L as required. Otherwise, such a line will be found, as before, in G itself. 

REFERENCES 

1. E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. 
2. C. Bessaga and A. Pekzynski, On extreme points in separable conjugate spaces, Israel J. Math. 

4 (1966), 262-264. 
3 . M. Edelstein, Intersections by hyperplanes} Israel J. Math. 7 (1969), 90-94. 
4# Hyper planes and lines associated with families of compact sets in locally convex spaces, 

Math. Scand. 25 (1969), 25-30. 
5. M. Edelstein and L. M. Kelly, Bisecants of finite collections of sets in linear spaces, Can. J. 

Math. 18 (1966), 375-380. 
6. M. Edelstein, F . Herzog, and L. M. Kelly, A further theorem of the Sylvester type, Proc. 

Amer. Math. Soc. 14 (1963), 359-363. 
7. L. M. Kelly, Linear transversals, Proc. London Math. Soc. 16 (1966), 264-274. 
8. G. Ko the, Topologische linear e Raume. I. Die Grundlehren der mathematischen Wissen-

schaften, Band 107 (Springer-Verlag, Berlin-Gottingen-Heidelberg, 1960). 
9. I. Namioka, Neighborhoods of extreme points, Israel J. Math. 5 (1967), 145-152. 

Dalhousie University, 
Halifax, Nova Scotia 

https://doi.org/10.4153/CJM-1970-107-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-107-3

