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Abstract

Following Baurdoux and Kyprianou (2008) we consider the McKean stochastic game,
a game version of the McKean optimal stopping problem (American put), driven by a
spectrally negative Lévy process. We improve their characterisation of a saddle point for
this game when the driving process has a Gaussian component and negative jumps. In
particular, we show that the exercise region of the minimiser consists of a singleton when
the penalty parameter is larger than some threshold and ‘thickens’ to a full interval when
the penalty parameter drops below this threshold. Expressions in terms of scale functions
for the general case and in terms of polynomials for a specific jump diffusion case are
provided.
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1. Introduction

This paper is a follow-up to the paper [2] by Baurdoux and Kyprianou (henceforth BK),
in which the solution to the McKean stochastic game driven by a spectrally negative Lévy
process is studied. Let us introduce the setting in BK (and in this paper). Let X be a Lévy
process defined on a filtered probability space (�,F ,F,P), where F = (Ft )t≥0 is the filtration
generated byX which is naturally enlarged (cf. Definition 1.3.38 of [6]). For x ∈ R, we denote
by Px the law ofXwhen it is started at x and we abbreviate P = P0. Accordingly, we shall write
Ex and E for the associated expectation operators. We assume throughout that X is spectrally
negative, meaning that it has no positive jumps and that it is not the negative of a subordinator.

The McKean stochastic game is an example of a type of stochastic game introduced by
Dynkin [9]. It is a two-player zero-sum game, consisting of a maximiser aiming at maximising
over F-stopping times τ the expected payoff according to the (discounted) lower payoff process
given by e−qt (K − exp(Xt ))+ for all t ≥ 0, and a minimiser aiming at minimising over
F-stopping times σ the expected payoff according to the (discounted) upper payoff process
given by e−qt ((K − exp(Xt ))+ + δ) for all t ≥ 0, where K, δ > 0. That is, for any pair of
stopping times (τ, σ ), the payoff to the maximiser is

Mx(τ, σ ) := Ex[e−qτ (K − eXτ )+ 1{τ≤σ } + e−qσ ((K − eXσ )+ + δ) 1{σ<τ }].
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Further calculations for the McKean stochastic game 201

We assume throughout this paper that the discount factor q satisfies

0 ≤ ψ(1) ≤ q and q > 0, (1)

where ψ denotes the Laplace exponent of X. For a spectrally negative Lévy process X, this
Laplace exponent is of the form

ψ(λ) = aλ+ 1

2
σ 2
Xλ

2 +
∫
(−∞,0)

(eλx − 1 − λx 1{x>−1})�(dx)

for λ ≥ 0. Here σX is called the Gaussian coefficient of X and � is the Lévy measure which
satisfies

∫
(−∞,0)(1 ∧ x2)�(dx) < ∞.

Note that, since both payoff processes vanish almost surely as t → ∞, there is no ambiguity
in allowing for τ and σ to be infinitely valued, as we do in this paper. For any x, this game has a
value if the upper and lower values, infσ supτ Mx(τ, σ ) and supτ infσ Mx(τ, σ ), respectively,
coincide. Furthermore, if a pair (τ ∗, σ ∗) exists such that

Mx(τ, σ
∗) ≤ Mx(τ

∗, σ ∗) ≤ Mx(τ
∗, σ ) for all (τ, σ ),

the value exists and equals Mx(τ
∗, σ ∗). In this case (τ ∗, σ ∗) is called a saddle point (or Nash

equilibrium). For an account of these concepts in a general Markovian setting, see [10] and
the references therein. For other examples of stochastic games, see, e.g. [3], [4], [11], [13],
and [15].

Note that the McKean game can be seen as an extension of the classic McKean optimal
stopping problem (cf. [17] and Theorem 1 below). In a financial interpretation, this optimal
stopping problem is usually referred to as an American put option, with K the strike price.
The McKean game then extends the American put option by introducing the possibility for the
writer of the option to cancel the contract, at the expense of paying the intrinsic value plus an
extra constant penalty given by the penalty parameter δ. Cf., e.g. [12] and [13] for a general
account on the interpretation of stochastic games as financial contracts.

In BK it was shown that a saddle point (τ ∗, σ ∗) indeed exists for the McKean game, so, in
particular, the value function V is well defined by

V (x) = sup
τ

inf
σ

Ex[e−qτ (K − eXτ )+ 1{τ≤σ } + e−qσ ((K − eXσ )+ + δ) 1{σ<τ }]
= inf

σ
sup
τ

Ex[e−qτ (K − eXτ )+ 1{τ≤σ } + e−qσ ((K − eXσ )+ + δ) 1{σ<τ }]
= Ex[e−qτ∗

(K − eXτ∗ )+ 1{τ∗≤σ ∗} + e−qσ ∗
((K − eXσ∗ )+ + δ) 1{σ ∗<τ∗}].

The optimal stopping time for the maximiser, τ ∗, is the first hitting time of an interval of the
form (−∞, x∗] for some x∗ < logK . For the minimiser, the optimal stopping time σ ∗ is as
follows. When the penalty parameter δ exceeds δ̄ := U(logK), where U denotes the value
function of the McKean optimal stopping problem, the minimiser never stops (i.e. σ ∗ = ∞).
When δ < δ̄, the optimal stopping region for the minimiser is an interval of the form [logK, y∗].
If the Gaussian component σX ofX is equal to 0 (note that this corresponds to the situation that
X does not creep downwards), we have y∗ > logK . Furthermore, formulae in terms of scale
functions for x∗ and V on (−∞, logK] were provided.

Two issues were however left open in BK. Firstly, whenX has a Gaussian component, it was
not clear when the optimal stopping region for the minimiser consists of a point and when of
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202 E. J. BAURDOUX AND K. VAN SCHAIK

an interval, i.e. when y∗ = logK and when y∗ > logK holds. Secondly, no characterisation
was given of y∗. In this paper we give answers to both these issues. In particular, we show
that, when σX > 0, there exists a critical value δ0 ∈ (0, δ̄) such that the stopping region for the
minimiser is a single point when δ ∈ [δ0, δ̄) and a full interval when δ ∈ (0, δ0); cf. Theorem 4
(see also Remark 1). Furthermore, we show that y∗ and δ0 can be characterised as unique
solutions to functional equations using scale functions; cf. Theorem 5.

The rest of this paper is organised as follows. In the remainder of this introduction we
introduce scale functions and some notation (Subsection 1.1), and review the results from BK
in more detail (Subsection 1.2). In Section 2 we present our new results. Finally, in Section 3
we translate these results to a specific jump diffusion setting, accompanied by some plots.

1.1. Scale functions

First we introduce some notation for first entry times. For a ≤ b, we write

τ+
a := inf{t > 0 | Xt > a}, τ−

a := inf{t > 0 | Xt < a}
and T[a,b] := inf{t > 0 | Xt ∈ [a, b]}.

Furthermore, we denote the often used first hitting time of logK for simplicity by TK , that is,
TK := inf{t > 0 | Xt = logK}.

A useful class of functions when studying first exit problems driven by spectrally negative
Lévy processes are so-called scale functions. We shortly review some of their properties as they
play an important role in this paper; for a more complete overview, the reader is, e.g. referred to
Chapter VII of [5] or Chapter 8 of [16]. For each q ≥ 0, the scale functionsW(q) : R → [0,∞)

are known to satisfy, for all x ∈ R and a ≥ 0,

Ex[e−qτ+
a 1{τ+

a <τ
−
0 }] = W(q)(x ∧ a)

W(q)(a)
.

In particular, it is evident that W(q)(x) = 0 for all x < 0. Furthermore, it is known that W(q)

is almost everywhere differentiable on (0,∞), it is right continuous at 0, and∫ ∞

0
e−βxW(q)(x) dx = 1

ψ(β)− q
(2)

for all β > 	(q), where	(q) is the largest root of the equationψ(θ) = q (of which there are at
most two—recall that ψ is the Laplace exponent ofX). We shall assume throughout this paper
that the jump measure � has no atoms when X is of bounded variation, which implies that
W(q) ∈ C1(0,∞) (see [8]). In the case when X has Gaussian component σX > 0, it is known
that W(q) ∈ C2(0,∞) with W(q)(0) = 0 and W(q)′(0) = 2/σ 2

X. We usually write W = W(0).
Associated to the functions W(q) are the functions Z(q) : R → [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W(q)(y) dy (3)

for q ≥ 0. Together, the functionsW(q) and Z(q) are collectively known as scale functions and
predominantly appear in almost all fluctuation identities for spectrally negative Lévy processes.
For example, it is also known that, for all x ∈ R and a, q ≥ 0,

Ex[e−qτ−
0 1{τ+

a >τ
−
0 }] = Z(q)(x ∧ a)− Z(q)(a)

W(q)(a)
W(q)(x ∧ a)
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and
Ex[e−qτ−

0 1{τ−
0 <∞}] = Z(q)(x)− q

	(q)
W(q)(x), (4)

where q/	(q) is to be understood in the limiting sense ψ ′(0) ∧ 0 when q = 0.
For c > 0, consider the change of measure

dPc

dP

∣∣∣∣
Ft

= ecXt−ψ(c)t . (5)

Under Pc, the process X is still a spectrally negative Lévy process, and we mark its Laplace
exponent and scale functions with the subscript c. From ψc(λ) = ψ(λ+ c)− ψ(c) for λ ≥ 0
we get, by taking Laplace transforms,

W
(q)
c (x) = e−cxW(q+ψ(c))(x)

for all q ≥ 0 and, similarly,

Z
(q)
c (x) = 1 + q

∫ x

0
W
(q)
c (y) dy.

1.2. Reviewing the McKean stochastic game

First consider the McKean optimal stopping problem (or American put option) with value
function U , i.e.

U(x) = sup
τ

Ex[e−qτ (K − eXτ )+].
We recall the solution to this problem as it appears in [7] (see also [18]).

Theorem 1. For the McKean optimal stopping problem, under (1), we have

U(x) = KZ(q)(x − k∗)− exZ(q−ψ(1))1 (x − k∗),

where

ek
∗ = K

q

	(q)

	(q)− 1

q − ψ(1)
,

which is to be understood in the limiting sense when q = ψ(1), i.e. ek
∗ = Kψ(1)/ψ ′(1). An

optimal stopping time is given by τ ∗ = inf{t > 0 : Xt < k∗}.
Next we recall the main result from BK on a saddle point and the value function for the

McKean game.

Theorem 2. Consider the McKean stochastic game under assumption (1) and recall that
δ̄ = U(logK).

(i) If δ ≥ δ̄ then a stochastic saddle point is given by τ ∗ from Theorem 1 and σ ∗ = ∞, in
which case V = U.

(ii) If δ < δ̄, a stochastic saddle point is given by the pair

τ ∗ = inf{t > 0 : Xt < x∗} and σ ∗ = inf{t > 0 : Xt ∈ [logK, y∗]},
where x∗ uniquely solves

Z(q)(logK − x)− Z
(q−ψ(1))
1 (logK − x) = δ

K
, (6)
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x∗ > k∗ (the optimal level of the corresponding McKean optimal stopping problem in
Theorem 1), and y∗ ≥ logK .

Furthermore,

V (x) = KZ(q)(x − x∗)− exZ(q−ψ(1))1 (x − x∗) (7)

for x ≤ logK and if y∗ = logK then, for any x ∈ R,

V (x) = KZ(q)(x − x∗)− exZ(q−ψ(1))1 (x − x∗)+ αe	(q)(logK−x∗)W(q)(x − logK),

where

α = ex
∗ q − ψ(1)

	(q)− 1
− qK

	(q)
,

which is to be understood in the limiting sense when q = ψ(1), i.e. α = ex
∗
ψ ′(1) −

Kψ(1).

Hence, a saddle point exists, and consists of the first hitting time of (−∞, x∗] for the
maximiser and of the first hitting time of [logK, y∗] for the minimiser. Note that, when
δ < δ̄, we know that the value of the McKean is not everywhere equal to that of its one-
player counterpart, as V (logK) = δ < U(logK) in that case. Furthermore, (6) gives us a
characterisation of x∗, but we know only a little about y∗.

In BK, the issue of whether y∗ = logK or y∗ > logK was answered only when X has no
Gaussian component.

Theorem 3. Suppose in Theorem 2 that δ < δ̄. If X has no Gaussian component then y∗ >
logK and necessarily �(−∞, logK − y∗) > 0.

Remark 1. We now discuss the intuitive interpretation of these results.
Owing to the fact that X has no positive jumps, the choice of y∗ has no influence when X is

started at a value to the left of logK as the minimiser would stop as soon as the process hits logK .
However, the situation is different when starting from any X0 > logK; the minimiser could
either stop right away and pay δ to the maximiser, or wait a short time. From the minimiser’s
point of view, the latter decision has the advantage of profiting from the discounting, but the
disadvantage of the risk that a (large) negative jump could bring X (far) below logK , where a
higher payoff than (discounted) δ can be claimed by the maximiser. The closer X0 is chosen
to logK , the more dominant the disadvantage becomes and, hence, the exercise region for the
minimiser can take the form of an interval [logK, y∗].

WhenX is a Brownian motion, it is obvious that we have y∗ = logK for any δ ∈ (0, δ̄] (see
also [15]), as then the process can only get below logK by hitting it first.

Theorem 3 tells us that the other extreme case, namely y∗ > logK for any δ ∈ (0, δ̄], i.e. the
disadvantage of waiting being dominant for the minimiser, occurs wheneverX has no Gaussian
component.

The interesting question is, what happens when X has a Gaussian component and negative
jumps? Then namely there is a trade-off between the possibility of the process entering the
region (−∞, logK] continuously (which can occur only when σX > 0), leading to a relatively
small payoff, and the possibility of passing logK by a jump, potentially leading to a larger
payoff. It turns out that, for large enough δ, when stopping immediately is relatively expensive,
the Gaussian part ‘wins’ in the sense that y∗ = logK (the minimiser is happy to take the risk
of the process jumping to a less favourable region), while, for small enough δ, when stopping
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immediately has become cheaper, the negative jumps ‘win’ in the sense that y∗ > logK; see
Theorem 4 below. In fact, in Figure 4 at the end of this paper we plot the negative relationship
between y∗ and σX in the jump diffusion case.

2. Single point or interval when X has Gaussian part σX > 0

Throughout this section, we assume that condition (1) holds. Recall that TK := inf{t >
0 | Xt = logK}. Consider the function

fδ(x) = sup
τ

Ex[e−qτ (K − eXτ ) 1{τ≤TK } + δe−qTK 1{TK<τ }], (8)

i.e. the optimal value for the maximiser provided that the minimiser only exercises whenX hits
logK .

We first prove the following technical result.

Lemma 1. Suppose that σX > 0 and 0 < δ ≤ δ̄ = U(logK). The function fδ is differentiable
on R \ {logK}. Furthermore, fδ = V on (−∞, logK], fδ ≥ V on R, and f ′

δ(logK+) is a
strictly decreasing continuous function of δ.

Proof. Let δ ∈ (0, δ̄]. Owing to Theorem 2 and the absence of positive jumps, we have, for
x ≤ logK ,

V (x) = Ex[e−qτ−
x∗(δ) (K − exp(Xτ−

x∗(δ)
)) 1{τ−

x∗(δ)<TK } + δe−qTK 1{TK<τ−
x∗(δ)}]

= sup
τ

Ex[e−qτ (K − eXτ ) 1{τ<TK } + δe−qTK 1{TK<τ }]
= fδ(x).

Also, for any x ∈ R,

fδ(x) = sup
τ

Ex[e−qτ (K − eXτ ) 1{τ≤TK } + δe−qTK 1{TK<τ }]
≥ inf

σ
sup
τ

Ex[e−qτ (K − eXτ ) 1{τ≤σ } + δe−qσ 1{σ<τ }]
= V (x).

In fact, since stopping is not optimal on (logK,∞), as the lower payoff function is 0 there, we
deduce that, for all x ∈ R,

fδ(x) = Ex[e−qτ−
x∗(δ) (K − exp(Xτ−

x∗(δ)
)) 1{τ−

x∗(δ)≤TK } + δe−qTK 1{TK<τ−
x∗(δ)}]. (9)

Now, let δ2 > δ1 > c for some c > 0. From the definition of fδ in (8) we find that

fδ2(x)− fδ1(x) = sup
τ

Ex[e−qτ (K − eXτ ) 1{τ≤TK } + δ2e−qTK 1{TK<τ }]
− sup

τ
Ex[e−qτ (K − eXτ ) 1{τ≤TK } + δ1e−qTK 1{TK<τ }]

≤ (δ2 − δ1) sup
τ

Ex[e−qTK 1{TK<τ }]

≤ (δ2 − δ1)Ex[e−qτ−
logK ],
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from which we obtain (where the equality follows by (4))

fδ2(logK + ε)− δ2

ε
− fδ1(logK + ε)− δ1

ε
≤ (δ2 − δ1)

ElogK+ε[e−qτ−
logK ] − 1

ε

= (δ2 − δ1)

(
Z(q)(ε)− 1

ε
− q

	(q)

W(q)(ε)

ε

)
.

Since fδ is a differentiable function on [logK,∞) (see Equation (27) of BK together with
(9)), and using Z(q)′(0) = W(q)(0) = 0 and W(q)′(0+) = 2/σ 2

X, we deduce that

f ′
δ2
(logK+)− f ′

δ1
(logK+) ≤ − 2q

σ 2
X	(q)

(δ2 − δ1), (10)

showing that f ′
δ(logK+) is strictly decreasing in δ.

Also, using (8) and the fact that τ−
x∗(δ1)

is a feasible strategy also when δ = δ2, it holds that

fδ2(x)− fδ1(x) ≥ Ex[e−qτ−
x∗(δ1) (K − exp(Xτ−

x∗(δ1)
)) 1{τ−

x∗(δ1)≤TK } + δ2e−qTK 1{TK<τ−
x∗(δ1)}

]

− Ex[e−qτ−
x∗(δ1) (K − exp(Xτ−

x∗(δ1)
)) 1{τ−

x∗(δ1)≤TK } + δ1e−qTK 1{TK<τ−
x∗(δ1)}

]
= (δ2 − δ1)Ex[e−qTK 1{TK<τ−

x∗(δ1)}
]

≥ (δ2 − δ1)Ex[e−qTK 1{TK<τ−
x∗(c)}],

where the final inequality follows from the observation that x∗(δ) is decreasing in δ and that
δ1 > c. Note that x∗(c) < log(K − c) since V (x) is strictly decreasing in x ∈ (−∞, logK]
for any δ > 0 and, thus,

fδ2(logK + ε)− δ2

ε
− fδ1(logK + ε)− δ1

ε

≥ (δ2 − δ1)

ElogK+ε[e−qTK 1{TK<τ−
x∗(c)}] − 1

ε

= (δ2 − δ1)
W(q)(logK + ε − x∗(c))−W(q)(logK − x∗(c))

εW(q)(logK − x∗(c))

− (δ2 − δ1)e
	(q)(logK−x∗(c)) W(q)(ε)

εW(q)(logK − x∗(c))
,

by Lemma 12 of BK. It follows that

f ′
δ1
(logK+)− f ′

δ1
(logK+) ≥ (δ2 − δ1)

σ 2
XW

(q)′(logK − x∗(c))− 2e	(q)(logK−x∗(c))

σ 2
XW

(q)(logK − x∗(c))
.

Since c is arbitrary, we conclude from this inequality together with (10) that f ′
δ(logK+) is

indeed continuous in δ for any δ > 0.

Now we are ready to prove our main result, extending Theorem 2.

Theorem 4. Suppose that σX > 0. When� 	= 0, there exists a unique δ0 ∈ (0, δ̄) such that an
optimal stopping time for the minimiser is given by TK (i.e. y∗(δ) = logK) when δ ∈ [δ0, δ̄]
and by T[logK,y∗(δ)] for some y∗(δ) > logK when δ ∈ (0, δ0).
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Proof. Let σX > 0, and suppose that � 	= 0. We know from Theorem 2 that the stopping
region for the minimiser is of the form [logK, y∗] for some y∗ ≥ logK . We claim that setting
δ0 equal to the unique 0 of f ′

δ(logK+) on (0, δ̄) yields the result.
First let us show that this unique 0 does indeed exist. For δ = δ̄, it holds that f ′

δ(logK+) =
U ′(logK) < 0 (cf. Theorem 1). Using Lemma 1, it suffices to show that there exists some
δ > 0 such that f ′

δ(logK+) > 0. We argue by contradiction, so, again using Lemma 1, suppose
that f ′

δ(logK+) < 0 for all δ > 0. This implies that, for each δ > 0, there exists some ε > 0
such that fδ(x) < fδ(logK) = δ for all x ∈ (logK, logK + ε]. Since V ≤ fδ (Lemma 1),
we deduce that V (x) < δ = (K − ex)+ + δ for all x ∈ (logK, logK + ε); hence, y∗ = logK
and, in fact, V = fδ (by (8)).

Substituting τ−
logK/2 into the right-hand side of (8) yields

fδ(x) ≥ K

2
Ex[e−qτ−

logK/2 1{τ−
logK/2<TK }].

This lower bound is strictly positive for x > logK since � 	= 0 and does not depend on δ.
Hence, for small enough δ, we deduce the existence of some x > logK such that fδ(x) > δ,
contradicting the fact that fδ(x) = V (x) ≤ δ on [logK,∞).

We now consider the optimal stopping time of the minimiser. For δ > δ0, the same reasoning
as above yields y∗ = logK .

For the case in which δ = δ0, we note that, for any fixed x, the function fδ(x) is continuous
in δ, as is easily seen from (8). Hence,

fδ0(x) = lim
δ↓δ0

fδ(x) ≤ (K − ex)+ + δ0,

from which we can deduce that we still have y∗ = logK . Finally, let δ < δ0. Again, much
as above, we have f ′

δ(logK+) > 0 and, thus, there exists x > logK for which fδ(x) > δ =
(K − ex)+ + δ. Since, trivially, V is bounded above by this upper payoff function, it cannot
be true that fδ = V and, thus, it can also not be true that y∗ = logK , so we indeed arrive at
y∗ > logK .

Remark 2. From the proof of Theorem 4 we see that this result is essentially due to the upper
payoff function (K − ex)+ + δ having a kink at the point where it first touches the value
function as δ decreases (namely, logK). That is, if we only slightly alter the upper payoff
function in an environment of logK so that it has a continuous derivative, we would expect the
optimal stopping time for the minimiser to be T[y∗

1 ,y
∗
2 ] with y∗

1 < logK < y∗
2 for all δ ∈ (0, δ̄)

and any spectrally negative Lévy process X.

Next we provide expressions that complement those of Theorem 2. Recall that (7) provides
us with a formula for V on (−∞, logK], so we can make use of the following function:

wδ(x) =
{
V (x) for x < logK,

δ for x ≥ logK.

Theorem 5. Suppose that � 	= 0. Then the following assertions hold.

(i) Suppose that σX > 0. Then δ0 is the unique solution on (0, δ̄) to the equation in δ:∫
t<0

∫
u<t

(wδ(t + logK)− δ)e−	(q)(t−u)�(du) dt = δq

	(q)
.
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(ii) Suppose that y∗ > logK (i.e. σX > 0 and δ < δ0, or σX = 0 and δ < δ̄). Then y∗ is the
unique solution on (logK,∞) to the equation in y:∫

t<0

∫
u<t

(wδ(t + y)− δ)e−	(q)(t−u)�(du) dt = δq

	(q)
. (11)

Furthermore, V (x) = δ for x ∈ [logK, y∗] and, for x ∈ (y∗,∞),

V (x) = δZ(q)(x−y∗)−
∫
t<0

∫
u<t

(wδ(t+y∗)−δ)W(q)(x−y∗− t+u)�(du) dt. (12)

Proof. First we introduce the function

h(x, y) := Ex[e−qτ−
y wδ(Xτ−

y
)]

for x > y ≥ logK . Observe that, by the lack of positive jumps, h(·, y) is the optimal value
the maximiser can obtain when the minimiser chooses the stopping region [logK, y]. Hence,
in particular, V (x) = h(x, y∗).

Denote by u(q)(s, t) the resolvent density ofX started at s > 0 and killed at the first passage
below 0. Invoking the compensation formula (see, e.g. Theorem 4.4 of [16]) leads to

h(x, y) = δ Ex[e−qτ−
y ] + Ex[e−qτ−

y (wδ(Xτ−
y
)− δ) 1{X

τ
−
y
<logK}]

= δ Ex[e−qτ−
y ] +

∫
t<logK−y

∫
u<t

(wδ(t + y)− δ)u(q)(x − y, t − u)�(du) dt

= δ Ex[e−qτ−
y ] +

∫
t<0

∫
u<t

(wδ(t + y)− δ)u(q)(x − y, t − u)�(du) dt,

where the final equality is due to the fact that wδ = δ on [logK, y]. We know that (see, e.g.
Theorem 8.1 and Corollary 8.8 of [16], respectively)

Ex[e−qτ−
y ] = Z(q)(x − y)− q

	(q)
W(q)(x − y)

and
u(q)(s, t) = e−	(q)tW(q)(s)−W(q)(s − t);

hence,

h(x, y) =
∫
t<0

∫
u<t

(wδ(t + y)− δ)(e−	(q)(t−u)W(q)(x − y)

−W(q)(x − y − t + u))�(du) dt

+ δ(Z(q)(x − y)− q

	(q)
W(q)(x − y)). (13)

Furthermore, when X is of unbounded variation, we can compute, for x > y,

∂

∂x
h(x, y) = δ(qW(q)(x − y)− q

	(q)
W(q)′(x − y))

+
∫
t<0

∫
u<t

(wδ(t + y)− δ)(e−	(q)(t−u)W(q)′(x − y)

−W(q)′(x − y − t + u))�(du) dt,
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and we can let x ↓ y to arrive at

∂

∂x
h(y+, y) =

(∫
t<0

∫
u<t

(wδ(t + y)− δ)e−	(q)(t−u)�(du) dt − qδ

	(q)

)
W(q)′(0+). (14)

(i) Recall the function fδ as defined in (8), and recall, in particular, from the proof of
Lemma 1 that δ0 is the unique δ ∈ (0, δ̄) for which f ′

δ(logK+) = 0. Furthermore, note that
fδ(x) = h(x, logK) for x > logK , since both sides equal the optimal value the maximiser
can obtain when the minimiser only stops when X hits logK . Combining these observations
with (14) and W(q)′(0+) = 2/σ 2

X 	= 0 yields the result.
(ii) We first consider the case when X is of bounded variation. We know from Theorem 4

of BK that we have a continuous fit, i.e. V (y∗+) = δ. Since the integrand in (13) is bounded
and equal to 0 for t < logK − y, we can take the limit inside the integrals to deduce that

h(y+, y) = δ − qδ

d	(q)
+ 1

d

∫
t<0

∫
u<t

(wδ(t + y)− δ)e−	(q)(t−u)�(du) dt,

where d = (W(q)(0))−1 denotes the drift ofX, and so, using V (y∗+) = h(y∗+, y∗), it follows
that y∗ indeed solves (11). For uniqueness, the function wδ = V is strictly decreasing on
(−∞, logK] and δ = V (y∗) = h(y∗+, y∗). Since q > 0, the minimiser would not stop
at points in [logK,∞] from which the process cannot jump into (−∞, logK) and, thus,
logK − y∗ > l := sup{x : �(−∞, x) = 0}. Combining these observations we can imply that
h(y+, y) is a strictly decreasing function on [logK, logK − l].

Next consider the case when X is of unbounded variation. Now Theorem 4 of BK tells us
that we have a smooth fit, i.e. V ′(y∗+) = 0. Using V (x) = h(x, y∗) together with (14), again
yields the fact that y∗ solves (11), and uniqueness follows in the same way as in the previous
paragraph.

Finally, (12) is readily seen from V (x) = h(x, y∗), (13), and the fact that y∗ satisfies (11).

We conclude this section with some properties of y∗ as a function of δ. Note that, by spectral
negativity, � 	= 0 implies that sup{x : �(−∞, x) = 0} < 0.

Theorem 6. Suppose that � 	= 0. Then y∗(δ) is continuous and decreasing as a function of
δ, with y∗(δ̄−) = logK if σX = 0 (y∗(δ0−) = logK if σX > 0) and y∗(0+) = logK −
sup{x : �(−∞, x) = 0}.

Proof. We write Vδ to stress the dependence of the value function on δ. Continuity of y∗(δ)
is clear, as Theorem 5(ii) and the fact thatwδ is continuous in δ (see the argument for continuity
of δ �→ Vδ below) allow us to apply the implicit function theorem.

To see that it is decreasing, it suffices to show that δ �→ Vδ(x) − δ is decreasing. For this,
take δ1 < δ2 and let (τ ∗

1 , σ
∗
1 ) denote the saddle point when δ = δ1. Then Vδ1 is the value when

the supremum over all τ is taken in the expected payoff corresponding to the pair (τ, σ ∗
1 ). As

σ ∗
1 is also feasible for the minimiser when δ = δ2, Vδ2 is bounded above by the value when the

supremum over all τ is taken in the expected payoff corresponding to the pair (τ, σ ∗
1 ). This

yields
Vδ2(x)− Vδ1(x) ≤ sup

τ
Ex[e−qσ ∗

1 ((K − e
Xσ∗

1 )+ + δ2) 1{σ ∗
1<τ }

− e−qσ ∗
1 ((K − e

Xσ∗
1 )+ + δ1) 1{σ ∗

1<τ }]
≤ δ2 − δ1, (15)

as required.
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Next, by the monotonicity, the limits mentioned in the theorem exist. First we show
that y∗(0+) = logK − l, where l := sup{x : �(−∞, x) = 0}. Suppose that we have
y∗(0+) < logK − l. Then, for some x1 ∈ (y∗(0+), logK − l) and any δ > 0, we have
Px1(τ

−
logK/2 < T[logK,y∗(δ)]) ≥ Px1(τ

−
logK/2 < T[logK,y∗(0+)]) > 0. So, starting from x1, if the

maximiser chooses τ−
logK/2, he ensures a strictly positive value, independent of δ. But this

of course contradicts Vδ(x1) ≤ δ ↓ 0 as δ ↓ 0. If we have y∗(0+) > logK − l then, for
some x2 ∈ (logK − l, y∗(0+)), we have, for small enough δ, x2 ≤ y∗(δ) and, consequently,
Vδ(x2) = δ. But the minimiser can do better, that is, in fact, we have Vδ(x2) < δ, as is easily
seen. Namely, the minimiser can choose T[logK,logK−l], so that starting from x2 > logK − l

the maximiser can at most get discounted δ, the discount factor being strictly less than 1 since
q > 0 and X is right continuous.

Next suppose that σX > 0. We show that y∗(δ0−) = logK . Suppose that we have
y∗(δ0−) > logK . Note that, for any x, δ �→ Vδ(x) is continuous, since, for δ1 < δ2, trivially,
Vδ2(x) ≥ Vδ1(x) and (15) holds. So, for logK < x1 < x2 < y∗(δ0−), it follows that
Vδ(x1)− Vδ(x2) → Vδ0(x1)− Vδ0(x2) = δ0 − δ0 = 0 as δ ↓ δ0. But the difference Vδ(x1) −
Vδ(x2) does not vanish as δ ↓ δ0, as follows easily from the homogeneity ofX. More precisely,
denoting by (τ ∗

1 , σ
∗
1 ) and (τ ∗

2 , σ
∗
2 ) the saddle point when starting from x1 and x2, respectively,

similar arguments as those leading to (15) yield in this case

Vδ(x1) ≥ E[e−qτ∗
2 (K − e

x1+Xτ∗2 )+ 1{τ∗
2 ≤σ ∗

1 } + e−qσ ∗
1 ((K − e

x1+Xσ∗
1 )+ + δ) 1{σ ∗

1<τ
∗
2 }]

and

Vδ(x2) ≤ E[e−qτ∗
2 (K − e

x2+Xτ∗2 )+ 1{τ∗
2 ≤σ ∗

1 } + e−qσ ∗
1 ((K − e

x2+Xσ∗
1 )+ + δ) 1{σ ∗

1<τ
∗
2 }];

thus,
Vδ(x1)− Vδ(x2) ≥ E[e−qκ((K − ex1+Xκ )+ − (K − ex2+Xκ )+)], (16)

where κ= σ ∗
1 ∧ τ ∗

2 = inf{t > 0 | Xt = logK − x1} ∧ inf{t > 0 | Xt < x∗(δ)− x2}. Clearly,
since x∗(δ) ≤ logK and x1 < x2, the right-hand side of (16) is strictly positive if and only if
P(τ ∗

2 < σ ∗
1 ) > 0. Even after taking the limit for δ ↓ δ0 this probability is positive on account

of � 	= 0.
Finally, y∗(δ̄−) = logK when σX = 0 can be shown by the same arguments, taking into

account here that we have σ ∗ = ∞ for δ > δ̄.

3. Jump diffusion case

In this section we translate the general results from Section 2 to the particular case of a jump
diffusion with downwards directed, exponentially distributed jumps. In this case, which is
quite popular in practical applications in finance for example, owing to its tractable nature, the
expressions become much more explicit. In particular, a formula exists that explicitly expresses
y∗ in terms of x∗; cf. Proposition 3(iv).

In the sequel we set

Xt = σXWt + µt −
Nt∑
i=1

ξi, t ≥ 0, (17)

where σX > 0, µ ∈ R, N is a Poisson process with intensity λ > 0 counting the jumps, and
(ξi)i≥0 is an independent and identically distributed sequence of random variables following
an exponential distribution with parameter θ > 0.
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Proposition 1 below gives formulae for the scale functions in this jump diffusion case (recall
Pc as defined in (5)).

Proposition 1. Let c, r ≥ 0. The following assertions hold forX given by (17) under Pc.

(i) The Laplacian is given by

ψc(z) = ψ(z+ c)− ψ(c) = σ 2
X

2
z2 + (σ 2

Xc + µ)z− λθz

(θ + z+ c)(θ + c)
.

The function z �→ ψc(z) − r has three 0s, β1(c, r) < −θ − c < β2(c, r) ≤ β3(c, r),
with β2(c, r) < 0 < β3(c, r) if r > 0, β2(c, r) = 0 < β3(c, r) if r = 0 and ψ ′

c(0) ≤ 0,
and β2(c, r) < 0 = β3(c, r) if r = 0 and ψ ′

c(0) ≥ 0.

(ii) In particular, if r = ψ(1) > 0, we have

β1,2(0, r) = −
(
θ

2
+ r

σ 2
X

+ λ

σ 2
X(θ + 1)

)
±

√(
θ

2
+ r

σ 2
X

+ λ

σ 2
X(θ + 1)

)2

− 2rθ

σ 2
X

and β3(0, r) = 1.

Define, for i = 1, 2, 3, the constants

Ci(c, r) = 2(θ + c + βi(c, r))

σ 2
X

∏
j 	=i (βj (c, r)− βi(c, r))

.

We have the following formulae for the scale functions W(r)
c and Z(r)c on [0,∞).

(iii) If β2(c, r) 	= 0 or β3(c, r) 	= 0, we have

W(r)
c (x) =

3∑
i=1

Ci(c, r)e
βi(c,r)x,

otherwise (necessarily r = 0) we have

W(0)
c (x) = 2

σ 2
Xβ1(c, 0)

((1 − c − θ)eβ1(c,0)x − (θ + c)x + θ + c − 1).

(i) If r > 0, we have

Z(r)c (x) = r

3∑
i=1

Ci(c, r)

βi(c, r)
eβi(c,r)x,

while Z(0)c (x) = 1.

Proof. The proof follows from definitions (2) and (3) by some elementary calculations.
Also, see, e.g. [1].

In Propositions 2 and 3 below we assume for simplicity that q > 0 and q = ψ(1), i.e. we set
µ := q − σ 2

X/2 + λ/(θ + 1). (Note that condition (1) is met). This means that P is a so-called
risk neutral measure in the sense that the discounted price process (eXt−qt )t≥0 is a P-martingale,
as required in a financial modelling context. (However, the reader should have no difficulties
translating the upcoming formulae to the situation for any q ∈ [0, ψ(1)] if required.) Note that
Proposition 1(ii) gives explicit formulae for the roots βi(0, q) in this case.

First we turn to formulae for the McKean optimal stopping problem (cf. Theorem 1).
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Proposition 2. The value function U of the McKean optimal stopping problem is given by

U(x) =
{
K − ex if x ≤ k∗,
c1eβ1(0,q)(x−k∗) + c2eβ2(0,q)(x−k∗) if x > k∗,

where

c1 = β2(0, q)K + (1 − β2(0, q))ek
∗

β2(0, q)− β1(0, q)
, c2 = β1(0, q)K + (1 − β1(0, q))ek

∗

β1(0, q)− β2(0, q)

ek
∗ = Kq

σ 2
X/2 + q + λ/(θ + 1)2

.

Proof. Direct derivations of these formulae can be found in [14] for example. Alternatively,
substituting the formulae of Proposition 1 into the results of Theorem 1, we see that we can
write

U(x) = Kq

3∑
i=1

Ci(0, q)

βi(0, q)
eβi(0,q)(x−k∗) − ex and ek

∗ = K
ψ(1)

ψ ′(1)
. (18)

Applying the identity

σ 2
X

2

3∏
i=1

(z− βi(c, q)) = (θ + z+ c)(ψc(z)− q) for z 	= −θ − c (19)

to this particular case (i.e. c = 0, q = ψ(1), and β3(0, q) = 1), dividing both sides by z − 1,
and taking the limit for z → 1, we obtain

σ 2
X(1 − β1(0, q))(1 − β2(0, q)) = 2(θ + 1)ψ ′(1). (20)

Substituting this into the equation for ek
∗

we obtain

ek
∗ = 2(θ + 1)Kq

σ 2
X(β2(0, q)− 1)(β1(0, q)− 1)

.

Using this expression in (18), together withβ1(0, q)β2(0, q) = 2qθ/σ 2
X (from (19) with z = 0),

the stated formula for U indeed follows.

Now we are ready to consider the formulae for the optimal exercise levels x∗ and y∗, and the
value function V of the McKean game. Recall that, for δ ≥ U(logK), the game degenerates
to the McKean optimal stopping problem.

Proposition 3. Consider the McKean game driven by (17). Recall that δ̄ = U(logK). We
assume throughout that δ < δ̄.

(i) The optimal level x∗ = x∗(δ) is the unique solution to the equation in x:

q

3∑
i=1

Ci(0, q)

βi(0, q)
Kβi(0,q)e−βi(0,q)x − 1 = δ

K
.

On (−∞, x∗] we have V (x) = K − ex and on (x∗, logK] we have

V (x) = Kq

3∑
i=1

Ci(0, q)

βi(0, q)
eβi(0,q)(x−x∗) − ex.
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(ii) The threshold δ0 ∈ (0, δ̄) is the unique solution to the equation in z:

q

3∑
i=1

Ci(0, q)Kβi(0,q)

βi(0, q)(θ + βi(0, q))
e−βi(0,q)x∗(z) − λ+ (θ + 1)q

λθK
z = 1

θ + 1
.

(iii) Suppose that δ ∈ [δ0, δ̄). We have y∗ = logK and, on [logK,∞),

V (x) = K

2∑
i=1

Ci(0, q)

(
qe−βi(0,q)x∗

βi(0, q)
+K−βi(0,q)(ψ ′(1)−Kqe−x∗

)

)
eβi(0,q)x .

(iv) Suppose that δ ∈ (0, δ0). We have

eθy
∗ = λθKθ+1

(θ + 1)qδ

(
q

3∑
i=1

Ci(0, q)Kβi(0,q)

βi(0, q)(θ + βi(0, q))
e−βi(0,q)x∗ − 1

θ + 1
− δ

θK

)
.

On [logK, y∗] we have V (x) = δ and on (y∗,∞) we have

V (x) = δ

β2(0, q)− β1(0, q)
(β2(0, q)e

β1(0,q)(x−y∗) − β1(0, q)e
β2(0,q)(x−y∗)).

Proof. (i) Apply Proposition 1 to the formulae of Theorem 2(ii).
(ii) Apply Proposition 1 to Theorem 5(i).
(iii) Apply Proposition 1 to the formula of Theorem 2(ii) to obtain

V (x) = K

3∑
i=1

Ci(0, q)

(
qe−βi(0,q)x∗

βi(0, q)
+K−βi(0,q)(ψ ′(1)−Kqe−x∗

)

)
eβi(0,q)x − ex

and use (20) to see that the terms involving the exponential of a positive factor times x vanish.
(Of course, we can also reason directly that they should cancel, since otherwise V would not
stay bounded for large x, which it should by definition.)

(iv) For y∗, apply Proposition 1 to Theorem 5(ii) and simplify to arrive at the stated formula.
Note that

3∑
i=1

Ci(0, q)

βi(0, q)(θ + βi(0, q))
= 2

σ 2
X

∏3
i=1 βi(0, q)

= 1

θq
,

where the final equality follows by (19).
For V , apply Proposition 1 to Theorem 5(ii) and simplify, making use of the formula for y∗

and, in particular, Proposition 1(ii).

We conclude with some plots in this jump diffusion setting to illustrate the main result from
this paper.

Figures 1 and 2 show the value function V in the two different cases δ ∈ [δ0, δ̄) and
δ ∈ (0, δ0).

Figure 3 shows a plot of δ̄ and δ0 as a function of σX. (Note that this really means only σX
changes; hence, the equation q = ψ(1) does not (necessarily) hold as ψ changes with σX.)
This figure can be explained as follows. If σX ↓ 0, U converges to the value of the McKean
optimal stopping problem for X with σX = 0 and, hence, δ̄ = U(logK) also has some limit in
the interval (0,K). The figure suggests that the difference between δ̄ and δ0 vanishes as σX ↓ 0,
which might be explained as follows. As pointed out in Remark 1, δ ∈ (δ0, δ̄)means that, when
X starts above logK , the probability of hitting logK before it reaches levels (far) below logK
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Figure 1: A plot of the value function V for the case in which δ ∈ [δ0, δ̄), so y∗ = logK . The dashed
lines are the upper and lower payoff functions, the solid line is V . Here K = 5, δ = 1.8, δ̄ = 2.08,

δ0 = 1.76, and x∗ = 0.58.

0.5

1

2

3

4

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 2: A plot of the value function V for the case in which δ ∈ (0, δ0), so y∗ > logK . The dashed
lines are the upper and lower payoff functions, the solid line is the value function V . Here K , δ0, and δ̄

are as in Figure 1, δ = 0.8, x∗ = 0.91, and y∗ = 1.90.

is large enough to have y∗ = logK . Obviously, this probability vanishes together with σX,
and, hence, the length of the interval (δ0, δ̄) vanishes as σX ↓ 0. Furthermore, as σX → ∞,
for the maximiser in the McKean optimal stopping problem, the negative effect of discounting
vanishes in the sense that the first entry time of any interval has a density approaching the Dirac
measure in 0. Hence, k∗ → −∞ and U(x) ↑ K for any x. In particular, δ̄ = U(logK) ↑ K
also. The vanishing of δ̄ as σX → ∞ is explained as above by the fact that increasing σX means
that the probability of hitting logK before X falls (far) below logK increases, and, hence, the
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Figure 3: A plot of δ̄ (solid line) and δ0 (dashed line) as a function of σX .
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Figure 4: A graphical illustration of the optimal stopping regions (−∞, x∗] (maximizer) and [logK, y∗]
(minimizer) as a function of σX . The upper solid line is y∗(σX), the lower solid line is x∗(σX).

effect of the negative jumps is of vanishing relevance. In the limit therefore the minimiser does
not need to choose a y∗ > logK for any δ > 0.

Finally, Figure 4 shows how x∗ and y∗ vary with σX. Note that the behaviour of y∗ is indeed
consistent with the structure Figure 3 suggests.
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