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THE CAPILLARY EFFECTS ON WATER PERCOLATION IN 
HOMOGENEOUS SNOW 

By S. C. COLBECK 

(U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New 
Hampshire 03755, U.S.A. ) 

ABSTRACT. A theoretical basis for introducing capillary effects into the theory of water percolation 
through sn~w is given. A capillary pressure-liquid saturation relationship found in the laboratory is used 
together with the theory to make a quantitative examination of capillary effect •. It is shown that capillarity 
accounts for less than 10% of the total force when water flux is 10-8 m S- l although the percentage rapidly 
increases for smaller fluxes. The experiments sugge,t that the irreducible water content of dense snow is 7% 
of the pore volume. It is concluded that the wave-front diffusion seen in Iysimeter studies is not the result of 
capillary action. Other possible causes are suggested. 

RESUME . us eifets de la capillariti sur la perc?lation dans u~~ neige hom7gene. On donne une base theorique 
pour introduire les effets de la capillarite dans la theorie de la percolation de I'eau a travers la neige. Une 
relation etablie en laboratoire entre la pression capillaire et la saturation en liqui:le, est utilisee conjointement 
avec la theorie comme base pour un exam en quantitatif des effets capillaires. On montre que la capillarite 
intervient pour moins de 10% de la force totale lorsque la vitesse de l'ecoulement est de 10-8 ms-I, mais ce 
pourcentage croit rapidement pour des vitesses inferieures. Les experiences suggerent que le minimum 
irreductible pour le contenu en eau liquide d'une neige dense est de 7% du volume des pores. On en conclut 
que la diffusion de l'onde enveloppe observee dans les etu:les au lysimetre n'est p:H le resultat de l'action 
de la capillarite. On propose d'autres origines possibles. 

ZUSAMMENFASSUNG. Die Kapillarwirkungen a~f durchsickemdes Wasser in hom7gen!m Schnet . Fur die Einfuhrung 
von Kapillarwirkungen in die Theorie der Wassersickerung durch Schnee wird eine theoretische Grundlage 
aufgezeigt. Eine im Labor gefundene Beziehung zwi;chen Kapillardruck und Flussigkeitssattigung wird 
zusammen mit der Theorie zu einer quantitativen Prufung von Kapillarwirkungen herangezogen. Es 
zeigt sich, dass die Kapillaritat weniger als 10% der Gesamtkraft bei einem Wasserfluss von 10-8 m S-l 

ausmacht, obgleich bei geringerem Durchfluss der Prozentanteil rasch anwachst. Die Experimente ergeben, 
dass der nicht reduzierbare Wassergehalt in dichtem Schnee 7% des Porenvolumens erreicht. Es wird 
geschlossen, dass die Wellenfrontdiffusion, wie sie bei Lysimeteruntersuchungen zu beobachten ist, nicht auf 
Kappillaritat zuruckzufuhren ist. Andere mogliche Ursachen werden vorgeschlagen. 

LIST OF SYMBOLS AND UNITS 

a = (.pe dt)I/Z 
rxk dt 

c = (dz/dt) s* (m S- I) 
g acceleration due to gravity (m s-Z) 
k permeability (mZ) 

ka permeability to the air phase (mZ) 
kw permeability to the water phase (m') 

n exponent 
time (s) 

Uw water flux per unit time per unit area (m S-I) 
Z spatial coordinate originating at the surface and positive downward (m) 

D/Dz differentiation along a characteristic (m-I) 
K = -8.43uwli3 
L position of the interface (m) 

Pc capillary pressure, Pa-Pw (N m-Z) 
R = I (3Pc/3S*)(3S*/3z)pw- Ig- 1 I 
Sw water saturation (water volume/pore volume) 

Swl irreducible water saturation due to capillary retention 
S* effective water saturation (Sw-Swl)/( I-Swl) 

Sb = (uwfLw/Pwgk)I/3 
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S daily average of S* 
Z = z- g, distance to shock front (m) 
IX = Pwg/1-w- 1 (5 .47 X 106 m- I S-I) 

/1-w dynamic viscosity of water (kg m- I S-I) 
g(t) position of the shock front at time t (m) 

Pa density of air (kg m- 3) 

pw density of water (kg m - 3) 

c/> porosity, pore volume/bulk volume 
c/>e effective porosity, c/> ( I -Swi) 

INTRODUCTION 

The one-dimensional, gravity theory of water percolation through snow was described 
in a previous paper (Colbeck, 1972). The role of capillarity was omitted and only the driving 
force of gravity was considered. This simplification was justified by showing that the percola­
tion processes were dominated by gravity everywhere except at the leading edges of melt 
waves and at very low flow rates. The theoretically constructed waves compared favorably 
with the measured waves (Colbeck, 1972; Col beck and Davidson, in press) and it was con­
cluded that the gravity-flow theory was capable of making accurate predictions of water 
percolation through snow as long as the mow was fairly homogeneous and the flow rates 
were not too small. For the purpose of increasing our understanding of more complicated 
situations, the basic theory of capillary effects in snow is developed in this paper. First the 
results of capillary-pressure experiments performed in the laboratory with kerosene and snow 
are presented. The governing equations are next derived and a numerical method presented 
for their solution. An analytical solution is also presented which is applicable to the region 
of the wave front and provides new insight from consideration of capillary effects at various 
positions along a typical melt-water wave. Finally, end effects are examined. 

It is difficult to apply two-phase, Darcian concepts to snow because of the lack of experi­
mental data on the permeability and capillarity of water-bearing snow. Indirect methods 
were used (Colbeck and Davidson, in press) to find the relationship between relative permea­
bility and water saturation for snow and the same is done here for the relationship between 
capillary pressure and water saturation. While it must be recognized that any quantitative 
conclusion drawn from this indirect evidence is tentative, the basic theory of capillary flow 
can be established. 

THE CAPILLARY-PRESSURE CURVE 

"Vater-bearing snow consists of rounded grains of uniform size with a small amount of 
liquid water. Snow has a uniform pore structure and is expected to have a relationship 
between capillary pressure and water saturation characteristic of materials with a similar 
structure. As an approximation to the snow- water system, capillary-pressure experiments 
were performed with snow and kerosene at a temperature of - 10° C in a cold laboratory. 
The snow, which consisted of small grains (dia. ~ I mm), was packed to a density of 0.56 
Mg m- 3 in the sample holder, saturated with kerosene and then drained through a semi­
permeable barrier under careful capillary control (see, e.g. Scheidegger, 1957, p. 48). The 
result (see Fig. I) is fairly typical of materials with a uniform pore size. When the capillary 
pressure was increased from 320 to 540 N m - z, 45 % of the liquid drained. This rapid displace­
ment occurs because capillary pressure is dependent on the effective pore radius and only a 
narrow range of pore sizes occurs in snow. The other important feature of this curve is the 
value of the irreducible liquid saturation, 0.07. This value is very close to that found by Harris 
and Morrow (1964) in random packs of equidimensional spheres and is probably a good 
estimate of the value of Swl for most types of snow. 
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Fig. 1. Capillary pressure as afimction of liquid saturation. The experimmtal data points are showll . 

Only a small part of the curve is significant with regard to water drainage in homogeneous 
snow because water saturations generally exist within a narrow range (about o. [0 to 0 . 20). 

In Figure 2 capillary pressure is plotted as a function of effective liquid saturation S* and in 
Figure 3 the equation 

is shown to be a reasonable representation of the data. Equation ( I) is integrated to give 

Pc = (43S*-'+380) Nm- Z, (2) 
which is shown on Figure 2 with the experimental curve. Equation (2) is an accurate repre­
sentation of the experimental data over the range of saturations expected during water 
percolation in homogeneous snow. 

The relationship between capillary pressure and water saturation depends on a number of 
parameters including contact angle, interfacial tension, particle shape, and pore-size distribu­
tion . While the experimental results must be cau tiously interpreted, they agree qualitatively 
with the results which would be expected for water-bearing snow. Only the value of the 
coefficient in Equation ( I) is likely to be changed when capillary pressure data becomes 
available for natural snow. The algebraic form of Equation ( [) is convenient and when the 
governing equations are derived , analytical solutions are possible. 
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Fig. 2 . Capillary pressure as a functian of effective liq~id saturation. The solid line was calculated from Figure 1 and the 
dashed line represents Equation (2). 

THEORY 

Using two-phase, Darcian flow concepts it has been shown that (Colbeck, 1972) 

Uw = kwfLw - I (ap cl az+ pwg). (3) 

In the development of this equation it was argued that: 

(a) 

(b) 

pw - Pa ~ pw, 

since water saturations are generally less than 0.20 (Colbeck and Davidson, in press), and, 
(c) that the total volume flow (air plus water) must be zero. 

Normally there is a hysteresis in the relationship between capillary pressure and water 
saturation because of the "trapping" which characteristically occurs during imbibition 
(Scheidegger, 1957, p. 49). Since the range of sa tu rations is small in simple drainage, hysteresis 
is neglected and capillary pressure Pc is taken as a single-valued function of effective water 
saturation S*. Equation (3) becomes 

(6) 
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S* 

Data points calculated from Figure 2 . 

Fig. 3. oPc/oS* as afunction of S*. 

The generally assumed form of the relationship between relative permeability and water 
saturation is 

kw = kS*n, 

and the continuity equation is 

cUwj'OZ+ 4>e 'OS*j'Ot = 0 (8) 

where 4>e is the "effective porosity" which includes only the pore space which is available for 
flow. Equations (6), (7) and (8) are combined to give the basic equation describing water 
percolation in homogeneous snow: 

[
OPe oS* ] oS* nk"w-'S*n- , + p g + 

r oS*az w az 
[
aPe 'O'S* 'O'Pc ( OS*)'] oS* 

+k!Lw-'S*n 'OS* 'Oz' + 'OS*' --az. + 4>e Tt = 0 (9) 

where n is about 3 (Colbeck and Davidson, in press). The diffusive effects of capillarity have 
introduced second-order terms into Equation (9) which, if capillarity is negligible (oPe /oS· = 
0), simplifies to the first-order equation which describes the percolation under the influence 
of gravity alone. 

Equation (9) is equivalent to the Fokker-Planck equation in diffusion theory which has 
received wide use in the theory of infiltration into soils (e.g. Philip, 1969)' For three­
dimensional flow (taking n = 3), 

(
OPe ) okw OS* oS· 

!Lw-I V' kw oS. VS* + 0( oS* az+4>eTt = 0 ( 10) 

where (I I) 
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This equation is difficult to solve although solution for either the gravity or the capillary case 
is relatively easy. Also, the application of Equation (10) to snow is difficult because of the 
complicated boundary and initial conditions which occur. In the case where 

S*(.;:;,O) = constant for t = 0 (12) 

and S*(o, t) = constant for t > 0, (13) 

accurate solutions have been obtained for Equation (10) (Philip, 1969) . While these solutions 
could be applied to snow, these simple criteria do not approach the complicated nature of the 
diurnal melt waves which characterize percolation through snow. Equation (10) could be 
linearized by holding kw oPe/ oS* and okw/ oS* constant. While this simplification destroys 
the dynamic interplay between capillary and gravity forces, it may be a useful approach for 
describing the three-dimensional character of the flow around deeply buried ice layers or 
the firn-ice transition. Also these criteria may be useful in describing the drainage from 
glacial firn during the winter months when little flow occurs across the upper surface. 

NUMERICAL SOLUTION 

In the case of gravity flow through homogeneous snow, the first-order equation was solved 
by Colbeck and Davidson (in press) using the method of characteristics as described by 
Sheldon and others (1959). The second-order equation developed here can be solved using 
a variation of that method (see Lighthill and Whitham, 1955). Whereas saturation is invariant 
along the characteristics in the case of gravity flow, in capillary flow the value of saturation 
changes along each characteristic. Therefore the characteristics can change shape in the 
region of a wave front and no discontinuity occurs. 

When effective saturation S* varies with space.;:; and time t, 

DS* _ oS* + oS* (dt) 
D .;:; - 0';:; ot d.;:; s*' 

where D /D .;:; means differentiation along a characteristic. The speed of propagation of any 
value of S* is 

c = (d .;:;/dt) s*, (15) 

then 
DS* OS* 1 oS* 
D.;:; = az+~Tt· ( 16) 

Following Lighthill and Whitham (1955), c is assumed to vary only with S* along a 
characteristic, thus where c is the slope of the curve relating flow U w to concentration S*, 

c = nlXkrpe- IS*n- I. (17) 

Upon combining Equations (9), ( 16) and (17) to eliminate oS*/ ot, 

DS* = _ - I -I [OPe ( OS*)2 S* { oPe 02S* 02Pe ( OS*)2}] 
D.;:; pw g oS* 0';:; + n oS* 0(;2 + 3S*2 0';:; ( 18) 

This equation describes the change of S* along a characteristic and when sufficient informa­
tion has been specified, the solution can be constructed using numerical techniques. 

As a characteristic approaches the region of a wave front, OS*/ O.;:; and 02S*/0.;:;2 become 
sufficiently large to cause a significant change in DS*/D.;:; and therefore a change in shape of 
the characteristic lines. 

Combining Equations ( I) and (18), the spatial rate of change of S* along a characteri~tic 
is given by (taking n = 3) 

DS*/D.;:; = 14.3Pw- Ig-IS*-2 (% .;:;)(S* OS*/O.;:;). (19) 
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Under normal conditions of flow, DS*/Dz is less than 2 X 10- 5 m-I (I:::.S* is less than 10-4) 

between wave fronts. The slope of the characteristics is given by 

Dz/Dt = 3rxk<pe- IS*'-43kfLw- I<pe- I as*/a Z, (20) 

where the first term is due to gravity and the second to capillarity. As shown later, under 
normal conditions of flow the second term is very much smaller than the first term except in 
the region of a wave front. 

THE WAVE FRONT 

The complete solution can be constructed from Equations (19) and (20) but analytical 
methods are better suited for estimating the effects of capillarity on the wave front. The 
actual shape of the wave front is calculated analytically over the entire region of the front 
except within the neighborhoods of the two points where the wave front joins the trailing 
edges. Thus the diffusive effect of capillarity is estimated. 

Following the method described by Morel-Seytoux (1969, p. 507), a new system of 
coordinates is defined which advances with the shock front. The shock front is located at 
~(t) relative to the fixed coordinates Z and any position Z in the new coordinates is given by 

Z = z- w ) (21) 

thus 
dg 

(22) dZ = dz - - dt. dt 
I t follows that 

2S*jaz = as*jaz (23) 

and as* (as*) d~ as* 
Tt = Tt z-dt az' (24) 

In this coordinate system, Equation ( 10) becomes, 

nrxkS*n-I - + nkll. -IS*n-I - --+ as* ( as*), aPe 
az rW az as* 

[
aPe a's* ( as*), a,Pe] ( as* d~ as*) 

+kfLw-I as* az, + az as*' S*n + <Pe Tt-cit az = o. 

The advantage of working in this coordinate system is that, within the interior of the 
wave front, S* changes very rapidly with depth but very slowly with time. This is not true, 
however, in the matching regions between the leading and trailing edges. In these regions 
the solution breaks down since as* j2t is finite while as*jaz is zero. Therefore the matching 
condition must be estimated. Within the interior region of the wave front, 

as* dg as* a ( aPe as*) 
nrxkS*n-I az -<Pe dt az + kfLw- I az S*n as* az = o. 

At depths below 0.5 m, the construction of the characteristics shows that the shock-front 
speed (d~jdt) is nearly constant. In fact, 

d~ (dZ) dt (z > 0·5 m) ~ dt s' 

where S is the daily average of S* at the surface. Holding d~jdt constant permits direct 
integration of Equation (26) whence 

d~ aPe as* 
rxkS*n-I -<Pe dt + kfLw -IS*n-I as* az = o. (28) 

https://doi.org/10.3189/S002214300002339X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300002339X


92 JOURNAL OF GLACIOLOGY 

When oPc/oS* is known from experimental results, Equation (28) can be integrated to give 
the distribution of saturation within the interior of the wave front. 

By substituting Equation (I) into Equation (28) when n is 3, 

dg 
akS*2_fe dt = 43kfLw- ' oS*foZ· (29) 

Integrating between the shock front and any position Z, 

where 

0.06 

s* 

0 .04 

0 .02 

o 

Z = 2I.5Pw-
Ig-1a

-
1 

[In (~:~:)-ln (~~~:)] , 
fe dg 

a2 =-­
ak dt ' 

- Day 2 --+----~,........===--

2 4 6 8 
Depth (m) 

10 

Fig. 4. The saturation distribution 48500 s after the start of melting on day 3 . This profile was calculated using the gravity­
.flow theory. 

and SE is the value of S* at the shock front . To illustrate Equation (30), a particular case is 
examined. Taking fe = 0.45, k = 3 X 10-10 m 2 and a truncated sine wave for the boundary 
condition where Umax = I.20 X 10- 6 m S- I, the gravity-flow solution was constructed using 
the method of characteristics (see Colbeck, 1972, for examples). The values of saturation at 
4.85 X 104 S after the start of melting are shown as a function of depth on Figure 4. Also from 
this construction it was determined that dg/dt ~ 0.465 X 10- 4 m S-I for all depths greater 
than 0.5 m. Using these particular values in Equation (30), 

S*-0.II3 SE-O.I I~ 
Z = 0.0194 In S*+ 0 .OI94 ln S +' (32 ) 0.113 E 0.1 13 

where the value of SE must be found by material balance between the shock front and 
capillary solutions. The calculated wave front is shown in Figure 5. 
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In this example the tendency for the leading edge of a wave to form into a shock front is 
very strong because the top of the wave travels about four times as fast as the bottom. While 
capillarity does cause some departure from a shock front, the diffusive effect which capillarity 
has on the leading edge is not very pronounced. Wave fronts observed in homogeneous snow 
(e.g. Colbeck and Davidson, in press) always have a much more "diffused" appearance than 
the one shown in Figure 5. This may be explained by the phenomenon known as "fingering", 
i.e. diffusion of the wave front resulting from inhomogeneous flow at the local scale. Applica­
tion of a stability criterion for two-phase flow in homogeneous porous media (Bear and 
others, 1968, p . 283) shows that perturbations should not grow. Fingering could result from 
other causes, however, such as the inhomogeneous nature of the snow itself or a break down 
of the assumption that air pressure is hydrostatic. 

0.08 

S* 
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Fig. 5. A melt-water wave with a calculated wave front and values of R along the wave. 

While it was possible to deduce the form of kw(S*) from data on the percolation of water 
through snow, it does not seem likely that Pc(S*) can be found in a similar manner. This is 
unfortunate in view of the problems associated with handling water-bearing snow samples 
during experimental studies. The information available so far indicates that capillarity is of 
very little importance when the flow is essentially one-dimensional. Further insight into the 
relative importance of capillarity can be gained by referring back to Darcy's law. From 
Equations (6) and (7) where n = 3 for snow (Colbeck and Davidson, in press) 

U w = kp.w-'S*J G;; ~: + pwg) . (33) 

While the gravity force is constant, the capillary force varies with position and time. The ratio 
of capillary to gravity forces is equal to the ratio of the two terms in Equation (20). Taking 

R == I (opc/aS*)(2S*/oz) I ' (34) 
pwg 
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the ratios calculated for various positions along the melt-water wave are shown in Figure 5: 
1. At the leading edge, 

Thus the gravity and capillary forces are nearly equal over the interior region of the wave 
front except at the matching points where gravity dominates. 

2. At intermediate points along the trailing edge, 

R < 0.01, 

thus capillary forces account for less than 1 % of the total force. 
3. It is now determined at what flow rate (along the trailing edge) capillarity becomes 

large. R increases as S* approaches zero although oS*joz becomes quite small at the same time. 
In general, 

At a flow rate of IQ- 7 m s- ' , R is about 0.02; at flow rates of IQ-8 m s- ' R is about O.IQ; and 
at 10- 9 m s- ', R is about 0 .5. The lowest flow rates observed in homogeneous snow under­
going water flux due to normal surface melting were greater than IQ- 7 m s- ' hence capillarity 
is not important at the lower limit of normal fluxes . However, when surface fluxes stop, the 
role of capillarity increases as drainage proceeds, until ultimately R approaches infinity as 
S* approaches zero. 

4. The surface effect of capillarity can now be examined. When S* decreases to 0.01 at 
the surface (see Fig. 5), R is about 23 indicating that capi llary effects control surface fluxes 
during periods when the surface saturations are low. This "surface effect" is probably not as 
serious as the "end effect" at the outflow end since only very small volumes of mobile water 
are involved and the surface effect is limited to a region within 0.25 m of the surface. This 
surface effect causes a skewing of the surface flux similar to that caused by the percolation 
process itself. However, the slowly moving melt-water wave associated with this surface effect 
would be overtaken by the next day's wave front before reaching a depth of even I m (see 
Fig. 5). 

END EFFECTS 

End effects are the increased saturation (above the saturation associated with flow) due to 
capillary action at a discontinuity of the porous medium. These effects can be seen in water­
bearing snow when an interface exists between the snow and an underlying air space (such 
as an undercut snow pit) . Under such circumstances the snow appears to be saturated for 
about 20 mm above the interface with the saturation rapidly decreasing beyond that distance. 
If the amount of water trapped by the end effect varies in time, a significant distortion of the 
travelling melt-water wave could result. End effects occur in snow lysimeters and, since we 
are dependent upon the results of lysimeter studies to measure the movement of liquid water 
in snow masses, any difference between the wave movement through the lysimeter and 
through the in situ snow mass must be detected. Also, the presence of the end effect can confuse 
tracer studies since there is a time delay between the arrival of a water particle at the upper 
end of the end-effect region and its discharge at the interface. Note, however, that as long as 
the saturation profile associated with the end effect remains fixed, the end effect has no 
influence on travelling waves since a particle of water will be released at the interface as soon 
as another particle of water arrives at the top of the region of the end effect. 

Although Equation (1) is an accurate representation of the experimental data for values of 
S* below 0.6, it is a poor approximation for the larger values which must be included here. 
Therefore to gain an estimate of the influence of the end effect on lysimeter response, take 
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for 0 ~ S* <; 0.6 

for 0.6 <; S* ~ 1.0. 

It is shown later that this approximation is sufficient. 
Given Equation (38), Equation (33) can be integrated if Uw is held constant. In this 

manner the saturation profiles are constructed first for various values of flux and then the 
variation in the profile with time is established. This method relies on the assumption that 
transient effects are small but, at least for the case of the trailing edge where changes occur 
very slowly (transit time ~ 22 h), the assumption is probably valid. Rearranging and 
integrating Equation (33), 

S* _ _ I S*3 capc/as*) dS* 
zL - k s*' jLw - Iuw- pwg 3 

1.0 

where the snow is assumed to be saturated at the interface. Combining Equations (38) and 
(39), 

{ 
IS. - I 080S*3 dS* 

jLwk-1Uw- PwgS*3 
z-L = 1.0 s· 

- 43S* dS* 
(z - L) s* = 0.6 + I k- I _ S*3 

jLw Uw pwg 

for 0.6 <; S* :<:( 1.0 

for 0 <; S* <; 0.6. 

0.6 

Taking as an example c/>e = 0.45 and k = 3 X 10- 10 m ', Equation (40) becomes 

* _ [ (S*+K ) - I 2S* - K]S* 
0.1I0 (S -I )-0.0367K tInK' _ KS* + S*, + V 3 tan V3K 1.0 

for S* ~ 0.6 
z-L = 

[ 
K' - KS* + S*' 2S* - KJ S* 

(z-L)s* = 0.6 + 0.00146K- 1 tin (S* + K )' + V3 tan- I V 3K 0.6 

for S* <; 0.6, 

where K == - 8-43uwl /3. 

The background saturation associated with each value of flux is derived from the gravity-flow 
theory, 

The two extreme values of water flux associated with fair-weather melting ( 2 X 10- 6 and 
10-7 m S- I) are chosen because the largest change in the saturation profile should occur 
between these two values. The calculated profiles are shown in Figure 6. The sudden change 
in the slope at S* = 0.6 occurs because of the approximation made for oPc /as* (Equation 
(38)). Because these two profiles are essentially identical for values of S* above 0.30, any 
approximation made for oPc/as* above 0.6 would have worked. Only the difference between 
these profiles is significant. 

It is now possible to deduce the changing end effect while the trailing edge is passing 
through a lysimeter. During this time the profile must change from the upper limit to the 
lower limit. For a lysimeter with radius = 0.1 13 m, the change in volume of water associated 
with the passage of the trailing edge is 130 X 10-6 m3. Thus, while the water flux decreases 
from 2 X 10- 6 to 10-7 ms-I, 130 X 10-6 m 3 of water are added to the end effect. This how­
ever, is not water which would have to be diverted from the flow and placed in storage 
because this water is already in place. In fact 9.5 X IO-6 m 3 of water will be released during 
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the time of passage of the trailing edge. With a total volume flux of about 2 000 X 10-6 m3 
during this period, the amount of water released from the end effect is insignificant. 

The changes in end effect associated with the passage of the wave front must balance 
those just calculated for the trailing edge, i .e. about 9.5 X 10- 6 m 3 of the water arriving with 
the leading edge will be stored as end effect. In spite of this, the leading edge will arrive 
earlier than it would in the absence of an end effect because of the water which is already in 
place. Thus arrival should occur about i h (2400 s) faster than otherwise expected. Also, 
because saturation gradually increases in the direction of wave propagation, the wave front 
will be diffused by the end-effect phenomenon. 

1.0...---,------.-----,..--,---,------.---,..--,----. 

0.8 

0 .6 

s* 

0.4 

0 .2 

o 0 .04 0 .08 0.12 0 .16 
L-z (rn) 

Fig. 6. The end-effect regions associated with the limiting values of Uw exp~cted during fair-weather melting. The end effect 
includes only the water trapped at the inteiface by capillary action. 

CONCLUSIONS 

The theory of water percolation through snow is expanded to include the effects of 
capillarity and, when combined with experimental data, further insight into the nature of 
water percolation is obtained. Apparently, for all flow rates occurring during periods of 
strong diurnal melting, the flow processes are dominated by gravity and unless flow rates as 
low as 10- 8 m S-I are reached, capillarity can be ignored. While capillarity is important at 
the wave front, the shock front approximation is sufficient for most purposes. The possible 
diffusion of waves by the lysimeter is a serious problem. This should be tested by using 
lysimeters which neutralize the end effect by reducing the water pressure in the discharge line. 

https://doi.org/10.3189/S002214300002339X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300002339X


CAPILLARY EFFECTS ON PERCOLATIO 1\ )1\ D' CW ~7 

ACKI\OWLEDGEMENTS 

Dr George Ashton contributed much to my understanding of this subject through many 
~seful discussions. Mr S. Ackley reviewed the manuscript providing many worthwhile 
suggestions . . The s~pport of this study was generously supplied by the D.S. Army, Corps of 
Engineers, Project 4A061 I02BS2E, Task 02. 

MS. received 6 June 1972 and in revised form 22 January 1973 

REFERENCES 

Bear, J., and others. 1968. Physical principles of water percolation and seepage, by J. Bear, D . .<:,aslavsky, S. Irmay. Paris, 
UNESCO. (Arid Zone Research, 29·) 

Colbeck, S. C. 1972. A theory of water percolation in snow . .Journal of Glaciology Vol. 11, No. 63, p. 369-85. 
Colbeck, S. C., and Davidson, C. In press. Water percolation through homogeneous snow. [To be published in 

the proceedings of the International Symposia on the Role of Snow and Ice in Hydrology, Banff, Canaqa, 
6-20 September 1972.] 

Harris, C. C., and Morrow, N. R. 1964. Pendular moisture in packings of equal spheres. Nature, Vol. 203, 
No. 4946, p. 706~8. 

Lighthill, M. J., and Whitham, C . B. 1955. On kinematic waves. 1. Flood movement in long rivers. Proceedings 
of the Royal Society, Ser. A Vol. 229, No. 1177, p. 291 - 316. 

Morel-Seytoux, H. J. 1969. Introduction to flow of immiscible liquids in porous media. (In De Wiest, R. J . M., 
ed. Flow through porous media. New York, Academic Press, p. 455-516.) 

Philip, J. R. 1969. Theory of infiltration. Advances in Hydroscience, Vol. 5, p. 215- 96. 
Scheidegger, A. E . 1957. The physics of flow through porous media. New York, Academic Press; Toronto, University 

of Toronto Press. 
Sheldon, J. W., and others. 1959. One-dimensional incompressible, noncapillary, two·phase fluid flow in a porous 

medium, by J. W. Sheldon, B. Zondek and W. T . Cardwell, Jr. Petroleum Transactions. American .Institute oJ 
Mining, Metallurgical and Petroleum Engineers, Vol. 216, p. 260-g6. 

https://doi.org/10.3189/S002214300002339X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300002339X

