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THE CAPILLARY EFFECTS ON WATER PERCOLATION IN
HOMOGENEOUS SNOW
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ABSTRACT. A theoretical basis for introducing capillary effects into the theory of water percolation
through snow is given. A capillary pressure-liquid saturation relationship found in the laboratory is used
together with the theory to make a quantitative examination of capillary effects. It is shown that capillarity
accounts for less than 10%, of ths total force when water flux is 103 m s~ althouzh the percentage rapidly
increases for smaller fluxes. The experiments suggest that the irreducible water content of dense snow is 7%
of the pore volume. Itis concluded that the wave-front diffusion seen in lysimeter studies is not the result of
capillary action. Other possible causes are suggested.

REsuME. Les effets de la capillarité sur la percolation dans une neige homagine. On donne une base théorique
pour introduire les effets de la capillarité dans la théorie de la percolation de I'eau 4 travers la neige. Une
relation établie en laboratoire entre la pression capillaire et la saturation en liquide, est utilisée conjointement
avec la théorie comme base pour un examen quantitatif des effets capillaires. On montre que la capillarité
intervient pour moins de 10%, de la force totale lorsque la vitesse de I'écoulement est de 10-8 m s~!, mais ce
pourcentage croit rapidement pour des vitesses inféricures. Les expériences suggérent que le minimum
irréductible pour le contenu en eau liquide d'une neige dense est de 7%, du volume des pores. On en conclut
que la diffusion de 'onde enveloppe observée dans les études au lysimétre n’est pas le résultat de 'action
de la capillarité. On propose d'autres origines possibles.

ZusaMMENFASSUNG. Die Kapillarwirkungen auf durchsickerndes Wasser in homagensm Schnee. Fiir die Einfiihrung
von Kapillarwirkungen in die Theorie der Wassersickerung durch Schnee wird eine theoretische Grundlage
aufgezeigt. Eine im Labor gefundene Bezichung zwischen Kapillardruck und Flissigkeitssittigung wird
zusammen mit der Theorie zu einer quantitativen Priiffung von Kapillarwirkungen herangezogen. Es
zeigt sich, dass die Kapillaritit weniger als 10%, der Gesamtkraft bei einem Wasserfluss von 10-3 m s™!
ausmacht, obgleich bei geringerem Durchfluss der Prozentanteil rasch anwichst. Die Experimente ergeben,
dass der nicht reduzierbare Wassergehalt in dichtem Schnee 79, des Porenvolumens erreicht. Es wird
geschlossen, dass die Wellenfrontdiffusion, wie sie bei Lysimeteruntersuchungen zu beobachten ist, nicht auf
Kappillaritit zuriickzufiihren ist. Andere mogliche Ursachen werden vorgeschlagen.

LIST OF SYMBOLS AND UNITS

$e de\i/a
e (ak dt)
¢ = (dz/dt) s* (ms—1)
g acceleration due to gravity (m s—2)
k  permeability (m?)
ka permeability to the air phase (m2)
kw permeability to the water phase (m2)
n exponent
¢ time (s)
uy water flux per unit time per unit area (m s—1)
z spatial coordinate originating at the surface and positive downward (m)
D/Dz differentiation along a characteristic (m—!)
K = —B8.43ug'/3
L position of the interface (m)
Py capillary pressure, Py—Py (N m~2)
R = |(0P,/85*)(85*[0z) pw g~ |
Sw water saturation (water volume/pore volume)
Swi irreducible water saturation due to capillary retention
§* effective water saturation {Sy—Swi)/(1—Swi)
Sb = (uwpw/pwgk)'?
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§ daily average of S*
{ = z—¢, distance to shock front (m)
@ = pwgpw ' (547 % 10° m~* s71)
pw dynamic viscosity of water (kg m~'s™")
£(t) position of the shock front at time ¢ (m)
pa density of air (kg m~3)
pw density of water (kg m—3)
¢ porosity, pore volume/bulk volume
¢e effective porosity, ¢(1—Syi)

InTRODUCGTION

The one-dimensional, gravity theory of water percolation through snow was described
in a previous paper (Colbeck, 1972). The role of capillarity was omitted and only the driving
force of gravity was considered. This simplification was justified by showing that the percola-
tion processes were dominated by gravity everywhere except at the leading edges of melt
waves and at very low flow rates. The theoretically constructed waves compared favorably
with the measured waves (Colbeck, 1972; Colbeck and Davidson, in press) and it was con-
cluded that the gravity-flow theory was capable of making accurate predictions of water
percolation through snow as long as the tnow was fairly homogeneous and the flow rates
were not too small. For the purpose of increasing our understanding of more complicated
situations, the basic theory of capillary effects in snow is developed in this paper. First the
results of capillary-pressure experiments performed in the laboratory with kerosene and snow
are presented. The governing equations are next derived and a numerical method presented
for their solution. An analytical solution is also presented which is applicable to the region
of the wave front and provides new insight from consideration of capillary effects at various
positions along a typical melt-water wave. Finally, end effects are examined.

It is difficult to apply two-phase, Darcian concepts to snow because of the lack of experi-
mental data on the permeability and capillarity of water-bearing snow. Indirect methods
were used (Colbeck and Davidson, in press) to find the relationship between relative permea-
bility and water saturation for snow and the same is done here for the relationship between
capillary pressure and water saturation. While it must be recognized that any quantitative
conclusion drawn from this indirect evidence is tentative, the basic theory of capillary fiow
can be established.

THE CAPILLARY-PRESSURE CURVE

Water-bearing snow consists of rounded grains of uniform size with a small amount of
liquid water. Snow has a uniform pore structure and is expected to have a relationship
between capillary pressure and water saturation characteristic of materials with a similar
structure. As an approximation to the snow-water system, capillary-pressure experiments
were performed with snow and kerosene at a temperature of —10° C in a cold laboratory.
The snow, which consisted of small grains (dia. ~1 mm), was packed to a density of 0.56
Mg m—3 in the sample holder, saturated with kerosene and then drained through a semi-
permeable barrier under careful capillary control (see, e.g. Scheidegger, 1957, p. 48). The
result (see Fig. 1) is fairly typical of materials with a uniform pore size. When the capillary
pressure was increased from 320 to 540 N m~2, 459, of the liquid drained. This rapid displace-
ment occurs because capillary pressure is dependent on the effective pore radius and only a
narrow range of pore sizes occurs in snow. The other important feature of this curve is the
value of the irreducible liquid saturation, 0.07. This value is very close to that found by Harris
and Morrow (1964) in random packs of equidimensional spheres and is probably a good
estimate of the value of Syi for most types of snow.
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Fig. 1. Capillayy pressure as a function of liquid saturation. The experimental dala poinls are shown.

Only a small part of the curve is significant with regard to water drainage in homogeneous
snow because water saturations generally exist within a narrow range (about 0.10 to 0.20),
In Figure 2 capillary pressure is plotted as a function of effective liquid saturation $* and in
Figure 3 the equation

OPo[o8* = —435%2 N m—2 (1)
is shown to be a reasonable representation of the data. Equation (1) is integrated to give
P = (435*-14380) N m—2, (2)

which is shown on Figure 2 with the experimental curve. Equation (2) is an accurate repre-
sentation of the experimental data over the range of saturations expected during water
percolation in homogeneous snow.

The relationship between capillary pressure and water saturation depends on a number of
parameters including contact angle, interfacial tension, particle shape, and pore-size distribu-
tion. While the experimental results must be cautiously interpreted, they agree qualitatively
with the results which would be expected for water-bearing snow. Only the value of the
coeflicient in Equation (1) is likely to be changed when capillary pressure data becomes
available for natural snow. The algebraic form of Equation ( 1) is convenient and when the
governing equations are derived, analytical solutions are possible.
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Fig. 2. Capillary pressure as a function of effective liquid saturation. The solid line was calculated from Figure 1 and the
dashed line represents Equation (2).

THEORY
Using two-phase, Darcian flow concepts it has been shown that (Colbeck, 1972)
uw = kwpw ' (9Pc/02+pwg)- (3)
In the development of this equation it was argued that:
(a) pw—pa X Pw; (4)
(b) ks B kv, (5)

since water saturations are generally less than 0.20 (Colbeck and Davidson, in press), and,
(c) that the total volume flow (air plus water) must be zero.

Normally there is a hysteresis in the relationship between capillary pressure and water
saturation because of the “trapping” which characteristically occurs during imbibition
(Scheidegger, 1957, p- 49). Since the range of saturations is small in simple drainage, hysteresis

is neglected and capillary pressure P is taken as a single-valued function of effective water
saturation $*. Equation (3) becomes

uw = kw[(2Pc/05*)(05*82) + pwel/pw- (6)
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Fig. 3. 8P.[85* as a function of S*.

The generally assumed form of the relationship between relative permeability and water
saturation is

w = kS*", (7)
and the continuity equation is
Duyw[0z+de 05*/8t = O (8)
where ¢ is the “effective porosity” which includes only the pore space which is available for

flow. Equations (6), (7) and (8) are combined to give the basic equation describing water
percolation in homogeneous snow:

oP. 08* AN
nkpy~1§*n—1 [2_5‘: E-I-ng] 2
OP¢ 038* 2P, [0S*\? o5*
Hhpw S [Wf R (3—Z) ] +ge—s-=0 (9)

where 2 is about 3 (Colbeck and Davidson, in press). The diffusive effects of capillarity have
introduced second-order terms into Equation (g) which, if capillarity is negligible (2P./28* =
o), simplifies to the first-order equation which describes the percolation under the influence
of gravity alone.

Equation (g) is equivalent to the Fokker-Planck equation in diffusion theory which has
received wide use in the theory of infiltration into soils (e.g. Philip, 196g). For three-
dimensional flow (taking n = 3),

~ oP, Okw 05* 08*
Hw rV-(kaVS*)Jrama—z—% e 5 =O (10)
where o = pwgiw L (r1)
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This equation is difficult to solve although solution for either the gravity or the capillary case
is relatively easy. Also, the application of Equation (10) to snow is difficult because of the
complicated boundary and initial conditions which occur. In the case where

S$*(z, 0) = constant for t = o (12)
and $*(0, t) = constant for ¢ > o, (13)

accurate solutions have been obtained for Equation (10) (Philip, 1969). While these solutions
could be applied to snow, these simple criteria do not approach the complicated nature of the
diurnal melt waves which characterize percolation through snow. Equation (10) could be
linearized by holding ky 8P/85* and 8ky/dS* constant. While this simplification destroys
the dynamic interplay between capillary and gravity forces, it may be a useful approach for
describing the three-dimensional character of the flow around deeply buried ice layers or
the firn—ice transition. Also these criteria may be useful in describing the drainage from
glacial firn during the winter months when little flow occurs across the upper surface.

NUMERICAL SOLUTION

In the case of gravity flow through homogeneous snow, the first-order equation was solved
by Colbeck and Davidson (in press) using the method of characteristics as described by
Sheldon and others (1959). The second-order equation developed here can be solved using
a variation of that method (see Lighthill and Whitham, 1955). Whereas saturation is invariant
along the characteristics in the case of gravity flow, in capillary flow the value of saturation
changes along each characteristic. Therefore the characteristics can change shape in the
region of a wave front and no discontinuity occurs.

When effective saturation S* varies with space z and time ¢,

DS*_BS* oS* /d¢
B = T T \izlo¥ (14)

where D/Dz means differentiation along a characteristic. The speed of propagation of any
value of §* is

¢ = (dz/dt) s*, (15)
DS* a8* 108*
then _]-)? = _a_z_+_5: 'E . (16)

Following Lighthill and Whitham (1955), ¢ is assumed to vary only with §* along a
characteristic, thus where ¢ is the slope of the curve relating flow uy to concentration S*,

¢ = nokde~15%n1, (17)

Upon combining Equations (g), (16) and (17) to eliminate as*/at,
D% e AP, [0S*\2 8% (0P, 028* 2P, E__S_* 2 .
Bz = P o\ ) T 5 e Tasm\a ) Sl (18)

This equation describes the change of §* along a characteristic and when sufficient informa-
tion has been specified, the solution can be constructed using numerical techniques.

As a characteristic approaches the region of a wave front, 85*/¢z and 025*92* become
sufficiently large to cause a significant change in D§*/Dz and therefore a change in shape of
the characteristic lines.

Combining Equations (1) and (18), the spatial rate of change of §* along a characteristic
is given by (taking n = 3)

DS*/Dz = 14.3pw~'g""S*2 (3/02) (§* 85*/22). (19)
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Under normal conditions of flow, DS*/Dz is less than 2 x 1075 m~! (AS* is less than 1074)
between wave fronts. The slope of the characteristics is given by

Dz/Dt = 3akde18%2—43kpw e ! 05%/0z, (20)

where the first term is due to gravity and the second to capillarity. As shown later, under
normal conditions of flow the second term is very much smaller than the first term except in
the region of a wave front.

THE WAVE FRONT

The complete solution can be constructed from Equations (19) and (20) but analytical
methods are better suited for estimating the effects of capillarity on the wave front. The
actual shape of the wave front is calculated analytically over the entire region of the front
except within the neighborhoods of the two points where the wave front joins the trailing
edges. Thus the diffusive effect of capillarity is estimated.

Following the method described by Morel-Seytoux (1969, p. 507), a new system of
coordinates is defined which advances with the shock front. The shock front is located at
£(t) relative to the fixed coordinates z and any position £ in the new coordinates is given by

g = z—&(t) (21)
thus dz = dz—d—f de. (22)
dt
It follows that
0S*(0z = 05*[oL (23)
oS* oS*\ df os*
mad = (W);a? Fra (24)

In this coordinate system, Equation (10) becomes,

nekS*n—1 g_i-nk'uw—ls-kn_l (ES*)! oPe
<

0P 025*% [28*\2 0P, o8* dé¢ o8*
+hpw! [KE '3?-'_(32) T*:] S*n At e (W_E Tz) =o0. (25)

The advantage of working in this coordinate system is that, within the interior of the
wave front, §* changes very rapidly with depth but very slowly with time. This is not true,
however, in the matching regions between the leading and trailing edges. In these regions
the solution breaks down since @5*/7¢ is finite while ¢5*/2Z is zero. Therefore the matching
condition must be estimated. Within the interior region of the wave front,

a8* d¢ os* G 0P, oS*
(R e il i B ey i |
Bl e G g T 5F (S " a5 az) o
At depths below 0.5 m, the construction of the characteristics shows that the shock-front
speed (d£/dt) is nearly constant. In fact,

(26)

dé dz
F T (z>o05m) & <a)§ (27)
where § is the daily average of $* at the surface. Holding d¢/d¢ constant permits direct
integration of Equation (26) whence
d¢ oP, oS*

tka*”"'—(ﬁe a;-i—kyw_ls*"_' 5?”-_52 0 (28)
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When 8P¢/2$* is known from experimental results, Equation (28) can be integrated to give
the distribution of saturation within the interior of the wave front.
By substituting Equation (1) into Equation (28) when n is 3,

d
k%o S = sghun 35402, (29)
Integrating between the shock front and any position £,
S*—a Sg—-a
e —1g—1g—1 oy
L =2L5pw 'g7"a [ln (S*—I—a) In (S;—l—a)] ) (30)
_pedt
where ™ L (31)
0.08 4
0.06 eyl =13
g 1
0.04 4
0.02 T
0 S SR ST NN PR

Depth (m)

Fig. 4. The saluration distribution 48 500 s after the start of melting on day 3. This profile was calculated using the gravity-
Sflow theory.

and §; is the value of §* at the shock front. To illustrate Equation (30), a particular case is
examined. Taking ¢e = 0.45, k = 3x 10710 m? and a truncated sine wave for the boundary
condition where umax = 1.20X 106 m s—!, the gravity-flow solution was constructed using
the method of characteristics (see Colbeck, 1972, for examples). The values of saturation at
4.85 X 10+ 5 after the start of melting are shown as a function of depth on Figure 4. Also from
this construction it was determined that d¢/dt &~ 0.465x 107+ m s~! for all depths greater
than 0.5 m. Using these particular values in Equation (30),

S*—o0.113 Sg—o0.113
£ = 0.0194 In m—o.0194 In S-;E-{-_Oll_?, 5 (32)

where the value of S must be found by material balance between the shock front and
capillary solutions. The calculated wave front is shown in Figure 5.

https://doi.org/10.3189/5002214300002339X Published online by Cambridge University Press


https://doi.org/10.3189/S002214300002339X

CAPILLARY EFFECTS ON PERCOLATION IN SNOW 93

In this example the tendency for the leading edge of a wave to form into a shock front is
very strong because the top of the wave travels about four times as fast as the bottom. While
capillarity does cause some departure from a shock front, the diffusive effect which capillarity
has on the leading edge is not very pronounced. Wave fronts observed in homogeneous snow
(e.g. Colbeck and Davidson, in press) always have a much more “diffused’® appearance than
the one shown in Figure 5. This may be explained by the phenomenon known as “fingering”’,
i.e. diffusion of the wave front resulting from inhomogencous flow at the local scale. Applica-
tion of a stability criterion for two-phase flow in homogeneous porous media (Bear and
others, 1968, p. 283) shows that perturbations should not grow. Fingering could result from
other causes, however, such as the inhomogeneous nature of the snow itself or a break down
of the assumption that air pressure is hydrostatic.
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Fig. 5. A melt-water wave with a calculated wave front and values of R along the wave.

While it was possible to deduce the form of ky(5*) from data on the percolation of water
through snow, it does not seem likely that P.(5*) can be found in a similar manner. This is
unfortunate in view of the problems associated with handling water-bearing snow samples
during experimental studies. The information available so far indicates that capillarity is of
very little importance when the flow is essentially one-dimensional. Further insight into the
relative importance of capillarity can be gained by referring back to Darcy’s law. From
Equations (6) and (7) where n = 3 for snow (Colbeck and Davidson, in press)

P, O8* )

Uy = kpy=15%3 (;—5; =5 TP (33)

While the gravity force is constant, the capillary force varies with position and time. The ratio
of capillary to gravity forces is equal to the ratio of the two terms in Equation (20). Taking

(0Pc[08%)(25*/22)
PwE

R =

' (34)

https://doi.org/10.3189/5002214300002339X Published online by Cambridge University Press


https://doi.org/10.3189/S002214300002339X

94 JOURNAL OF GLACIOLOGY

the ratios calculated for various positions along the melt-water wave are shown in Figure 5:
1. At the leading edge,
0 < R < 3.96. (35)

Thus the gravity and capillary forces are nearly equal over the interior region of the wave
front except at the matching points where gravity dominates.
2. At intermediate points along the trailing edge,

R < oo1, (36)

thus capillary forces account for less than 1%, of the total force.
3. It is now determined at what flow rate (along the trailing edge) capillarity becomes
large. Rincreases as $* approaches zero although 85* 3z becomes quite small at the same time.

In general,
R = 0.00445*—* 35*|0z. (37)

At a flow rate of 10~7 m s~!, R is about 0.02; at flow rates of 10~%# m s~ R is about 0.10; and
at 109m s, R is about 0.5. The lowest flow rates observed in homogeneous snow under-
going water flux due to normal surface melting were greater than 1077 m s~" hence capillarity
is not important at the lower limit of normal fluxes. However, when surface fluxes stop, the
role of capillarity increases as drainage proceeds, until ultimately R approaches infinity as
S* approaches zero.

4. The surface effect of capillarity can now be examined. When §* decreases to 0.01 at
the surface (see Fig. 5), R is about 23 indicating that capillary effects control surface fluxes
during periods when the surface saturations are low. This “surface effect” is probably not as
serious as the “end effect” at the outflow end since only very small volumes of mobile water
are involved and the surface effect is limited to a region within o0.25 m of the surface. This
surface effect causes a skewing of the surface flux similar to that caused by the percolation
process itself. However, the slowly moving melt-water wave associated with this surface effect
would be overtaken by the next day’s wave front before reaching a depth of even 1 m (see

Fig. 5).

END EFFECTS

End effects are the increased saturation (above the saturation associated with flow) due to
capillary action at a discontinuity of the porous medium. These effects can be seen in water-
bearing snow when an interface exists between the snow and an underlying air space (such
as an undercut snow pit). Under such circumstances the snow appears to be saturated for
about 20 mm above the interface with the saturation rapidly decreasing beyond that distance.
If the amount of water trapped by the end effect varies in time, a significant distortion of the
travelling melt-water wave could result. End effects occur in snow lysimeters and, since we
are dependent upon the results of lysimeter studies to measure the movement of liquid water
in snow masses, any difference between the wave movement through the lysimeter and
through the in situ snow mass must be detected. Also, the presence of the end effect can confuse
tracer studies since there is a time delay between the arrival of a water particle at the upper
end of the end-effect region and its discharge at the interface. Note, however, that as long as
the saturation profile associated with the end effect remains fixed, the end effect has no
influence on travelling waves since a particle of water will be released at the interface as soon
as another particle of water arrives at the top of the region of the end effect.

Although Equation (1) is an accurate representation of the experimental data for values of
S* below 0.6, it is a poor approximation for the larger values which must be included here.
Therefore to gain an estimate of the influence of the end effect on lysimeter response, take
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—438*2 for o< 8% <06
OP,[08* = (38)
—1 080 Ior 0.6 < 8% < Lo,

It is shown later that this approximation is sufficient.

Given Equation (38), Equation (33) can be integrated if uy is held constant., In this
manner the saturation profiles are constructed first for various values of flux and then the
variation in the profile with time is established. This method relies on the assumption that
transient effects are small but, at least for the case of the trailing edge where changes occur
very slowly (transit time a22h), the assumption is probably valid. Rearranging and
integrating Equation (33),

(39)

Si
i S§*3 (oP./aS*) dS*
Sl Hrw"'rluw*ngs"'3 ’

where the snow is assumed to be saturated at the interface. Combining Equations (38) and
(39), .
— *3 *
i) for 0.6 < 8% < 1.0
Hwk Tty — pygS*3

z—L = 1.0 S* (40)

—435% dS*
(z—L)s* = 0.6+ f 4 for 0 < 8% < o0.6.
0.6

Powk Tty — pugS*3

Taking as an example ¢e = 0.45 and £ = 3x 10 '® m?, Equation (40) becomes
(S*4-K) _ B8R gt
2 e ks gm T V3R g
for $* > 0.6

—

0.110(8*—1)—0.0367K [

1.0

2—L =5 (41)
s K2 RFS§* | §%2 _aS* K5
(z—L) s* = 0.6+ 0.00146K l:'& In W+v3 tan—! .\/BK :,0.6
8 for §* < 0.6,
where K = —8.43uy/3, (42)

The background saturation associated with cach value of flux is derived from the gravity-flow
theory,
Sh = (uwpw/pwgk)'/3. (43)

The two extreme values of water flux associated with fair-weather melting (2 x 10-% and
1077 ms~1) are chosen because the largest change in the saturation profile should occur
between these two values. The calculated profiles are shown in Figure 6. The sudden change
in the slope at §* = 0.6 occurs because of the approximation made for 2P./o5* (Equation
(38)). Because these two profiles are essentially identical for values of §* above 0.30, any
approximation made for @P./@5* above 0.6 would have worked. Only the difference between
these profiles is significant.

It is now possible to deduce the changing end effect while the trailing edge is passing
through a lysimeter. During this time the profile must change from the upper limit to the
lower limit. For a lysimeter with radius = 0.113 m, the change in volume of water associated
with the passage of the trailing edge is 130 107 m3. Thus, while the water flux decreases
from 2 107¢ to 1077 m 5~1, 130X 10~ m? of water are added to the end effect. This how-
ever, is not water which would have to be diverted from the flow and placed in storage
because this water is already in place. In fact 9.5 1076 m? of water will be released during
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the time of passage of the trailing edge. With a total volume flux of about 2 000X 1075 m3
during this period, the amount of water released from the end effect is insignificant.

The changes in end effect associated with the passage of the wave front must balance
those just calculated for the trailing edge, i.e. about 9.5 X 1076 m? of the water arriving with
the leading edge will be stored as end effect. In spite of this, the leading edge will arrive
earlier than it would in the absence of an end effect because of the water which is already in
place. Thus arrival should occur about § h (2 400s) faster than otherwise expected. Also,
because saturation gradually increases in the direction of wave propagation, the wave front
will be diffused by the end-effect phenomenon.
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Fig. 6. The end-effect regions associaled with the limiting values of uw expected during fair-weather melting. The end effect
includes only the waler trapped at the interface by capillary action.

ClONCLUSIONS

The theory of water percolation through snow is expanded to include the effects of
capillarity and, when combined with experimental data, further insight into the nature of
water percolation is obtained. Apparently, for all flow rates occurring during periods of
strong diurnal melting, the flow processes are dominated by gravity and unless flow rates as
low as 10-8 m s—! are reached, capillarity can be ignored. While capillarity is important at
the wave front, the shock front approximation is sufficient for most purposes. The possible
diffusion of waves by the lysimeter is a serious problem. This should be tested by using
lysimeters which neutralize the end effect by reducing the water pressure in the discharge line.
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