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ABSTRACT. All parts of a two-dimensional, isothermal, stationary marine glacier
(grounded ice sheet, ice shelf and transition zone) with constant viscosity are analysed
by perturbation methods. In so doing, all zones of diflerent flow patterns can be
considered separately. Correlations between spatial scales for all parts can be expressed
in terms of the typical ice-surface slope distant from the ocean, which reflects exterior
conditions of the glacier’s existence. In considering the ice-sheet—ice-shelf transition
zone, a small parameter characterizing the difference between ice and water densitics
is used. Such an analysis allows us to find boundary conditions at the grounding line
for the grounded ice mass. Glacier-surface profiles are determined by numerical
methods. The grounding-line position found by using the boundary conditions derived
in this paper differs from that obtained by using Thomas and Bentley's (1978)

boundary conditions by about 10% of the grounded ice-stream leneth.,
) ) g g

1. INTRODUCTION

Modelling the dynamics of the grounded part of a marine
ice sheet requires the imposition of boundary conditions
at its terminus (grounding line). At the same time, the
position of the terminus is sensitive to changes of such
conditions (Lingle, 1984). Usually, it is assumed that the
ice has flotation thickness at the grounding line and the
terminus position is determined by using the mass-
balance equation reduced by the shallow-ice approxima-
tion (Thomas and Bentley, 1978). Salamatin (1984)
modified this relation by using an unknown parameter,
which characterizes the deviation of the reduced normal
deviatoric from However, the
mathematical algorithm used to find this parameter is
obscure. On the other hand, because the styles of flow in
the grounded part of the glacier and in the ice shell are

stress its exact value.

essentially different (a shearing flow and a plug flow,
respectively), it follows that in the ice-sheet ice-shell
transition zone neither shear stress nor normal stress can
be neglected. Hence, the problem of finding the stress
fields in the transition zone arises and hence determining
strict mathematically derived effective boundary condi-
tions for the ice sheet at the grounding line.
Determination of the ice upper-surface profile in the
vicinity of the grounding line should lead to an algorithm
for detecting the line position by examination of the
upper-surface characteristics. This problem was also
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considered in the paper of Barcilon and MacAyeal
(1993), in which the problem of fluid flow down an
inclined plane with an abrupt change of boundary
conditions on it (no-slip-free slip) is considered. Although
the problem they considered was somewhat different than
that considered here, the existence of a local minimum of
the upper-surface elevation is confirmed by the results of
the present paper.

In this work, we study an idealized model of a two-
dimensional, stationary, isothermal glacier in all parts of
its ice flow: grounded ice sheet, ice shelf and transition
zone. Here, ice is considered as a Newtonian fluid.
Although the ice flow in the grounded glacier and the ice
shelf has been closely examined by many researchers (e.g.
Sanderson, 1979; Hutter, 1983). the dynamics of the ice-
sheet-ice-shelf transition zone is poorly understood and
the main approach to the problem has been numerical
(Lestringant, 1994).

2. EQUATIONS

2.1. Notation

The following notation will be used: (z,z) are the
horizontal and vertical spatial coordinates; 7 is the excess
pressure, associated with the pressure p by the relation
m=p—pg(f — z): {(x) is the upper-surface elevation;
¢ =dé/dz, z(zx) is the lower-surface profile, which
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Fig. 1. Schematic representation of a marine glacier
consisting of different parts (grounded ice sheel, ice shelf,
ice-sheelice-shelf transition zone ) which are characterized
by specific flow patterns ( shearing, plug and transition).
The origin of the reclangular lefthand coordinate system is
sel at the bed al the grounding line.

coincides with the bed elevation when @& < 05 T, Tosy Tas
are the components of the stress deviator; (u, w) is the
velocity vector; 17 is the viscosity; f*.(=f7) are the
accumulation rates on the upper and the lower surfaces,
respectively (f~ =0.2 < 0); g is the acceleration due to
gravity; pi, py are the ice and water densities; k, = Bl P
d=1—pi/pw; =
magnitude of v (for any variable v) in the grounded part
of the glacier; (—zq) is the position of the ice divide; x 1s
the position of the ice front; o and 7 are the resultant

is the water level; [v] is the scale

normal and shear forces.

2.2, Setting the problem
Clonsidering a two-dimensional glacier merging into the
ocean (Fig. 1), let us place the origin of a rectangular
righthand coordinate system (zaxis is directed vertically
upwards) at the bed at the grounding line. Then, the
regions (-z4) < <0 and 0 < 2 < 2, where (—xq), T
are the positions of the ice divide (dome) and the ice
front, define the grounded and floating parts of the
glacier, respectively.

Stationary ice flow, assuming incompressibility and
constant viscosity of the ice, can be described by the
following Stokes’ equations:

or (jT_,-_,- aT,r:

oo TR =
dr  Ox He
(’)Ti’ a‘i"n ()T
ettt = =0;
0z 0z Oz
e e el
9 du 9 dw du +i)u'
T = SN 7§ Tz = &N 7% Tes— —_ — ):
N Tor' " oz T T Moz o
il e . 2 e (1)

The above set of equations must be completed by the
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following boundary conditions:
The glacier upper surface is stress-free and the
kinematic boundary condition is used to determine
its profile:

o 1=aR
z= f(f‘) i Tae = —7T1 =l Iz Tag = —ﬂ—l R (2)

—ul +w+ fF=0.
The no-slip condition at the bed may be assumed [or

the cold Antarctic ice sheet, where sliding is negligible
(Fowler, 1981):

= =2lz), @ <0 4=10; w=10- (3)
At the submerged lower surface of the ice shell, the

shear stress is zero, the normal stress is equal to the
water pressurc and a kinematic boundary condition is

applied:
p—=galan); 2 =0k
; P 22
Tz — *[Pi!}'{ﬁ = Zgi= Bwgle® — gl W]m:
" L—2zF (4)
Tar = —[[)'l_q(f = Zn) = p“.g(z == Z[]) A W}WQ

—uzy+w+ f~=0.

At the ice divide, the mass [lux is zero and the (luid
flow is symmetric:

w

P= —rg s =0, =1 (5)

dx
At the ice front, where calving takes place, it is
sufficient to impose the value of the resultant normal
stress in the ice, whose magnitude in water is known
(Weertman, 1957):

i/
[ (=p+ Tae)d2= =

Y20

Bl -af.  (©)
2
As we will see later, the solution of the problem does not
depend on the ice-front position, whose existence i
necessary only to derive the relation (6). Thus, let us
assume that there is no calving and that z,. is the point of
zero mass [lux: g(z,) = j_’,i(f F—f)de=0, or
2. = 400 when the mass flux is positive everywhere:
glz) >0, ¥z > 0.

We introduce the resultant forces at an arbitrary cross-
section :

¢ /
= [ (—PJrTr.p-)dE- T—[ Tha 08

Integrating Equation (1) with respect to z from z o [
and taking into account the boundary conditions (2), (3)
and (4), we obtain the following equations:

do ; - Bu B
a = P(-I'. Ell)zn + (] B C:E)I]E (.’I'. Z())., > < 0.' (l')
lo ‘

th = patile” — 3())3:1- x> 03 (B)
dr _

73 = Pl —20) = pug(&” — 20), x>0. (9)
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Integrating Equation (8) with respect to x and using

Equation (6), we have for x > 0:
o=—-——(z"—2z)". (10)
2.3. Non-dimensionalization

Far rom the ocean, the
shallow-ice

ice flow is described by the
approximation (Hutter, 1983,
shear stress is much larger than the normal stress. Non-
dimensionalizing the governing equations,
following scales found by Salamatin and Mazo
on the basis of similarity theory:

[ie][w]

> [ 1 B

] = % ;= o= =Tl

[l =pglels  [r]=[ellmee] s [d] = (M) L:

Y ks =—3
(2] —

where the

with the
(1984)

[wl=1f

[u] =

we obtain the [ollowing equations [capital letters denote
the dimensionless variables Ty, = Tor /[T0s]):

LU 0L, 0T,
ax" ¢ ex Tz 7

Ol 0T, 8T
Pl & == s = : 12
az“(az a,\’) . i)
P T = 02
au W ou - L, OW
Ijl'r:2. =3 | T_:*{)_ lr?r::'.— "
W= 07 27" ° X
=l X< Xp, HAp<adal
2= LX) :
= 21! r= __I—FZLQ'
To=-Tirape <o ="Tipamm’
—UL'+W + Ft =0;
Z=ZyX), X<0:U=0,W=0; (14)
Z=ZX),X>0:
A
. o L * 0 -
T =—[L- 20— (7 — ) + T
. 11—z}
€'T,.‘,.:—|:L—Z(1—FLW(Z _Z(J)'f‘H]T._,Z{,EI
—UZ,+ W+ F~ =0; (15)
oW
Fm o P T —is -
X 1: U =0, 5% =0 (16)
Pi
ltll'ﬂ — p_“ .

Most of the cold marine glaciers are characterized by a
value of the parameter e < 1.
typical ice-surface slope and reflects exterior conditions ol

This parameter is the

the glacier’s existence, such as the scales of accumulation
rate, its gradient, bed slope and water level,
In order to analyse the problem in Equations (12)
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(16). we introduce the stream function 4

o o
ir = —_—" 1 — e —
U=5g: "=—gx

From the Equations (12) and boundary conditions (13)

(16), we obtain the following set of equations to

determine 1» when L and 7 are given:

dl g BV B0
<X axz2z: gzt
=02 e X . Jg=gssil: (A7)

Z = L(X):

&Y 0Py a7 2y 00
_ 1-€L7%) =46 L' ——;
[azz W]{ ey

= I.—l 1"‘+ (LY:
Z=Zs(X), X<0; *U%*U' (19)
= LplA ), « W=\, f)Z_ -
o= Z(}(,X—).}( =0
P 9 P BN, 5 O
[ﬁ‘ aﬂ“‘ﬁ Z7) =4¢Zpx0z" (a0
w= Y F-dX;
o D
X = =17 = [, = 0 21
aZ aX? (21)

Having determined ¢, we can find all the unknown fields
except the excess pressure 1T as well as L and Z; (X > 0).
In order to [lind II,
integrated from Z to L and the boundary conditions (13

we use the first equation ol (12

to obtain, in terms ol ¥,

(X, Z) =

. %) a L7y P
1 T / b _ & dz|. vx. (22
‘ [ axoz  ax /), \ezz " ox= (22)

Let us define

then

Because the relations (8) and (9) are derived by
integration of Equations (1) with respect to z using the
boundary conditions on the upper and lower surfaces,
some of which were not used in the system of Equations
(17)-(21), these relations can be
equations to determine L and Zj. when X > 0. Convert-
ing Equations (§) and (9)
substituting lor Il via Equation (22), we obtain the
following equations for L and Z;, when X > 0:

considered as the

into dimensionless form and

E=Fl (=B s /'L o df 3
- - — ¥ — | dZ
2 2k, 7 AX¢ ()Z X
X>0:; (23
,dT
— Z* + k(L — Zy) = k& (t\" X >0:
X=0:2,=0. (24)
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In order to determine L in the region X < 0, we integrate
Equation (7) with respect to X from X to 0. Since
£(0) = 0(0)/[o] = —Z**/2k,, this yields in dimensionless
form:

(L-2) _2z°

2 e,

2 5 )ztjr 0 ,
‘ ./;U m+d_X dz +[\_ (L — &) Zyd X

-0
+/ {H(X,Z.J)Zlf)+(1+622 )‘9 ¥ x, Zn)] dX,
x a9z?

X <0. (25)

3. FAR-FIELD SOLUTIONS

3.1. Far-field solution for the grounded ice mass
We seek an expansion for 19, L9) in the far field for the
region X < 0 as an asy I‘l'l]JtOtl( series in €:

=y + O(e);
LW =19 1 0.

Then, from Equations (17)—(21) we derive

oo _ QZ — 20 BLY 22, - 2)
0 - =
WL — Bp)

X p— - 2 8 .
where Q) = f_] EFtdX. This solution describes Poiseuille
flow.

From Equation (25), we have for Lf,mlhal

(L~ &) 22 /U (9) ,
Lt mie = | (LY — Zp)Z{dX
- Tk, Jg® 4

0 02 ;
+ . ()Z‘i (X,Zp)dX.

Differentiating this equation with respect to X, we find

dL(Q') o 3Q (26)
i (L - Zo)?

It should be noted that 1‘[:(3‘”) only satisfies boundary
conditions at the bed and the upper surface of the glacier,
since all the X derivatives in the problem for ¢ were
omitted. These boundary conditions imply that mass flux
at the ice divide is zero. Equation (26) allows us to
determine the upper-surface profile of the glacier far from
the grounding line. However, in order to derive a unique
solution to the far-field problem, it is necessary to
detenmne the far-field surface elevation at the grounding
line L ( ), as well as the magnitude of z4, which is also
unknown. These parameters are to be determined from
the matching procedure.

In general, we cannot expect the stream function we
have found to satisfy all the conditions at the ice divide,
since the shear stress there is zero, although we have
assumed that shear stresses dominate normal stresses in
the shallow-ice approximation. A local expansion near
the dome may be necessary but it can he shown, at least
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for constant viscosity, that the far-field solution is in fact
valid up to the divide. Details of this derivation will be
given elsewhere.

3.2. Far-field solution for the ice shelf

If X >0, and we search for the far-field solution
T/J(“),L('“J,Z((f’ to the set of Equations (17)-(21), (23)
and (24) in the form of an asymptotic series in €, the
leading-order term of the ice thickness proves to be zero.
Hence, for the ice shelf, it is necessary to introduce its own
far-field variables. In this theoretical study, where no
calving is assumed and the ice shell can be of infinite
length, we suppose that far from the grounding line the scale
ol the longitudinal coordinate is the same as that for the
grounded ice sheet. Hence, only the scale of the vertical
coordinate must change. Only one transformation gives
us non-zero leading-order ice thickness in the ice shelf
Z = ZJe, L= L/€ A’()—Z(]/( Z* —=7"E
Therefore, the coordinate Z must be taken as the far-
field vertical coordinate for the ice shell. Notice that, in

namely

terms of the grounded ice-sheet scale, the ice-shelf
thickness is of order e, which dimensionally corresponds
1o a scale of only a metre or so. It is to be emphasized that
this scale is only appropriate thousands of kilometres from
the grounding line and, in reality, calving of icebergs
causes ice shelves to be much shorter (and hence thicker).
Expanding the unknown functions as power series in €:

) =y +0(e) ;

L("") = LM + O(e);
Z((JH) — nn + Ofe) ,

we can [ind a far-field solution in the following form (for
convenience, all the formulae are written in the far-field
variables of the grounded part):

X
) = Q 7 Z-2)+kQ+ [, FdX, (27)

where

x
1+ - (s) (5)
Q=1+f0 Fax,F=Fr—-F, HB=if-2J,

v ik
H:eQ(A+Z[ de) , L&
J0

(s) * : = i
Zoy =2 _kﬂH“S*l_fT!

=Z"+6H,

and A is constant.

The far-field solution we have found coincides with
that derived by Van der Veen (1983). The constant A is
to be determined from the matching procedure.

As mentioned above, we note that for X = O(1), that
is, at a distance from the grounding line comparable with
the grounded ice-sheet length, H = O(e). However, the
value of the constant A found by the matching procedure
turns out to be such that H is O((F/(‘).)'%) in the vicinity of
the grounding line. Numerically, this is around 0.2,
corresponding to a thickness in the vicinity of 500 m, as is
observed.

If we compare the far-field solutions for the stream
function in the different regions, it is clear that these are
essentially different and cannot be matched. Therefore, a
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near-field solution in the vicinity of the grounding line is
necessary to match the solution for the grounded part (o
that for the ice shelf. This near-field solution defines the
ice-sheet—ice-shelf transition zone.

4. NEAR-FIELD SOLUTION FOR THE
TRANSITION ZONE

4.1. Equations
In the original coordinate system, the gradients of the
fields are proportional to €, whose value is imposed by the
external conditions, such as the scales of accumulation
rate, its gradient and the bed slope. But, in the ice-sheet
ice-shelf transition zone, the velocity gradient is imposed
mainly by the transition from no-slip to free-floating. This
allows us to make the assumption that the longitudinal
scale of the transition zone is the same as the vertical one;
the ratio between these does not depend on e.

Denoting the ice thickness at the grounding line in the
scales of the grounded part by Ly, let us introduce the
near-field coordinates and variables:

§=X/eLy, y=2ZfLy, x=L/L,
U*:Z*/Lu, h.z)(—’l9.

¥=2y/Ly,

Rewriting Equations (17)—(21) in the new variables and
neglecting bed roughness, we derive

Oy MY L0

e ()5(); c’)tﬂ =, —eoL £ 00, ¥ <Y< ¥

(28)
y=x(§):
Py Y
[0?2__EE?}(1 ) = oy (29)
¥=1+eLy [ F*dg;
y =€) =2Zy(0)e€ + O(e®), £E<0:9p =0, v =0z (30)
dy
y=10(£),£>0:
&1 azyJ 5 &Py
1—97?) = 4¢'
{By a¢? ( ) ey’ (31)
=Ly f§ F~dg;
& =kog 1= pol (32)

The conditions (32) are sufficient for matching the
near-field stream function with those of the far fields.
Equations (28)—(32) define 9. For the functions x and h,
it follows from Equations (23)—(25) that we have the
following equations:

2 9:2 { 1 w
W(E) = Z(,(UJeHO(e?). £<0;
= 0s k=13 (33)
h? dT K dT
B e G .1

2+k,,hd i Qéd (lé) Bl fquy =il
E=08n=1: (34)
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P Y T
Blabxsb. 1) = + - (ﬁ——_)dy. VE;

C)Ed; s, \OyF B
. ; X (Y By )
'I(u.\.z).f)_-ﬂ (agﬁ_agZ)dy‘ NEs
35
f=" (35)
E
From Equations (23) and (24), x,? and 0* can be
expressed via h and T
=9 —kh+66 k,, lf £ =0 (36)
dT
x=9"+86h+ 65 .’.‘, & £ =00 (37)
" dr :
V' =k, — 68" k,— T3 (0). (38)

Asymptotic analysis of Equation (34) shows that

A

if 73— 0ase — 0, thmla—{—» ODase — 0,
because h = O(1) ;

ry oT
iff— ccase — 0, then — — c0case— 0.
03
These cases contradict the assumption of finite long-
itudinal scale of the transition zone,

Hence, we have 8= 0(1), as ¢ = 0, so that 8=
constant + O(e). This is a rigorous result of the
asymptotic analysis of Equation (34). It is also true for
non-isothermal glaciers or ice sheets with non-zero bed
roughness, as the former equation does not change, except
for the expressions for T and B. Then we can find the
scale of the ice thickness at the grounding line Ay, taking
B =1 (for example) in Equation (33):

A3 5 % 0
- or Ay = (ﬂ) ,  where gy = f Frada
h() (‘) ngb —24

As a result, we can conclude that, assuming the average
grounded ice thickness is O(1) [corresponding to 3000 m),
the typical ice thicknesses for the transition zone and the
ice shelf (sufficiently far from the grounding line) will be

O(( e/é)) (corresponding to a thickness of 800 m) and
O(¢e) (corresponding to 6m), respectively, when

e— 2 x 0=

4.2. Expansion in €
We seek the solution of Equations (28)—
asymplotic series in e:

(38) as an

P =y + Ole) ;
X = Xo +0O(e);
i = h.(] + O(f) H

= 19() -t O(F) ¥
9" =495 + Ole) ;
B = By + Ofe) ..

For the leading-order terms, we have the following set of
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A(AYy) =0, —sc< E< +oe, <Y< Xo;

1y » & i) ( ,;) f) o
y=x(©):{ [ o)\ ~X0) = Nopggy
Wi = 1
()h [| P
y=0,£ <00y =0, 7 1 = (39)
Fyy Iy b , 0%y
y="0(6).6> 0 [W ~ e |1~ ) = Yipgg,
Wy = 0
& — ooy < o0,
: foall

% T = 660" [ Budy+ 855" {5 ”50) de,

clie=0 1 m=1: (42)

h? dTy %k, o AT} - X0

‘; -+ nl-,,hm 0 l_d?“ é(”ﬂn o (Tgﬂ) = HU ll L BU dy 5

£>OZ£:UIII():12 (-1—1)
; 3 o a1 (IT[} q¢
o = V) — kb + 85, 1.:,,1—5 : £ =0 (42)
Xo = 9% + Sho + 843k, d;‘g’ , £50; (43)

1T}
=k, — 60 A,,‘E“{ ), k,=1-6, (44)

By = B, X0, £, y) . To = T, x0, %0, &) .

The derived equations deseribe the ice [low in the
transition zone. T'o order O(e), the bed slope and the mass
accumulation can be neglected. The parameter 3, as well
as the values Lf,’r‘” and A, is to be determined [rom
matching the near and far fields.

4.5. Expansions in 6

Equations (39)—(44) also include the parameter & , which
for the process under consideration is small: 6~ 0.1,
Therefore, the solution to the equations can be sought for
as a power series of 6:

o =thoo + O(8) ;5 = Opy, + 895, + O(6);
hy =hgy +O(8): Yy = Voo + O(8)

Bo =Boo+0(8);  xo = xo+ &xm + 0(52) ;
kpy=1-—8.

Then, for ¥y and hg. we have the following set ol
00 0 ¢

equations:

A(A?ﬁ’(m) =), —o8 & f < oo, 1 —hyp < Y=< 1

g . 1o —Q:
y=1:4 P g2
oo = 15
y= 1 - hun(&). (s )
a9 ) a2, 9
[%}im - 001-:“} (1 - h{;—’“) =-4 ;)n?);)[i{; (45)
g = 05
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(‘) F
=, £ 0§ Aoy =0, 2 s
Ay
£ — 300 h”“l) = 09
hz dT; - 1
2 h:mﬂ““l ém = ;’ﬂ,l fl Foo Byody., £>0;
£ 0 : h-”“ =z (-16)

Due to Equations (40)—(44), we obtain
[ dTog llT[:u
xoo =1, V& xo = [huu -1+ 8y ( T de (0))] ;
&2 by

1 dTw = !
xo1 =— { =+ B —— (0 Jm-il/jj-f' ,1,&,y)d
X0l (2‘1'. 0 " e ( )) Poa [ (o0, L& y) dy

5 o U n
+ B [ 7 (£,0)de
) 17,
Yy =1, 9y, =— (l ¥ 5un| = (U))

£50.
P 0 [ (P Uzl{’nt:)
By =4——+—=— — ———= | dy, VE&;

W= eay o ( o oe ) e

! f:}")'l;‘r’tm (‘)3'.'.1?..“)
T — e 2 Vo0 gy ¥ 47
00 -[I—hm.( o o2 Y, VE (47)

Hence, we conclude that ygo = 1; in other words, the ice

£<0;

o X0 = Do -

upper surface is, to order O(8), a straight horizontal line.
It is notable that determination of the functions ¢, h and
¥ to order O(8) permits the determination of y and 7% to
order O(6%).

Solving Egquations (45) and (46) analytically is
diflicult; therefore, we use computational methods. The
algorithm we use requires two initial conditions [or gy at
the point £ = 0. Also, the Equations (45) and (46) include
the unknown parameter Gy
another imposed relation.

. whose determination needs
It can be shown (see the
Appendix) that these conditions are

E =N h‘“”(()) = hi]“(O) - 0 I]()(O) =1 {48)

and there exists a unique solution of Equations (45) and
(46).

Ultimately, the set of Equations (45)-(48) defines the
unique near-field solution, including a determination of
the parameter Fyo. Let us call this set the “principal
system of equations™.

5. MATCHING PROCEDURE

5.1. Matching the near-field solution for the transition zone with
the far-field one for the glacter grounded part

In order to find the unknown parameter L,tl"") for the far-
field solution of the grounded glacier part, let us introduce
the quantity A = L(t,‘{”/Ln = Mo + 6\ + O(82).

Matching the glacier upper-surface profiles of the far-
field solution and the near-field one can be carried out by
using the intermediate asymptotic variable w = X /i(e) ,
where ¢/ — 0 and ¥ — 0 as e — 0 (Cole, 1968). In this
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way, all the unknown parameters can be found:

1 1T
( '3()(11 (l_gt:( ))

0 [a2 a2 1.(9)
= =
f=1 (£ 0) — )
+ Byg ./:x ayg (£.0) —f)gj—’

Then, an expression for the ice upper-surface profile x,
the divide to the
can be written in the form

Ag=il,

A o=—

which is valid all the way [rom

grounding line,

“() (gt)

X —— ~=i-%0—X X' =1 48N

—30;'€).

It should be noted that the parameter A is determined
by solving the principal system of equations and is the
deviation of the far-field ice thickness at the grounding
line from the near-field one there.

5.2, Matching the near-field solution for the transition zone with
the far-field one _for the ice shelf

Matching the far-lield ice thickness and the near-field one
in the same way as belore, we can find the last unknown
constant A = A6%/34/3 11’{/4 where Ay is determined

from the near-field solution. Then, the upper-surface
profile and the ice-thickness distribution, which are valid
throughout from the grounding line to the ice [ront, take

the forms:

h=H/Ly+h— b, he0 = i"/(MA|+£):
()

; — L+ Yo — XHH . XHH = l}[*, <L éhfsﬂ .
Lll

However, since the ice thickness in the ice-shell region
(far from the grounding line) is proportional to €, and the
accuracy of the determination of the lower-surface profile
is to O(6), the elevaton of this surface which 15 valid
throughout and is found by the standard procedure as
before, will exceed the upper-surface elevation fairly far
from the grounding line. For this reason, it is convenient
to lind the lower-surface profile with formula (42), which
is valid everywhere for the floating ice:

afdTy  dTq
ﬂAAl—h)+é%‘(i; (ng).

6. OVERALL ALGORITHM FOR SOLVING THE
PROBLEM

Iirst, it is necessary to solve the principal system of
result,
parameter Fy can be [ound. The functions yy. ¥ and v

equations, As a the functions . hyy and the
are determined to various orders ol accuracy by the
formulae in Equations (47).

Let us move the origin of the coordinate system to the
bed at the divide, whose position is known. Then the

https://doi.org/10.3189/50260305500013264 Published online by Cambridge University Press

Chugunov and Wilchinsky:

Mouodelling of marine glacter and ice-sheet
point & = x, defines the grounding line. Knowing 3, we
can find the length x4 of the grounded glacier part from
the equation

. 0(2" — zo(a .1}) g i
o q(aq)mid*? =1 (50)

which is a consequence of Equation (33). In Equation
(50), the ﬁll](‘li()]] zo( ) is known, because the bed profile
is given and g(x) = [; f da.

Having dvu-l mined x, the water depth z* becomes
known as well as the scales ol non-dimensionalization.
Then, we can lind the scaled ice thickness at the
erounding line:

. E* = Z(){.I',|)
b= [z]9*

Knowledge of the value of Aj. which is found [rom
Equation (49). allows us to determine the glacier upper-
surface profile far from the grounding line by sol\mq
Equation (26) with the initial condition: X' =0: Lw
= ALy.

The problem for the ice shell has an analytical
The constant A is known from the near-field

Then,
profile distributions,

solution.
solution. 15 casy to construct glacier-surtace-
which are valid throughout the
region. Although the ice-upper-surface elevation is found
to be O(8), its gradient can be determined as O(6%).

It should be noted that Salamatin’s (1984) boundary

condition can be transformed to the form found in this

paper by choosing the proper value of the parameter
2 l
Z
=
-
<
>
M
5|
53
14
H
Q
2 |
o
&=
D |
)]
I" T 1 T

e
=g =g = q # 1 2 3 4 5
DIMENSIONLESS HORIZONTAL COORDINATE f

Fig. 2. The near-field soluttons (a) for the glacier surface
profiles differ from the far-field ones (c) for
—1 < &< 2. There is a point of local minimum of the
upper-surface elevation. The dashed line (b)) is the water
level.
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which characterizes the deviation of the reduced normal
deviatoric stress from its true value. Comparison of the
different boundary conditions, as well as numerical
methods, to solve the near-field problem will be
considered elsewhere. The results of calculations are as
follows:

By=15+0(8), 95=1-0.676+0(8),
A=1+0.326+0(6%), A5 =186.

The glacier-surface profiles are shown in Iigure 2, in
which we can see that the upper-surface elevation has a
point of local minimum, which coincides with the
conclusion of Barcilon and MacAyeal (1993). For
comparison, the far-field solutions, as £ — 0, are shown.
It is clear that, at a distance of several ice thicknesses [rom
the grounding line, the far-field solutions properly
describe the ice dynamics.

Several tests on the model examples were carried out
to compare the grounding-line positions found using
Thomas and Bentley’s (1978) boundary conditions and
those derived in this paper. The difference between the
results obtained is about 10% of the grounded glacier
length.

7. CONCLUSIONS

The study carried out here allows us to find strict
boundary conditions at the grounding line without the
use of simplifying assumptions, such as are made in the
boundary-layer approximation. The parameter 3 is
determined by the solution of the near-field problem;
however, for real glaciers, it can be found by natural
surveys. Changes in this parameter should reflect
individual peculiarities of the specific glacier, such as
sliding, temperature distributions and bed roughness.

The important result lies in the fact that the near-field
ice thickness at the grounding line and that of the far field
for the grounded glacier part differ from the flotation
thickness by —3.3% and —0.1%, respectively. This means
that the condition of hydrostatic equilibrium for the ice at
the grounding line is the boundary condition for the
grounded part of the glacier as well as being a proper
approximation for the relationship between the ice
thickness and the water depth at that line.

The glacier-surface profiles in the vicinity of the
grounding line can be found separately from the solutions
of the far-field problems, where the span scales are much
higher. This allows us to find the glacier-surface elevation
to a sufficient order of accuracy in all regions. The
existence of a local minimum of the upper-surface
elevation almost over the grounding line is commensurate
with real glacier characteristics. This implies that the
detection of such a line of local minimum elevation by
surveys can point to the grounding-line position.

Our coherent approach to the study of all parts of the
glaciological system (grounded ice sheet, ice shell” and
transition zone) allows us to find relationships between
the spatial scales of its parts via the parameters € (typical
ice-surface slope) and ¢ (normalized difference between
ice and water densities), which characterize exterior
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conditions of the existence of the glacier. This also allows
us to construct a complete model describing the dynamics
of the system.

Despite the fact that most glaciers are essentially non-
isothermal, the form of the boundary conditions at the
grounding line does not change, except for the constants 3
and 9%, The case of Glen’s flow law will be considered
clsewhere.
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APPENDIX

The numerical algorithm to solve Equations (45) and
(46) requires two initial conditions for hgy at the point
& = 0. In addition, Equations (45) and (46) include the
unknown parameter 3y, whose determination needs
another imposed condition. In order to elucidate these
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questions, it is necessary to examine the behaviour of the
function hgy as € — 0 and £ — +oc.

The asymptotic behavior of ¢y and hyy, when £ —
+oc, can easily be derived:

s
20y ' (y—1)

5 =
VA +E hoo

hoy = &—-toa. (51)

Generally, A; # A. From Equations (31), we can con-
clude that

lim h,()” =il {52)
E—-+00

We now convert Equation (46) to a form from which
we can deduce the behaviour of hyg in the vicinity of the
grounding line. With the use of the first equation of (12)
and after differentiation, Equation (46) can be trans-
formed to the following form:

( Phon 0o
Baohl, + kit [f' Y
W L ()yZ 0&-_) y=1—hm
Py Py 2 [0
2}._! : o ‘_ — .r' —— ==
¥ ?“()[U'.U?UE ol (R "oy
63' Iy (-).‘3 0
df"()y d-” y=1-hn
L E=0:thyp=1. (53)
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For the problem under consideration, we assume that
hoo is a smooth function and belongs to the class
H*(—00, +¢); then we have hj,(0) = 0. Taking, in the
vicinity of the grounding line hgo(§) = 1. we can find ¥
when £ and y are small (Barcilon and MacAyeal, 1993):
Yoo = CrY2 cos(6/2) sin @ + O(r*2), where r and @ are
polar coordinates and ' is an unknown constant. It is
easy to verify that. with the stream function chosen in this
way, hg(€) =1 will be the solution of Equation (53).
Also, the coefficient of A, tends to zero, as £ — 0. These
results suggest that complementary inital conditions are
defined by the problem itself and are A, = 0, h{j, < oo on
&=l

Generally, the solution of Equation (53) with arbi-
trary gy does not satisfy conditon (52), which is
necessary to match the far-field solution for the ice
thickness to the near-field one, because it was derived
from Equation (46) by differentiation. Hence, we have
condition (32) to determine [Fy. However, il we solve
Equations (45) and (46). then Equation (52) is satslied,
0(0) < 20 is not valid for arbitrary Fy.
Numerical calculations show that this relation is equiva-
lent to Ay (0) = 0 and numerical approximation of h{j,(0)
with finite AE, where A€ is the discretization length, is a

but the relation h

continuous function of Fyy. Hence there exists a unique
solution of Equations (45) and (46).
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