CONDITIONING MAPS ON ORTHOMODULAR LATTICES

by D. J. FOULIS† AND C. H. RANDALL

(Received 12 September, 1969)

1. Introduction. Let (X, Σ, μ) be a probability space, so that X is a non-empty set, Σ is a Boolean σ -algebra of subsets of X, and μ is a probability measure defined on Σ . If $D \in \Sigma$ is such that $\mu(D) \neq 0$, then one traditionally associates with D a new probability measure μ_D , called the conditional probability measure determined by D, and defined by $\mu_D(E) = \mu(D \cap E)/\mu(D)$, for all $E \in \Sigma$.

Define mappings $\gamma_D: \Sigma \to \Sigma$ and $\gamma_D^+: \Sigma \to \Sigma$ by $\gamma_D(E) = D \cap E$ and $\gamma_D^+(E) = D' \cup E$, for all $E \in \Sigma$, where D' denotes the complement of D in X. Then, we have $\gamma_D(E) \subset F \Leftrightarrow E \subset \gamma_D^+(F)$, for all $E, F \in \Sigma$. Moreover, if $E, F \in \Sigma$ with $E \subset F'$, then $\gamma_D(E) \subset (\gamma_D(F))'$. Finally, $\mu_D(E) = \mu(\gamma_D(E))/\mu(\gamma_D(X))$ holds for all $E \in \Sigma$.

In what follows, we shall generalize mappings such as γ_D above from Boolean σ -algebras such as Σ to arbitrary orthomodular lattices, our motivation being that the admissible propositions affiliated with an empirical science tend to band together to form an orthomodular lattice L, and such an L need not be a Boolean algebra [6], [7], [8].

We shall assume that the reader is familiar with the basic facts about orthomodular lattices such as can be found in [1] and [4]. In particular, whenever we distribute an infimum over a supremum (or vice-versa) in the course of our calculations within an orthomodular lattice, it will be seen that this distribution is justified by [4, Theorem 5].

A map $\gamma: L_0 \to L_1$, where L_0 and L_1 are orthomodular lattices, will be said to be *residuated* [3] if and only if there exists a second map $\gamma^+: L_1 \to L_0$ (necessarily unique and called the *residual* of γ) such that, for all $e \in L_0$ and all $f \in L_1$, $\gamma(e) \le f \Leftrightarrow e \le \gamma^+(f)$. It is easy to see that a residuated map preserves arbitrary suprema and that the composition of residuated maps is again a residuated map; see [3]. If $\gamma: L_0 \to L_1$ is residuated, we define the *adjoint* of γ to be the map $\gamma^*: L_1 \to L_0$ given by $\gamma^*(f) = (\gamma^+(f'))'$, for all $f \in L_1$. Clearly, if $\gamma: L_0 \to L_1$ is residuated and $e \in L_1$, then $\gamma(e) = 0 \Leftrightarrow e \le (\gamma^*(1))'$, 1 being the order unit in L_1 .

Two elements e, f belonging to an orthomodular lattice are said to be *orthogonal*, in symbols $e \perp f$, if and only if $e \leq f'$. Two residuated maps $\gamma, \delta: L_0 \to L_1$ are called *orthogonal*, in symbols $\gamma \perp \delta$, if and only if $\gamma(1)$ is orthogonal to $\delta(1)$. Evidently, $\gamma \perp \delta$ if and only if $\delta^* \gamma = 0$, where $0: L_0 \to L_0$ is the residuated map sending every element of L_0 onto the order zero $0 \in L_0$.

Suppose that L_0 , L_1 are complete orthomodular lattices and that $(\gamma_i \mid i \in I)$ is a family of residuated maps $\gamma_i : L_0 \to L_1$. Then, we define the *envelope* of the family $(\gamma_i \mid i \in I)$, in symbols $\operatorname{env}(\gamma_i \mid i \in I)$, by $\operatorname{env}(\gamma_i \mid i \in I) = \gamma$, where $\gamma : L_0 \to L_1$ is the map given by $\gamma(e) = \bigvee (\gamma_i(e) \mid i \in I)$ for $e \in L_0$. It is easy to verify that $\operatorname{env}(\gamma_i \mid i \in I)$ is residuated and that $(\operatorname{env}(\gamma_i \mid i \in I))^* = \operatorname{env}(\gamma_i^* \mid i \in I)$.

If L is any orthomodular lattice and if $e \in L$, then the Sasaki projection $\phi_e: L \to L$ is defined by $\phi_e(f) = e \land (e' \lor f)$, for all $f \in L$. It is known [4] that ϕ_e is a residuated map with $\phi_e =$

† The work of the first author on this paper was supported by National Science Foundation grant GP-9005.

 $(\phi_e)^* = \phi_e \phi_e$. If $e, f \in L$, we say that e commutes with f and we write eCf if and only if $\phi_e(f) = e \wedge f$. If eCf for every $f \in L$, then we say that e belongs to the center of L and we denote the center of L by C(L). If $C(L) = \{0, 1\}$, then we say that L is irreducible. The basic facts about commutativity and the centre of an orthomodular lattice can be found in [4] and will not be repeated here.

If L_0 , L_1 are orthomodular lattices and if $\phi: L_0 \to L_1$ is a mapping that preserves finite infima, finite suprema and the orthocomplementation, then we call ϕ a homomorphism and we define the kernel of ϕ by ker $(\phi) = \phi^{-1}(0)$. Of course, a bijective homomorphism is called an isomorphism.

Evidently, the kernel of a homomorphism is a lattice ideal in the domain of that homomorphism. If L is any orthomodular lattice and if J is a lattice ideal in L, then we call J a p-ideal if and only if $\phi_e(J) \subset J$ holds for every $e \in L$. The kernel of a homomorphism is a p-ideal and, conversely, any p-ideal is a homomorphism kernel. Naturally, an orthomodular lattice L is called *simple* if and only if every non-zero homomorphism defined on L is an isomorphism onto its image. Consequently, L is simple if and only if $\{0\}$ and L itself are the only p-ideals in L. Clearly, any simple orthomodular lattice L is irreducible, since if $e \neq 0$, 1 is an element in the center of L, then $J = \{x \in L \mid x \leq e\}$ is a non-trivial p-ideal in L.

If L is any orthomodular lattice and if $e \in L$, then a subset of L of the form $L[0, e] = \{x \in L \mid x \le e\}$ is called a *segment* in L. If $f \to f'$ denotes the orthocomplementation on L, then the map $x \to x^{\sharp} = x' \land e$ is an orthocomplementation for the segment L[0, e] and, equipped with this orthocomplementation, L[0, e] is itself an orthomodular lattice.

2. Conditioning maps. Let L_0 , L_1 be orthomodular lattices. A map $\gamma: L_0 \to L_1$ is called a *conditioning map* if and only if γ is residuated and, for all $e, f \in L_0$, $e \perp f \Rightarrow \gamma(e) \perp \gamma(f)$. We note that if (X, Σ, μ) is a probability space and if $D \in \Sigma$, then the map $\gamma_D: \Sigma \to \Sigma$ defined for $E \in \Sigma$ by $\gamma_D(E) = D \cap E$ is a conditioning map.

LEMMA 1. Let L_0 , L_1 be orthomodular lattices and let $\gamma: L_0 \to L_1$ be a residuated map. Then, the following conditions are mutually equivalent.

- (i) for $e \in L_0$, $\gamma(e) \perp \gamma(e')$;
- (ii) for $e \in L_0$, $\gamma(e') = \gamma(e)' \wedge \gamma(1)$;
- (iii) for $e \in L_0$, $\gamma(e)' = \gamma(e') \vee \gamma(1)'$;
- (iv) y is a conditioning map.

Proof. Suppose that (i) holds. Since γ is residuated, it is isotone, and so $\gamma(e') \leq \gamma(1)$; hence, by (i), $\gamma(e') \leq \gamma(e)' \wedge \gamma(1)$. Put $g = \gamma(e)' \wedge \gamma(1) \wedge \gamma(e')'$, and note that (by orthomodularity) condition (ii) will follow immediately if we can show that g = 0. Now

$$g' = \gamma(e) \lor \gamma(1)' \lor \gamma(e') = \gamma(e \lor e') \lor \gamma(1)' = \gamma(1) \lor \gamma(1)' = 1;$$

hence g=0 and (ii) holds. Suppose that (ii) holds and replace e by e' in (ii) to obtain $\gamma(e)=\gamma(e')'\wedge\gamma(1)$. Taking the orthocomplement of both sides of the latter equation yields (iii). Assume that (iii) holds and that $a,b\in L_0$ with $a\perp b$. Then $\gamma(a)\leq \gamma(b')\leq \gamma(b')\vee\gamma(1)'=\gamma(b)'$; hence (iv) obtains. That (iv) implies (i) is clear, and the proof is complete.

COROLLARY 2. Let L_0 , L_1 be orthomodular lattices and let $\gamma: L_0 \to L_1$ be a conditioning map. Put $L_2 = L_1[0, \gamma(1)]$. Then $\gamma: L_0 \to L_2$ is a homomorphism. Hence if $(e_i \mid i \in I)$ is any family of elements of L_0 indexed by the non-empty set I and if $e = \bigwedge(e_i \mid i \in I)$ exists in L_0 , then $\bigwedge(\gamma(e_i) \mid i \in I)$ exists in L_1 and equals $\gamma(e)$.

Lemma 3. Let L_0 , L_1 be orthomodular lattices and let $\gamma: L_0 \to L_1$ be a conditioning map. Then

- (i) for $e \in L_0$, $\gamma * \gamma(e) \leq e$;
- (ii) for $f \in L_1$, $f \land \gamma(1) \leq \gamma \gamma^*(f)$;
- (iii) for $e \in L_0$, $e \le \gamma^*(1) \Rightarrow e = \gamma^*\gamma(e)$;
- (iv) if $\gamma^*(1) = 1$, then $e = \gamma^*\gamma(e) = \gamma^+\gamma(e)$ for all $e \in L_0$.

Proof. To prove (i), we use part (iii) of Lemma 1 and compute as follows:

$$\gamma^* \gamma(e) = (\gamma^+ (\gamma(e)'))' = (\gamma^+ (\gamma(e') \vee \gamma(1)'))' \leq (\gamma^+ \gamma(e'))' \leq e.$$

To prove (ii), we make a similar computation, using part (ii) of Lemma 1, as follows:

$$\gamma \gamma^*(f) = \gamma((\gamma^+(f'))') = (\gamma \gamma^+(f'))' \wedge \gamma(1) \ge f \wedge \gamma(1).$$

To prove (iii), assume that $e \le \gamma^*(1)$ and put $g = (\gamma^*\gamma(e))' \land e$. By part (i) of the present lemma and the orthomodularity of L_0 , it will suffice to show that g = 0. We have

$$\gamma(g) = \gamma((\gamma^*\gamma(e))') \land \gamma(e) = (\gamma\gamma^*\gamma(e))' \land \gamma(1) \land \gamma(e)$$

by Corollary 2 and part (ii) of Lemma 1. By part (ii) of the present lemma, $\gamma(e) \land \gamma(1) \leq \gamma \gamma^* \gamma(e)$; hence $\gamma(g) = 0$. It follows that $g \leq (\gamma^*(1))'$. Since also $g \leq e \leq \gamma^*(1)$, we have g = 0 as desired.

To prove (iv), assume that $\gamma^*(1) = 1$, $e \in L_0$. By part (iii) of the present lemma, we have $e = \gamma^* \gamma(e)$. Also, $e \le \gamma^+ \gamma(e)$. Put $h = \gamma^+ \gamma(e) \wedge e'$, and note that (iv) will follow from the orthomodularity of L_0 if we can show that h = 0. But,

$$\gamma(h) = \gamma \gamma^+ \gamma(e) \wedge \gamma(e') = \gamma(e) \wedge \gamma(e') = \gamma(e \wedge e') = \gamma(0) = 0$$

by Corollary 2. Hence, $h \le (\gamma^*(1))' = 1' = 0$, and so h = 0 as desired. The proof is complete.

LEMMA 4. Let L_0 , L_1 be orthomodular lattices and let $\gamma: L_0 \to L_1$ be a conditioning map. Then $\gamma^*(1)$ belongs to the center of L_0 .

Proof. Let $e \in L_0$ and put $g = \gamma^*(1)$, $h = (e \vee g') \wedge g$. We must show that $h = e \wedge g$. Since $e \wedge g \le h \le g$, it will suffice to prove that $h \le e$. By part (ii) of Lemma 3,

$$\gamma(1) = 1 \land \gamma(1) \leq \gamma \gamma^*(1) = \gamma(g).$$

Since $\gamma(g) \leq \gamma(1)$, we have $\gamma(g) = \gamma(1)$. Since $h \leq g = \gamma^*(1)$, then, by part (iii) of Lemma 3, $h = \gamma^*\gamma(h)$. But, since $\gamma(e) \leq \gamma(1) = \gamma(g)$ and since $\gamma(g') \leq \gamma(g)'$, Corollary 2 gives $\gamma(h) = (\gamma(e) \vee \gamma(g')) \wedge \gamma(g) = \gamma(e) \wedge \gamma(g) = \gamma(e)$. It follows that $h = \gamma^*\gamma(h) = \gamma^*\gamma(e) \leq e$ by part (i) of Lemma 3, and the proof is complete.

COROLLARY 5. Let L_0 , L_1 be orthomodular lattices and let L_0 be irreducible. Let $\gamma: L_0 \to L_1$ be a conditioning map other than the trivial map sending every element of L_0 onto the zero element of L_1 . Then, for $e \in L_0$, $e = \gamma^* \gamma(e) = \gamma^+ \gamma(e)$ and γ is an injection.

Proof. Lemma 4 and part (iv) of Lemma 3.

LEMMA 6. Let L_0 , L_1 be orthomodular lattices and let $\gamma: L_0 \to L_1$ be a conditioning map. Then, for $e, f \in L_0$, $\gamma(\phi_e(f)) = \phi_{\gamma(e)}(\gamma(f))$.

Proof. Since $\gamma(e)$, $\gamma(e')$, $\gamma(f) \le \gamma(1)$, and since $\gamma(e)' = \gamma(e') \lor \gamma(1)'$ by part (iii) of Lemma 1, we have

$$\begin{aligned} \phi_{\gamma(e)}(\gamma(f)) &= \gamma(e) \land (\gamma(e)' \lor \gamma(f)) \\ &= \gamma(e) \land (\gamma(e') \lor \gamma(f) \lor \gamma(1)') \\ &= \left[\gamma(e) \land (\gamma(e') \lor \gamma(f)) \right] \lor \left[\gamma(e) \land \gamma(1)' \right] \\ &= \gamma(e \land (e' \lor f)) \lor 0 = \gamma(\phi_e(f)). \end{aligned}$$

COROLLARY 7. Let L_0 , L_1 be orthomodular lattices and let $\gamma: L_0 \to L_1$ be a conditioning map. Let $e, f \in L_0$. Then

- (i) $eCf \Rightarrow \gamma(e)C\gamma(f)$;
- (ii) if $\gamma^*(1) = 1$, then $eCf \Leftrightarrow \gamma(e)C\gamma(f)$.

Lemma 8. Let L_0 , L_1 be complete orthomodular lattices and let $(\gamma_i | i \in I)$ be an orthogonal family of conditioning maps $\gamma_i : L_0 \to L_1$. Then env $(\gamma_i | i \in I) = \gamma$ is a conditioning map.

Proof. Let $e \in L_0$. By part (i) of Lemma 1, it will suffice to prove that $\gamma(e') \leq \gamma(e)'$; that is,

$$\bigvee (\gamma_i(e') | i \in I) \leq \bigwedge (\gamma_i(e)' | j \in I).$$

To prove the latter inequality, we must show that, for $i, j \in I$, $\gamma_i(e') \le \gamma_j(e)'$. If i = j, this is clear from the fact that γ_i is a conditioning map; hence we can suppose that $i \ne j$. Then, since $(\gamma_i \mid i \in I)$ is an orthogonal family, $\gamma_i(1) \le \gamma_j(1)'$; hence $\gamma_i(e) \le \gamma_i(1) \le \gamma_j(1)' \le \gamma_j(e)'$. The proof is complete.

LEMMA 9. Let L_0 , L_1 be orthomodular lattices and let $\gamma: L_0 \to L_1$ be a conditioning map. Then, if J is a p-ideal in L_1 , $\gamma^{-1}(J)$ is a p-ideal in L_0 .

Proof. Since J is a p-ideal in L_1 , we can form the quotient orthomodular lattice L_1/J . Let η be the canonical homomorphism $\eta: L_1 \to L_1/J$ and define a map

$$\phi: L_1[0, \gamma(1)] \to L_1/J[0, \eta\gamma(1)]$$

by $\phi(f) = \eta(f)$ for all $f \in L_1[0, \gamma(1)]$. Evidently, ϕ is a homomorphism and $\ker(\phi) = J \cap L_1[0, \gamma(1)]$. Hence $\phi \gamma : L_0 \to L_1/J[0, \eta \gamma(1)]$ is a homomorphism, so $\gamma^{-1}(J) = \ker(\phi \gamma)$ is a *p*-ideal.

3. Complete Dacey spaces. By an orthogonality space, we mean an ordered pair (X, \perp) where X is a non-empty set and \perp is a symmetric irreflexive binary relation defined on X. If (X, \perp) is an orthogonality space and $A \subset X$, we define $A^{\perp} = \{x \in X \mid x \perp a \text{ for all } a \in A\}$, $A^{\perp \perp} = (A^{\perp})^{\perp}$, etc. For $A, B \subset X$, we always have $A \subset A^{\perp \perp}$ and $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$; hence $A^{\perp} = A^{\perp \perp \perp}$. A subset C of X is called closed if and only if $C = C^{\perp \perp}$ and the set of all closed subsets of X is denoted by $\mathscr{C}(X, \perp)$. Evidently, \emptyset , $X \in \mathscr{C}(X, \perp)$ and, for $A \subset X$, $A \in \mathscr{C}(X, \perp)$ if and only if there exists $B \subset X$ such that $B^{\perp} = A$. Partially ordered by ordinary set inclusion and equipped with the orthocomplementation $C \to C^{\perp}$, $\mathscr{C}(X, \perp)$ forms a complete ortholattice [1]. If (C_i) is any

family of elements of $\mathscr{C}(X, \perp)$, then the infimum and the supremum of the family (C_j) are given respectively by the formulas

$$\bigwedge_j C_j = \bigcap_j C_j$$
 and $\bigvee_j C_j = (\bigcup_j C_j)^{\perp \perp} = (\bigcap_j C_j^{\perp})^{\perp}$.

A subset D of X is called an *orthogonal* set if and only if $a, b \in D \Rightarrow a = b$ or $a \perp b$. If $A \subset B \subset X$ and if A is an orthogonal set, then (by Zorn's lemma) there is a maximal orthogonal set $D \subset B$ such that $A \subset D$.

We call (X, \perp) a complete Dacey space [2] if and only if whenever $A \in \mathcal{C}(X, \perp)$ and D is a maximal orthogonal subset of A, then $D^{\perp \perp} = A^{\perp \perp}$. By [5, Theorem 1], (X, \perp) is a complete Dacey space if and only if $\mathcal{C}(X, \perp)$ is a complete orthomodular lattice.

Let (X, #) be any orthogonality space and let Γ denote the free monoid (semigroup with unit 1) over X. We extend the orthogonality relation # on X to an orthogonality relation \bot on Γ by defining $a \bot b$ (for $a, b \in \Gamma$) if and only if there exist $c, d, e \in \Gamma$ and there exist $x, y \in X$ with a = cxd, b = cye and x # y. In [5, Theorem 4], we proved that if (X, #) is a complete Dacey space, then so is (Γ, \bot) . We call (Γ, \bot) the *free orthogonality monoid over the base space* (X, #). The motivation for this construction can be found in [8] and will not be repeated here.

Henceforth we assume, once and for all, that (X, #) is a complete Dacey space and that (Γ, \bot) is the free orthogonality monoid over (X, #). Motivated by [8], we refer to an orthogonal subset D of Γ as an event and we call a maximal event E an operation. If $A, B \subset \Gamma$, we naturally define $AB = \{ab \mid a \in A \text{ and } b \in B\}$ and we note that the product of two events is again an event. We do not bother to distinguish between a singleton subset $\{a\}$ of Γ and the element $a \in \Gamma$, so that, for instance, we write $\{a\}B$ as aB. For $a \in \Gamma$, $B \subset \Gamma$, we define $a^{-1}B \subset \Gamma$ by $a^{-1}B = \{c \in \Gamma \mid ac \in B\}$, and we note that if D is an event, so is $a^{-1}D$. Furthermore, if D is an event and $a^{-1}D \neq \emptyset$, one easily verifies that $(a^{-1}D)^{\perp} = a^{-1}D^{\perp}$; hence, if E is an operation and $a^{-1}E \neq \emptyset$, then $a^{-1}E$ is again an operation. The following lemma can be proved by direct calculation.

LEMMA 10. Let D be a non-empty event and suppose that, for each $d \in D$, M_d is a non-empty subset of Γ . Let $D_0 = \{d \in D \mid M_d^1 \neq \emptyset\}$. Put $M = \{d \in D \mid M_d \mid d \in D\}$. Then

(i)
$$M^{\perp} = \bigcup (dM_d^{\perp} \mid d \in D_0) \cup D^{\perp}$$
,

(ii)
$$M^{\perp \perp} = \bigcup (dM_d^{\perp \perp} \mid d \in D_0) \cup (D \setminus D_0)^{\perp \perp}$$
.

COROLLARY 11. Let D be any event and let $B \subset \Gamma$. Then

(i) if
$$B \neq \emptyset$$
, $(DB)^{\perp} = DB^{\perp} \cup D^{\perp}$;

(ii) if
$$B^{\perp} \neq \emptyset$$
, $(DB)^{\perp \perp} = DB^{\perp \perp}$;

(iii) if
$$B^{\perp} = \emptyset$$
, $(DB)^{\perp \perp} = D^{\perp \perp}$.

We now define a mapping $\Psi: \mathscr{C}(X, \sharp) \to \mathscr{C}(\Gamma, \bot)$ by $\Psi(A) = A^{\perp \perp}$ for $A = A^{\sharp \sharp} \in \mathscr{C}(X, \sharp)$. It is easy to verify that Ψ is a conditioning map and that its adjoint is given by $\Psi^{\sharp}(B) = A^{\perp \perp}$

 $(B^{\perp} \cap X)^*$ for all $B = B^{\perp \perp} \in \mathscr{C}(\Gamma, \perp)$. Furthermore, $\Psi(X) = \Gamma$ and $\Psi^*(\Gamma) = X$; hence $\Psi: \mathscr{C}(X, \sharp) \to \mathscr{C}(\Gamma, \bot)$ is not only a conditioning map, but also an injective homomorphism. Notice that if $Z \subset X$, $\Psi(Z^{**}) = Z^{\perp \perp}$. We shall refer to the map Ψ as the canonical embedding of $\mathscr{C}(X, \sharp)$ into $\mathscr{C}(\Gamma, \bot)$.

We omit the straightforward proof of the following lemma.

LEMMA 12. Let $\Psi: \mathcal{C}(X, \sharp) \to \mathcal{C}(\Gamma, \bot)$ be the canonical embedding. Let $Z \subset X$. Then

- (i) $\Psi(Z^{**}) = Z^{\perp \perp}$;
- (ii) $\Psi(Z^*) = Z^{\perp}$; (iii) if $Z^* \neq \emptyset$, $\Psi(Z^{**}) = Z^{**}\Gamma$.

For $d \in \Gamma$, we define a mapping $\gamma_d : \mathscr{C}(\Gamma, \perp) \to \mathscr{C}(\Gamma, \perp)$ by $\gamma_d(A) = (dA)^{\perp \perp}$ for A = $A^{\perp \perp} \in \mathcal{C}(\Gamma, \perp)$. By Corollary 11, we have

$$\gamma_d(A) = \begin{cases} dA & \text{if} \quad A \neq \Gamma, \\ d^{\perp \perp} & \text{if} \quad A = \Gamma, \end{cases}$$

for all $d \in \Gamma$ and all $A \in \mathcal{C}(\Gamma, \perp)$.

LEMMA 13. If $A \in \mathcal{C}(\Gamma, \perp)$ and if $b \in \Gamma$, then $b^{-1}A \in \mathcal{C}(\Gamma, \perp)$.

Proof. Let $e \in \Gamma$. If $e \in b^{\perp}$, we have $b^{-1}e^{\perp} = \Gamma$. If $e \in b\Gamma$, say e = bd for some $d \in \Gamma$, then $b^{-1}e^{\perp}=d^{\perp}$. If $e \notin b\Gamma \cup b^{\perp}$, then $b^{-1}e^{\perp}=\emptyset$. In any case, $b^{-1}e^{\perp}\in \mathscr{C}(\Gamma,\perp)$. Since A is closed, we have $A = \bigcap (e^{\perp} \mid e \in A^{\perp})$; hence $b^{-1}A = \bigcap (b^{-1}e^{\perp} \mid e \in A^{\perp})$. Since an intersection of closed sets is closed, the lemma is proved.

THEOREM 14. For each $d \in \Gamma$, the map $\gamma_d : \mathcal{C}(\Gamma, \perp) \to \mathcal{C}(\Gamma, \perp)$ is a conditioning map and its residual γ_d^+ is given by $\gamma_d^+(A) = d^{-1}A$.

Proof. By Lemma 13, the map $\gamma_d^+: \mathscr{C}(\Gamma, \perp) \to \mathscr{C}(\Gamma, \perp)$ is well-defined. Evidently, for $A, B \in \mathcal{C}(\Gamma, \bot)$, we have $\gamma_d(A) \leq B \Leftrightarrow A \leq \gamma_d^+(B)$; hence γ_d is residuated with γ_d^+ as its residual. For $A \in \mathcal{C}(\Gamma, \bot)$, we have $dA^{\perp} \subset (dA)^{\perp}$, so that $(dA^{\perp})^{\perp \perp} \subset (dA)^{\perp \perp \perp}$; that is, $\gamma_d(A^{\perp}) \subset \gamma_d(A)^{\perp}$. It follows from part (i) of Lemma 1 that γ_d is a conditioning map.

For $d \in \Gamma$, we have $\gamma_d(\Gamma) = d^{\perp \perp}$; hence two conditioning maps γ_d and γ_e are orthogonal if and only if $d \perp e$ in Γ . Consequently, if D is an event, then the family $(\gamma_d \mid d \in D)$ is an orthogonal family of conditioning maps, so by Lemma 8, env $(\gamma_d | d \in D)$ is again a conditioning map. For any event D we define $\gamma_D: \mathscr{C}(\Gamma, \perp) \to \mathscr{C}(\Gamma, \perp)$ by $\gamma_D = \operatorname{env}(\gamma_d \mid d \in D)$. Evidently, for any event D and any $A \in \mathscr{C}(\Gamma, \perp)$, $\gamma_D(A) = (DA)^{\perp \perp}$ and $\gamma_D(\Gamma) = D^{\perp \perp}$.

LEMMA 15. Let D be an event. Then, $\gamma_D^*(\Gamma) = \Gamma$. Hence $\gamma_D: \mathscr{C}(\Gamma, \perp) \to \mathscr{C}(\Gamma, \perp)$ is an injection preserving arbitrary infima and suprema as well as orthogonality. Also, if $A, B \in \mathcal{C}(\Gamma, \bot)$, then A commutes with B in $\mathcal{C}(\Gamma, \bot)$ if and only if $\gamma_D(A)$ commutes with $\gamma_D(B)$ in $\mathscr{C}(\Gamma, \perp)$.

Proof. For any $A \in \mathcal{C}(\Gamma, \perp)$, we have $\gamma_D^*(A) = \bigvee ((d^{-1}A^{\perp})^{\perp} | d \in D)$; hence $\gamma_D^*(\Gamma) = \Gamma$. Application of part (iv) of Lemma 3 and part (ii) of Corollary 7 completes the proof.

LEMMA 16. Let $d \in \Gamma$, $A \in \mathcal{C}(\Gamma, \perp)$ and suppose that $\gamma_d^+(A) \neq \emptyset$. Then $\gamma_d^+(A^{\perp}) = (\gamma_d^+(A))^{\perp}$.

Proof. Suppose that $e \in d^{-1}A$, so that $de \in A$. We must show that $d^{-1}A^{\perp} = (d^{-1}A)^{\perp}$. Since it is clear that $d^{-1}A^{\perp} \subset (d^{-1}A)^{\perp}$, it will suffice to show that $(d^{-1}A)^{\perp} \subset d^{-1}A^{\perp}$. Let D be a maximal orthogonal subset of A chosen so that $de \in D$. Then $D^{\perp \perp} = A$, $D^{\perp} = A^{\perp}$ and $e \in d^{-1}D$, so that $\emptyset \neq d^{-1}D$. Since $\emptyset \neq d^{-1}D$, then $(d^{-1}D)^{\perp} = d^{-1}D^{\perp} = d^{-1}A^{\perp}$; hence it will suffice to show that $(d^{-1}A)^{\perp} \subset (d^{-1}D)^{\perp}$. Since $D \subset A$, then $d^{-1}D \subset d^{-1}A$ and $(d^{-1}A)^{\perp} \subset (d^{-1}D)^{\perp}$ as required.

COROLLARY 17. Suppose that $A, B \in \mathcal{C}(\Gamma, \bot)$ and that A commutes with B in $\mathcal{C}(\Gamma, \bot)$. Then, for every $d \in \Gamma$, $\gamma_d^+(A)$ commutes with $\gamma_d^+(B)$ in $\mathcal{C}(\Gamma, \bot)$.

Proof. We can assume that $\gamma_d^+(A) \neq \emptyset$. Hence, by Lemma 16, $(\gamma_d^+(A))^{\perp} = \gamma_d^+(A^{\perp})$. Since γ_d^+ is an isotone map, $\gamma_d^+(A^{\perp}) \vee \gamma_d^+(B) \leq \gamma_d^+(A^{\perp} \vee B)$. Thus

$$\begin{split} \gamma_d^+(A) \wedge \gamma_d^+(B) & \leq \gamma_d^+(A) \wedge \left[(\gamma_d^+(A))^\perp \vee \gamma_d^+(B) \right] \\ & = \gamma_d^+(A) \wedge \left[\gamma_d^+(A^\perp) \vee \gamma_d^+(B) \right] \\ & \leq \gamma_d^+(A) \wedge \gamma_d^+(A^\perp \vee B) \\ & = \gamma_d^+(A \wedge (A^\perp \vee B)) \\ & = \gamma_d^+(A \wedge B) = \gamma_d^+(A) \wedge \gamma_d^+(B). \end{split}$$

It follows that $\gamma_d^+(A)$ commutes with $\gamma_d^+(B)$.

THEOREM 18. If $\mathscr{C}(X, \sharp)$ is a simple orthomodular lattice, then so is $\mathscr{C}(\Gamma, \bot)$.

Proof. Suppose that $\mathscr{C}(X, \sharp)$ is simple but that $\mathscr{C}(\Gamma, \bot)$ is not. Then $\mathscr{C}(\Gamma, \bot)$ contains a non-trivial p-ideal, \mathscr{I} say. Then there exists $A \in \mathscr{C}(\Gamma, \bot)$ with $A \neq \emptyset$, $A \neq \Gamma$ and $A \in \mathscr{I}$. Since $A \neq \emptyset$, we can choose an element $a \in A$. Since $A \neq \Gamma$, then $a^{\bot} \neq \emptyset$. Since $a^{\bot\bot} \subset A^{\bot\bot} = A \in \mathscr{I}$, then $a^{\bot\bot} \in \mathscr{I}$.

Every element $a \in \Gamma$, other than the unit 1, can be written uniquely in the form $a = x_1 x_2 \dots x_n$ with $x_1, x_2, \dots, x_n \in \Gamma$. We define length (a) = n and we define length (1) = 0. For each non-trivial p-ideal \mathscr{I} in $\mathscr{C}(\Gamma, \perp)$, we define $n(\mathscr{I}) = \min(\operatorname{length}(a) \mid a \in \Gamma, a^{\perp} \neq \emptyset)$ and $a^{\perp \perp} \in \mathscr{I}$. Choose \mathscr{I}_0 to be a non-trivial p-ideal in $\mathscr{C}(\Gamma, \perp)$ for which $n(\mathscr{I}_0) = n_0$ is minimal and choose $a \in \Gamma$ with $a^{\perp} \neq \emptyset$, $a^{\perp \perp} \in \mathscr{I}_0$ and length $(a) = n_0$. Since $a^{\perp} \neq \emptyset$, then $a \neq 1$; hence we can factor a as a = xb for some $x \in X$ and some $b \in \Gamma$.

Let $\Psi: \mathscr{C}(X, \sharp) \to \mathscr{C}(\Gamma, \bot)$ be the canonical embedding and put $\mathscr{J}_0 = \Psi^{-1}(\mathscr{I}_0)$. By Lemma 9, \mathscr{J}_0 is a *p*-ideal in $\mathscr{C}(X, \sharp)$; hence (since $\mathscr{C}(X, \sharp)$ is simple) $\mathscr{J}_0 = \{\emptyset\}$ or else $\mathscr{J}_0 = \mathscr{C}(X, \sharp)$. In the latter case, we would have $\Gamma = \Psi(X) \in \mathscr{I}_0$, contradicting the non-triviality of \mathscr{I}_0 ; hence we conclude that $\mathscr{J}_0 = \{\emptyset\}$.

If $b^{\perp} = \emptyset$, we would have $a^{\perp \perp} = x^{\perp \perp}$ so that $n_0 = 1$ and a = x. But then $x^{\#} \in \Psi^{-1}(\mathscr{I}_0) = \mathscr{I}_0 = \{\emptyset\}$, by part (i) of Lemma 12; hence $x^{\#} = \emptyset$, contradicting $x \in x^{\#}$. We conclude that $b^{\perp} \neq \emptyset$. Hence $n_0 = \text{length } (a) = 1 + \text{length } (b) > 1$.

Since $b^{\perp} \neq \emptyset$, we have $\gamma_x(b^{\perp \perp}) = a^{\perp \perp} \in \mathscr{I}_0$. Let $\mathscr{I}_1 = \gamma_x^{-1}(\mathscr{I}_0)$, noting that (by Lemma 9) \mathscr{I}_1 is a *p*-ideal in $\mathscr{C}(\Gamma, \bot)$ and that $b^{\perp \perp} \in \mathscr{I}_1$. If $\mathscr{I}_1 = \mathscr{C}(\Gamma, \bot)$, then $x^{\perp \perp} = \gamma_x(\Gamma) \in \mathscr{I}_0$, con-

tradicting $n(\mathscr{I}_0) = n_0 > 1$. Hence \mathscr{I}_1 is a non-trivial p-ideal in $\mathscr{C}(\Gamma, \bot)$ and $n(\mathscr{I}_1) \le \text{length } (b) = n_0 - 1$, contradicting our choice of \mathscr{I}_0 and completing the proof.

If C and D are events, it is easy to check (using Corollary 11) that $\gamma_C \gamma_D = \gamma_{CD}$; hence the set of all γ_D such that D is an event forms a monoid under composition. This monoid is analogous to the Baer *-semigroup S_{Ω} obtained by Pool [6] in his axiomatization of general quantum mechanics; however, we shall not discuss the exact connection between this monoid of conditioning maps and Pool's S_{Ω} in this paper.

REFERENCES

- 1. G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloquium Pub. XXV (Providence, R.I., 1967).
- 2. J. C. Dacey, Jr., Orthomodular Spaces, Ph.D. Thesis, Univ. of Mass., Amherst, Mass., 1968.
- 3. J. C. Derdérian, Residuated mappings, Pacific J. Math. 20 (1967), 35-43.
- 4. D. J. Foulis, A note on orthomodular lattices, Portugaliae Math. 21, Fasc. 1 (1962), 65-72.
- 5. D. J. Foulis and C. H. Randall, Lexicographic orthogonality (to appear in J. Combinatorial Theory).
- 6. J. C. T. Pool, Baer *-semigroups and the logic of quantum mechanics, *Commun. Math. Phys.* 9 (1968), 118-141.
- 7. C. H. Randall, A Mathematical Foundation for Empirical Science with Special Reference to Quantum Theory, Knolls Atomic Power Lab. Report KAPL-3147 (1966).
- 8. C. H. Randall and D. J. Foulis, An approach to empirical logic, *Amer. Math. Monthly* 77 (1970), 363-374.

THE UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS