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1. Introduction. Let (X, X, u) be a probability space, so that X is a non-empty set,
is a Boolean o-algebra of subsets of X, and u is a probability measure defined on Z. If DeX
is such that u(D) # 0, then one traditionally associates with D a new probability measure yup,
called the conditional probability measure determined by D, and defined by up(E)=
W(DNE)[ (D), for all EeX.

Define mappings y,:Z —Z and y5:Z - X by y,(E) = DnE and y;(E) = D'UE, for all
EeZ, where D’ denotes the complement of D in X. Then, we have y,(E)c F<> Ecyp(F), for
all E, FeX. Moreover, if E, FeX with EcF’, then y,(E)c(yp(F)). Finally, uy(E) =
u(yp(E)) u(yp(X)) holds for all EeX.

In what follows, we shall generalize mappings such as y, above from Boolean o-algebras
such as T to arbitrary orthomodular lattices, our motivation being that the admissible propo-
sitions affiliated with an empirical science tend to band together to form an orthomodular
lattice L, and such an L need not be a Boolean algebra [6], [7], [8]).

We shall assume that the reader is familiar with the basic facts about orthomodular
lattices such as can be found in [1] and [4]. In particular, whenever we distribute an infimum
over a supremum (or vice-versa) in the course of our calculations within an orthomodular
lattice, it will be seen that this distribution is justified by [4, Theorem 5].

Amapy:Ly— L,, where L, and L, are orthomodular lattices, will be said to be residuated
[3] if and only if there exists a second map y*:L; — L, (necessarily unique and called the
residual of y) such that, for allee Ly and all fe L,, y(e) £ f <>e Sy*(f). Itiseasy to see thata
residuated map preserves arbitrary suprema and that the composition of residuated maps is
again a residuated map; see [3). If y: L, — L, is residuated, we define the adjoint of y to be the
map y*: L, — L, given by y*(f) = (y*(f")), for all fe L,. Clearly, if y: L, — L, is residuated
and ee L,, then y(e) = 0<>e < (y*(1)), 1 being the order unit in L,.

Two elements e, f belonging to an orthomodular lattice are said to be orthogonal, in
symbols el f, if and only if e £ f*. Two residuated maps y, 6: L, — L, are called orthogonal,
in symbols yL 4, if and only if y(1) is orthogonal to &(1). Evidently, yL ¢ if and only if
6*y =0, where 0: Ly — L, is the residuated map sending every element of L, onto the order
zero 0e L,

Suppose that L, L, are complete orthomodular lattices and that (y, | iel)is a family of
residuated maps y;: L, — L,. Then, we define the envelope of the family (y, | iel), in symbols
env(y;|iel), by env(y,|iel) =y, where y: L, — L, is the map given by y(e) =V/(y(e) | i€])
for eeL,. It is easy to verify that env(y,-|ieI) is residuated and that (env(y,liel))* =
env(y,*|iel).

If L is any orthomodular lattice and if e L, then the Sasaki projection ¢,: L — L is defined
by ¢.(f) =en(e' vf), for all feL. It is known [4] that ¢, is a residuated map with ¢, =
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(P)* = ¢.0.. Ife, feL, we say that e commutes with fand we write eCfif and only if ¢.(f) =
enf. If eCf for every fe L, then we say that e belongs to the center of L and we denote the
center of L by C(L). If C(L) = {0, 1}, then we say that L is irreducible. The basic facts about
commutativity and the centre of an orthomodular lattice can be found in [4] and will not be
repeated here.

If Ly, L, are orthomodular lattices and if ¢: L, — L, is a mapping that preserves finite
infima, finite suprema and the orthocomplementation, then we call ¢ a homomorphism and we
define the kernel of ¢ by ker(¢) = ¢~'(0). Of course, a bijective homomorphism is called an
isomorphism.

Evidently, the kernel of a homomorphism is a lattice ideal in the domain of that homo-
morphism. If L is any orthomodular lattice and if J is a lattice ideal in L, then we call J a
p-ideal if and only if ¢.(J)cJ holds for every ee L. The kernel of a homomorphism is a
p-ideal and, conversely, any p-ideal is a homomorphism kernel. Naturally, an orthomodular
lattice L is called simple if and only if every non-zero homomorphism defined on L is an
isomorphism onto its image. Consequently, L is simple if and only if {0} and L itself are the
only p-ideals in L. Clearly, any simple orthomodular lattice L is irreducible, since if e # 0, 1
is an element in the center of L, then J = {xe L|x < e} is a non-trivial p-ideal in L.

If L is any orthomodular lattice and if e€ L, then a subset of L of the form L]0, e] =
{xeL|x < e} is called a segment in L. If f— f’ denotes the orthocomplementation on L,
then the map x— x* = x' Ae is an orthocomplementation for the segment L[0,e] and,
equipped with this orthocomplementation, L[0, ] is itself an orthomodular lattice.

2. Conditioning maps. Let L, L; be orthomodular lattices. A map y:Ly,— L, is called
a conditioning map if and only if y is residuated and, for all ¢, fe Ly, e L f=1y(e) Ly(f). We
note that if (X, Z, u) is a probability space and if DeZ, then the map y,:Z —-Z defined for
EeX by y,(E) = DnE is a conditioning map.

LemMA 1. Let Ly, L, be orthomodular lattices and let y: Ly — L, be a residuated map.
Then, the following conditions are mutually equivalent.
(i) for ee L, y(e) L y(e');
(ii) for e€ Ly, y(e') = ¥(e)' A¥(1);
(iii) for e€ Ly, y(e)' = y(e') v y(1)’;
(iv) v is a conditioning map.

Proof. Suppose that (i) holds. Since y is residuated, it is isotone, and so y(e’) £ y(1);
hence, by (i), y(e') < y(e) Ay(1). Put g=1y(e) Ay(1)Ay(e’), and note that (by ortho-
modularity) condition (ii) will follow immediately if we can show that g = 0. Now

g =e)vy(1) vye) =yeve)vy(d)y =y1)vy(l) =1;

hence g =0 and (ii) holds. Suppose that (ii) holds and replace ¢ by ¢’ in (ii) to obtain
y(e) = y(e') Ay(1). Taking the orthocomplement of both sides of the latter equation yields (iii).
Assume that (iii) holds and that @, be L, with aL b. Then y(a) < y(b") £ y(b') v (1) = y(b)';
hence (iv) obtains. That (iv) implies (i) is clear, and the proof is complete.
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COROLLARY 2. Let Ly, L, be orthomodular lattices and let y: Ly — L, be a conditioning
map. Put L, = L,[0,9(1)]. Then y:L,— L, is a homomorphism. Hence if (e,]iel) is any
Samily of elements of L, indexed by the non-empty set I and if e = \(e;|i€l) exists in L, then
N(y(e) I iel) exists in L, and equals y(e).

LemMA 3. Let Ly, L, be orthomodular lattices and let y: Ly — L, be a conditioning map.
Then

(i) for e Lo, y*y(e) S e;

(i) for fe Ly, fay(1) Syy*(f);

(iii) for ee Lo, e < y*(1) = e =y*y(e);

(iv) if y*(1) = 1, then e = y*y(e) = y*y(e) for all ec L,,.

Proof. To prove (i), we use part (iii) of Lemma 1 and compute as follows:

Y*v(e) = (T (1(e))) =y (w(e) v ¥(1))) S (¢ ¥e)) Se.
To prove (ii), we make a similar computation, using part (ii) of Lemma 1, as follows:
W) =2(GTUN) = ()Y A 21 A p(D).
To prove (iii), assume that e £ y*(1) and put g = (y*y(e))’ A e. By part(i) of the present lemma
and the orthomodularity of L, it will suffice to show that g =0. We have
7(9) = W (*3(e))) A v(e) = 7*¥(&)) A ¥(1) A ¥(e)
by Corollary 2 and part(ii) of Lemma 1. By part(ii) of the present lemma, y(e) A (1) < yy*y(e);

hence y(g) =0. It follows that g < (y*(1)). Since also g < e <y*(1), we have g=0 as
desired.

To prove (iv), assume that y*(1) = 1, ee L,. By part (iii) of the present lemma, we have
e=7y*p(e). Also, e £y"y(e). Put h=y*y(e)ae’, and note that (iv) will follow from the
orthomodularity of L, if we can show that # =0. But,

y(h) =yy*y(e) A v(e) = y(e) A ¥(e') = (e A &) =7(0) =0
by Corollary 2. Hence, 2 £ (y*(1)) = 1’ =0, and so 4 = 0 as desired. The proof is complete.

LemMMA 4. Let Lo, L, be orthomodular lattices and let y: Lo — L, be a conditioning map.
Then y*(1) belongs to the center of Ly,

Proof. Let ecL, and put g =y*(1), h=(evg')ang. We must show that h=eng.
Sinceen g £ h £ g, it will suffice to prove that & < e. By part (ii) of Lemma 3,

(1) = 1Ay(1) S yv*(1) = »(g).
Since y(g) £ y(1), we have y(g)=17(1). Since h < g=1y*(1), then, by part (i) of
Lemma 3, & = y*y(h). But, since y(e) £ y(1) = y(g) and since y(g’) < y(g)’, Corollary 2 gives
y(h) = (We) v 1(9)) A¥(g) = v(e) A¥(g) = ¥(e). It follows that h = y*y(h) = y*y(e) < e by part
(i) of Lemma 3, and the proof is complete.

COROLLARY 5. Let Ly, L, be orthomodular lattices and let L, be i(reducible. Lety:Lo— L,
be a conditioning map other than the trivial map sending every element of L, onto the zero
element of L,. Then, for e Ly, e = y*y(e) = y*y(e) and y is an injection.

Proof. Lemma 4 and part (iv) of Lemma 3.
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LEMMA 6. Let L,, L, be orthomodular lattices and let y: Ly — L, be a conditioning map.

Thenr fOI' e,fe LO’ Y(¢e(f)) = d’y(e)(?(f) )
Proof. Since y(e), y(e'), y(f) < y(1), and since y(e)’ = y(e’) v y(1)’ by part (iii) of Lemma 1,

we have
Gy e(¥(f)) =1(e) A (¥(e) v ¥(f))
=) A (v(e') v () v (1))
=[y(e) A (¥(e") v ()] v [¥(&) A w(1)]
=ye (e vf)vOo=ye)

COROLLARY 7. Let Ly, L\ be orthomodular lattices and let y: Ly — L, be a conditioning
map. Lete,feL, Then

(1) eCf=>9(e)Cy(f);

(i) if y*(1) = 1, then eCf <> y(e)Cy(/).

LemMa 8. Let Ly, L, be complete orthomodular lattices and let (y; | iel) be an orthogonal
family of conditioning maps y;: Lo — L,. Then env(y;|iel) =y is a conditioning map.

Proof. LeteeL, By part(i)of Lemma l,itwill suffice to provethat y(e’) < y(e)’; thatis,
V@i(e)|ieD) 2 Ny ey |ieD).

To prove the latter inequality, we must show that, for i, jel, y(e') S ye)’. If i =}, this is
clear from the fact that y, is a conditioning map; hence we can suppose that i3 j. Then,
since (y,|ieI) is an orthogonal family, y,(1) £y,(1)’; hence y(e) < y,(1) Sy (1) S ye).
The proof is complete.

LeMMA 9. Let Ly, L, be orthomodular lattices and let y: L, — L, be a conditioning map.
Then, if J is a p-ideal in L, y~*(J) is a p-ideal in L.

Proof. Since J is a p-ideal in L,, we can form the quotient orthomodular lattice L,/J.
Let 5 be the canonical homomorphism n: L, — L,/J and define a map

¢: L, [0, »(1)] - L, /J10, my(1)]
by &(f) =n(f) for all feL,[0, y(1)]. Evidently, ¢ is a homomorphism and ker(¢) =
JnL,[0, y(1)]. Hence ¢y: Ly — L,/J[0, ny(1)] is a homomorphism, so y~'(J) = ker(¢y) is a
p-ideal.

3. Complete Dacey spaces. By an orthogonality space, we mean an ordered pair (X, 1)
where X is a non-empty set and L is a symmetric irreflexive binary relation defined on X. If
(X, 1) is an orthogonality space and A< X, we define A* = {xe X|x Laforallae 4}, 4** =
(A%, etc. For 4, Bc X, we always have AcA** and Ac B=B*cA*; hence At = A**+.
A subset C of X is called closed if and only if C = C** and the set of all closed subsets of X is
denoted by (X, 1). Evidently, 0, Xe%(X, L) and, for Ac X, Ae%4(X, 1) if and only if there
exists B X such that B* = 4. Partially ordered by ordinary set inclusion and equipped with
the orthocomplementation C — C*, (X, 1) forms a complete ortholattice [1]. If (C;)is any
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family of elements of €(X, L), then the infimum and the supremum of the family (C,) are given
respectively by the formulas

NiCi=(;C; and V;C;=(J;Cp" =(N;Cn™

A subset D of X is called an orthogonal set if and onlyif g, be D=>a=boralb IfAcBcX
and if A is an orthogonal set, then (by Zorn’s lemma) there is a maximal orthogonal set D= B
such that Ac D.

We call (X, 1) a complete Dacey space [2] if and only if whenever Ae%(X, L)and Dis a
maximal orthogonal subset of 4, then D** = 41, By [5, Theorem 1], (X, L) is a complete
Dacey space if and only if €(X, 1) is a complete orthomodular lattice.

Let (X, #) be any orthogonality space and let I' denote the free monoid (semigroup with
unit 1) over X. We extend the orthogonality relation # on X to an orthogonality relation L
on I' by defining a L b (for a, bel') if and only if there exist ¢, d, eI and there exist x, ye X
with @ = cxd, b = cye and x#y. In [5, Theorem 4], we proved that if (X, #) is a complete
Dacey space, then so is (I', L). We call (I, 1) the free orthogonality monoid over the base
space (X, #). The motivation for this construction can be found in [8] and will not be repeated
here. ‘

Henceforth we assume, once and for all, that (X, #) is a complete Dacey space and that
(T, L) is the free orthogonality monoid over (X, #). Motivated by [8], we refer to an ortho-
gonal subset D of I as an event and we call a maximal event E an operation. If A, BcT, we
naturally define 4B = {ab|ae 4 and be B} and we note that the product of two events is again
an event. We do not bother to distinguish between a singleton subset {a} of I" and the element
aeT, so that, for instance, we write {a}B as aB. For ael', BcT, we define a 'B<T by
a™'B = {cel |ace B}, and we note that if D is an event, so is @™ *D. Furthermore, if D is an
event and a~'D # 0, one easily verifies that (a~'D)* = a~'D'; hence, if E is an operation
and a”'E # 0, then a~ ' E is again an operation. The following lemma can be proved by direct
calculation.

LemMaA 10. Let D be a non-empty event and suppose that, for eachde D, M, is a non-empty
subset of T. Let Dy ={deD|Mj; #0}. Put M =|)(dM,|deD). Then

(i) M*={J(dM;|deDo)uD*,

(i) M = {J(dM;*|deDg)u(D\Do)*.

CoOROLLARY 11. Let D be any event and let BcTI". Then
(i) if B # 0, (DB)* = DB*UD*;

(ii) if B* # @, (DB)** = DB**;

(iii) if B* =9, (DB)** = D**.

We now define a mapping ¥:4(X, #) — 4(, 1) by ¥(4) = A** for A = A" e%(X, ¥).
It is easy to verify that ¥ is a conditioning map and that its adjoint is given by ¥*(B) =
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(B*nX)* for all B=B**e¥([, Ll). Furthermore, Y(X)=I and ¥*(I')=X; hence
Y:4(X, $) - %(T, 1) is not only a conditioning map, but also an injective homomorphism.
Notice that if Zc X, W(Z*) = Z**. We shall refer to the map ¥ as the canonical embedding
of 4(X, #) into (T, L).

We omit the straightforward proof of the following lemma.

LemMMA 12. Let W:%4(X, #) » €(T, L) be the canonical embedding. Let Z<X. Then

(i) W(Z™) = Z*;
(i) W(Z%) = Z*;
(iii) if Z* # 0, W(Z%) = Z*T.
For del', we define a mapping y,:4(I, 1) > 4(T, L) by y44) = (dA)** for A=
A'*e®(T, 1). By Corollary 11, we have

o dA if A#T,
i FITE

for all deT and all Ae€(T, 1).
LemMma 13. If Ae%(T, L) and if bel, then b~ 'Ae¥(T, L).

Proof. Leteel. If ecb', we have b~ et =T. If eI, say e = bd for some deT, then
b let =d*. Ife¢bI'Ub*, then b~'et = 0. In any case, b~ lete@(T, L). Since A is closed,
we have 4 = ((e*|e€A'); hence b™'4 = ((b™'e'|ee A*). Since an intersection of closed
sets is closed, the lemma is proved.

THEOREM 14. For each del’, the map y,: 4, L) — €(T, 1) is a conditioning map and its
residual y} is given by yF(A) = d™ ' A.

Proof. By Lemma 13, the map y; :4(I, 1) = 4(I', 1) is well-defined. Evidently, for
A, Be%(T, 1), we have y,(4) £ B<>A < y; (B); hence y, is residuated with y; as its residual.
For Ae%4(T’, L), we have dA* =(dA)*, so that (dA1)** c(dA)*:; that is, y,(4Y)cy,(4)* .
It follows from part (i) of Lemma 1 that 7y, is a conditioning map.

For deT, we have y,(I') = d**; hence two conditioning maps y,and y, are orthogonal if
and onlyif dLeinI'. Consequently, if D is an event, then the family (y, | de D) is an ortho-
gonal family of conditioning maps, so by Lemma 8, env (y,,ldeD) is again a conditioning
map. For any event D we define 1,:4(, L) - €(T', L) by y, =env(y, | de D). Evidently,
for any event D and any A€¥4(T, L), y,(4) = (DA)** and y,(T') = D**.

LemmA 15. Let D be an event. Then, y5(I)=T. Hence y,: 4L, L)%, L) is
an injection preserving arbitrary infima and suprema as well as orthogonality. Also, if
A, Be%(T, L), then A commutes with B in €(I', 1) if and only if yp(A) commutes with yy(B) in
¥, 1).

Proof. For any 4e%(T, L), we have y5(4) = \/((d~'4")*|deD); hence y}(I)=T.
Application of part (iv) of Lemma 3 and part (ii) of Corollary 7 completes the proof.
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LeMMA 16. Let deT', Ae%(T", 1) and suppose that yf(A) # 0. Then y}(A*) = (7 (A))*.

Proof. Suppose that eed™'A, so that dee A. We must show that d~'4* = (d™'4)".
Since it is clear that d !4+ =(d ™' 4)*, it will suffice to show that (d~'4)*cd~'4*. Let D be
a maximal orthogonal subset of 4 chosen so that dee D. Then D' = A, D* = A* and
eed™'D, so that @ #d~'D. Since 0 #d~'D, then (d~'D)* =d~'D* =d~'4*; hence it
will suffice to show that (d~'4)* =(d~'D)*. Since Dc A, thend 'Dcd™'4 and (d~'A)* <
(d~'D)* as required.

COROLLARY 17. Suppose that A, Be¥4(T, 1) and that A commutes with B in 4(I', 1).
Then, for every deT, y; (A) commutes with y; (B) in (T, L).

Proof. We can assume that y7(4) # 0. Hence, by Lemma 16, (7] (4))* = y5(4%).
Since y; is an isotone map, y; (A1) v y7 (B) £ 95 (A* v B). Thus

74 (A) A 7 (B) £ 74 (4) A [(v7 (A))* v 77 (B)]
=74 (4) A [yi (4Y) v yi (B)]
< 77(A) A yi(4t v B)
=7 (AA (4" v B))
=74 (A A B) =y (4) A/ (B).
It follows that y; (4) commutes with y; (B).
THEOREM 18. If €(X, %) is a simple orthomodular lattice, then so is ¢(I", 1).

Proof. Suppose that €(X, #) is simple but that ¢(I", 1) is not. Then %(I', 1) contains
a non-trivial p-ideal, .# say. Then there exists 4e¥4(I', L) with 4 #£0, A#T and AeS.
Since A # 0, we can choose an clement ac 4. Since A #T, then a* # 0. Since a*tc At =
Ae S, then a*tes.

Every element ael’, other than the unit 1, can be written uniquely in the form a =
X1Xy ... x, with x,, x,,...,x,eI". We define length (a) = n and we define length (1) =0.
For each non-trivial p-ideal # in ¥(I", 1), we define n(#) = min (length (a) | ael, a* # 0 and
a*te#). Choose 4, to be a non-trivial p-ideal in €(T", L) for which n(#,) = n, is minimal
and choose ael” with a' # 0, a*' e £, and length (@) = n,. Since a* # 0, then a # 1; hence
we can factor a as a = xb for some xe X and some berl.

Let ¥:4(X, #) > %, 1) be the canonical embedding and put £, =¥ "'(S,). By
Lemma 9, ¢, is a p-ideal in €(X, #); hence (since 4(X, #) is simple) #, = {0} or else £, =
%(X,#%). In the latter case, we would have I' = ¥(X)e #,, contradicting the non-triviality
of #,; hence we conclude that ¢, = {0}.

If b* = 9, we would have a** = x** so that n, = | and @ = x. But then x*e¥~!(S,) =
Fo = {0}, by part (i) of Lemma 12; hence x* = 0, contradicting xex*. We conclude that
b* # 0. Hence n, = length (@) = 1+length (b) > 1.

Since b* # 0, we have y,(b'') = att e S, Let £, = y; '(F,), noting that (by Lemma 9)
£, is a p-ideal in €(T', 1) and that b*‘ef#,. If £, =4(T, L), then x** = y(T)e #,, con-
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tradicting n(#,) =ny > 1. Hence £, is a non-trivial p-ideal in ¥(I', L) and n(#,) =<
length (b) = n,— 1, contradicting our choice of #, and completing the proof.

If C and D are events, it is easy to check (using Corollary 11) that y.yp = y¢cp; hence the
set of all y, such that D is an event forms a monoid under composition. This monoid is
analogous to the Baer *-semigroup Sq obtained by Pool [6] in his axiomatization of general
quantum mechanics; however, we shall not discuss the exact connection between this monoid
of conditioning maps and Pool’s Sy in this paper.
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