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1. Introduction. Let (X, E, //) be a probability space, so that X is a non-empty set, £
is a Boolean a-algebra of subsets of X, and \x is a probability measure defined on S. If D e S
is such that ji(£>) / 0, then one traditionally associates with D a new probability measure /xc,
called the conditional probability measure determined by D, and defined by nD(E) =
n(DnE)/n(D), for all Eel.

Define mappings yo:I ->£ and yt: E -»2 by yD(£) = £>n£ and )£(£) = D'u£, for all
jEel, where Z>' denotes the complement of D in jf. Then, we have yD(E)c:FoE<zy£(F), for
all E,FeI.. Moreover, if £, F e Z with E<=F', then yD(E)<=(yD(F))'. Finally, HD(E) =
KyD(E))ln(yD(X)) holds for all EeH.

In what follows, we shall generalize mappings such as yD above from Boolean a-algebras
such as £ to arbitrary orthomodular lattices, our motivation being that the admissible propo-
sitions affiliated with an empirical science tend to band together to form an orthomodular
lattice L, and such an L need not be a Boolean algebra [6], [7], [8].

We shall assume that the reader is familiar with the basic facts about orthomodular
lattices such as can be found in [1] and [4]. In particular, whenever we distribute an infimum
over a supremum (or vice-versa) in the course of our calculations within an orthomodular
lattice, it will be seen that this distribution is justified by [4, Theorem 5].

A map y:L0-y Lt, where Lo and L, are orthomodular lattices, will be said to be residuated
[3] if and only if there exists a second map y+ :Lt -»L0 (necessarily unique and called the
residual of y) such that, for all eeL0 and al l /eLj , y[e) £f oe ^ y + ( / ) . It is easy to see that a
residuated map preserves arbitrary suprema and that the composition of residuated maps is
again a residuated map; see [3]. If y: Lo -> Lj is residuated, we define the adjoint of y to be the
map y*-.Li ->Lo given by y*(f) = (?+(/'))', for all/eL!- Clearly, if y.Lo-^Lj is residuated
and eeLu then y(e) = Qoe ^ (y*(\))', 1 being the order unit in Lv

Two elements e,f belonging to an orthomodular lattice are said to be orthogonal, in
symbols elf, if and only if e ^ / ' . Two residuated maps y, d: Lo -* Lt are called orthogonal,
in symbols y±<5, if and only if y(l) is orthogonal to 5(1). Evidently, y ! 5 if and only if
S*y = 0, where 0:£,0 -»LQ is the residuated map sending every element of Lo onto the order
zero 0GL O .

Suppose that Lo, L^ are complete orthomodular lattices and that (y, | iel) is a family of
residuated maps y,: Lo -> Lx. Then, we define the envelope of the family (yt \ iel), in symbols
env(y,|/e/), by env(y,|/e/) = y, where y:L0->Z,i is the map given by y(e) =V(Vi(e)|/e/)
for eeL0. It is easy to verify that env(y(|/e/) is residuated and that (env(y,|ie/))* =
env(y,* \iel).

lfL is any orthomodular lattice and ifeeL, then the Sasaki projection <f>e:L-+Lis defined
by <t>e(f) = eA{e'yf), for a l l /eL. It is known [4] that 4>e is a residuated map with (j>e =
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($e)* = <Pe<t>e- Ife,feL, we say that e commutes with/and we write eC/if and only if <t>e{f) =
e A / . If eCffot every feL, then we say that e belongs to the center of L and we denote the
center of L by C{L). If C(L) = {0, 1}, then we say that L is irreducible. The basic facts about
commutativity and the centre of an orthomodular lattice can be found in [4] and will not be
repeated here.

If Lo, Lt are orthomodular lattices and if <j>:L0 -* Ll is a mapping that preserves finite
infima, finite suprema and the orthocomplementation, then we call <j> a homomorphism and we
define the kernel of <j> by ker (</>) = $ ~' (0). Of course, a bijective homomorphism is called an
isomorphism.

Evidently, the kernel of a homomorphism is a lattice ideal in the domain of that homo-
morphism. If L is any orthomodular lattice and if / is a lattice ideal in L, then we call J a
p-ideal if and only if <j)e(J)<=J holds for every eeL. The kernel of a homomorphism is a
/>-ideal and, conversely, any p-ideal is a homomorphism kernel. Naturally, an orthomodular
lattice L is called simple if and only if every non-zero homomorphism defined on L is an
isomorphism onto its image. Consequently, L is simple if and only if {0} and L itself are the
only p-ideals in L. Clearly, any simple orthomodular lattice L is irreducible, since if e ^ 0, 1
is an element in the center of L, then / = {xeL | x ^ e] is a non-trivial /7-ideal in L.

If L is any orthomodular lattice and if eeL, then a subset of L of the form L[0, e] =
{ X G L | X ^ e} is called a segment in L. I f / -*/ ' denotes the orthocomplementation on L,
then the map x->x* = x'Ae is an orthocomplementation for the segment L[0,e] and,
equipped with this orthocomplementation, L[0, e] is itself an orthomodular lattice.

2. Conditioning maps. Let Lo, Lt be orthomodular lattices. A map y: Lo -> Lx is called
a conditioning map if and only if y is residuated and, for all e,feL0, e J. /=> y(e) 1 y(/). We
note that if (X, 1, n) is a probability space and if D e l , then the map yD:Z -•£ defined for
Eel, by yD(£) = DnE is a conditioning map.

LEMMA 1. Let Lo, Ll be orthomodular lattices and let y:L0-* L t be a residuated map.
Then, the following conditions are mutually equivalent,

(i) for eeL0, y(e) ±y(e');
(ii) for

(in) for
(iv) y is a conditioning map.

Proof. Suppose that (i) holds. Since y is residuated, it is isotone, and so y(e') ^
hence, by (i), y(e') gy(e)'Ay(l). Put g = y(e)'Ay(l)Ay(e% and note that (by ortho-
modularity) condition (ii) will follow immediately if we can show that g = 0. Now

g' = y(e) v y(l)' v y(e') = y(e v e') v y(l)' = y(l) v y(l)' = 1;

hence g = 0 and (ii) holds. Suppose that (ii) holds and replace e by e' in (ii) to obtain
y(e) = y(e')' A y(l). Taking the orthocomplement of both sides of the latter equation yields (iii).
Assume that (iii) holds and that a,beL0 with al b. Then y(o) <; y(b') ^ y(b') v y(l)' = y(b)';
hence (iv) obtains. That (iv) implies (i) is clear, and the proof is complete.
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COROLLARY 2. Let Lo, L1 be orthomodular lattices and let y:L0-*Li be a conditioning
map. Put L2 = L,[0, y(l)]. Then y:L0-*L2 is a homomorphism. Hence if (e , | /e / ) is any
family of elements of Lo indexed by the non-empty set I and ife= f\{e, \ ie I) exists in Lo, then
A(y(e,-) | J'e/) exists in L, and equals y(e).

LEMMA 3. Let Lo, L, be orthomodular lattices and let y: Lo -> Lx be a conditioning map.
Then

(i)foreeL0,y*y(e)^e;

(ii) forfeLltfArtl)£yy*(f)l
(iii) for eeL0, e g y*(l)=> e =y*y(e);
(>v) '/?*(!) = 1> then e = y*y(e) = y+y(e)for all eeL0.
Proof. To prove (i), we use part (iii) of Lemma 1 and compute as follows:

y*y(e) = (y+(y(e)'))' = (y+(y(<0 v y(l)'))' ^ (y+y(O)' ^ e.
To prove (ii), we make a similar computation, using part (ii) of Lemma 1, as follows:

yy*(/) = y((y+(/'))') = (yy+(/'))' A y(i) £ / A y(i).
To prove (iii), assume that e ^ y*(l)andput^ = (y*y(e))'A e. By part (i) of the present lemma
and the orthomodularity of L0) it will suffice to show that g = 0. We have

y(<0 = y((y*y(e))') A y(e) = (yy*y(<0)' A y(i) A y(e)

by Corollary 2 and part (ii) of Lemma 1. By part(ii)ofthe present lemma, y{e) A y(l) ^ yy*y(e);
hence y(^) = 0. It follows that g ^ (y*(l))'. Since also g ^ e ^ y*(l), we have g = 0 as
desired.

To prove (iv), assume that y*(l) = 1, eeL0. By part (iii) of the present lemma, we have
e — y*y(e). Also, e ^ y+y(e). Put h = y*y{e)he', and note that (iv) will follow from the
orthomodularity of Lo if we can show that h = 0. But,

y(h) = yy+y(e) A y(e') = y(e) A y(e') = y(e A e') = y(0) = 0

by Corollary 2. Hence, h g (y*(l))' = 1' = 0, and so h = 0 as desired. The proof is complete.

LEMMA 4. Let Lo, Lx be orthomodular lattices and let y: Lo -> Lt be a conditioning map.
Then y*(l) belongs to the center of Lo.

Proof. Let eeL0 and put g = y*(\), h = (evg')Ag. We must show that h = eAg.
Since e A g ^ A ̂  ^, it will suffice to prove that h^e. By part(ii) of Lemma 3,

Since y(g)-^y(\), we have y(g) = y(l). Since A ^ # = y*(l), then, by part (iii) of
Lemma 3, h = y*y(A). But, since y(e) g y(l) = y(#) and since y(g') ̂  y(g)', Corollary 2 gives
y(/,) = (y(e) v v(^')) A y(#) = y{e) A •y(̂ ) = y(e). It follows that h = y*y(h) = y*y(e) ^ e by part
(i) of Lemma 3, and the proof is complete.

COROLLARY 5. Let Lo, Ls be orthomodular lattices and let Lo be irreducible. Lety:L0 -»Lx

be a conditioning map other than the trivial map sending every element of Lo onto the zero
element of Lu Then, for eeL0, e = y*y(e) = y+y(e) and y is an injection.

Proof. Lemma 4 and part (iv) of Lemma 3.
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LEMMA 6. Let Lo, L t be orthomodular lattices and let y: Lo -* L t be a conditioning map.
Then, for e,feL0, y(0e(/)) = <j>yMW))-

Proof. Since y(e), y(e'), y(f) ^ y(l), and since y{e)' = y{e')vy(\)' by part (iii) of Lemma 1,
we have

= V(e) A (y(e') v ?(/) v y(l)')

= [y(e)A(y(e')vy(/))]v[y(e)Ay(l)']

COROLLARY 7. Let Lo, Lx be orthomodular lattices and let y:L0 -* L{ be a conditioning
map. Lete,feL0. Then

(i) eC/=>y(e)Cy(/);
(ii) i/y*(l) = 1, then eCfoy(e)Cy(f).
LEMMA 8. Let Lo, Z.x be complete orthomodular lattices and let (y, | i s /) be an orthogonal

family of conditioning maps yt:L0 -* Ly. Then env(y; | iel) = y is a conditioning map.

Proof. Let e e Lo. By part (i) of Lemma 1, it will suffice to prove that y(e') ^ y(e)'; that is,

To prove the latter inequality, we must show that, for i,jel, yf(e') ^ yj(e)'. If i =_/, this is
clear from the fact that yf is a conditioning map; hence we can suppose that i #y. Then,
since (y, | / e / ) is an orthogonal family, y,(l) g y,-(l)'; hence yf(e) ^ y,(l) ^ y / 1 ) ' ^ y/e) ' .
The proof is complete.

LEMMA 9. Let Lo, L1 be orthomodular lattices and let y: Lo -> Lx be a conditioning map.
Then, if J is a p-ideal in Lu y~l{J) is ap-ideal in Lo.

Proof. Since / is a/j-ideal in Lu we can form the quotient orthomodular lattice LJJ.
Let tj be the canonical homomorphism n:Ll-*LlIJand define a map

by <t>(f) = tl(f) for all /eZ-JO, y(l)]. Evidently, <j) is a homomorphism and ker(</>) =
/ n L J O , y(l)]. Hence 0y:L o -+ L1/J[0, f?y(l)] is a homomorphism, so y'^J) = ker($y) is a

3. Complete Dacey spaces. By an orthogonality space, we mean an ordered pair (X, 1 )
where A' is a non-empty set and l i s a symmetric irreflexive binary relation defined on X. If
(X, 1 ) is an orthogonality space and AcX, we define^1 = {xe X\x La for all a e A], Axl =
(A1)1, etc. For A, BcX, we always have AcA11 and AcB^BLcA1-; hence A1 = A111.
A subset C of Z is called closed if and only if C = C11 and the set of all closed subsets of X is
denoted by <€{X, 1) . Evidently, 0, Xe<${X, 1 ) and, for AcX, Ae<$(X, 1 ) if and only if there
exists Be X such that 2?x = A. Partially ordered by ordinary set inclusion and equipped with
the orthocomplementation C-> C1, ^{X, 1 ) forms a complete ortholattice [1]. If (C,) is any
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family of elements oftf(X, 1), then the infimum and the supremum of the family (CJ) are given
respectively by the formulas

A;C, = a-C, and

A subset D of X is called an orthogonal set if and only if a, be D => a = b or a L b. If Ac Be X
and if A is an orthogonal set, then (by Zorn's lemma) there is a maximal orthogonal set DczB
such that Ac D.

We call (A', 1) a complete Dacey space [2] if and only if whenever A e^(X, 1) and D is a
maximal orthogonal subset of A, then Z)iX = AXL. By [5, Theorem 1], {X, 1) is a complete
Dacey space if and only if ^{X, 1) is a complete orthomodular lattice.

Let (A', #) be any orthogonality space and let F denote the free monoid (semigroup with
unit 1) over X. We extend the orthogonality relation 8 on X to an orthogonality relation _L
on F by defining alb (for a, beT) if and only if there exist c, d, eeT and there exist x, ye X
with a = cxd, b = eye and x$y. In [5, Theorem 4], we proved that if (X, #) is a complete
Dacey space, then so is (F, JL). We call (F, J_) the free orthogonality monoid over the base
space {X, I). The motivation for this construction can be found in [8] and will not be repeated
here.

Henceforth we assume, once and for all, that {X, I) is a complete Dacey space and that
(F, 1) is the free orthogonality monoid over (X, #). Motivated by [8], we refer to an ortho-
gonal subset D of F as an event and we call a maximal event E an operation. If A, BcT, we
naturally define AB = {ab \ aeA and beB) and we note that the product of two events is again
an event. We do not bother to distinguish between a singleton subset {a} of F and the element
aeT, so that, for instance, we write {a}B as aB. For aeT, BcT, we define a~lBcT by
a~lB = {ceT \ aceB}, and we note that if D is an event, so is a~iD. Furthermore, if D is an
event and a~lD # 0, one easily verifies that (a~1D)L = a~iD1; hence, if E is an operation
and a~ lE # 0, then a~ lE is again an operation. The following lemma can be proved by direct
calculation.

LEMMA 10. Let D be a non-empty event and suppose that, for each deD, Md is a non-empty
subset of F. Let Do = {deD\Mj ^ 0}. Put M = \J(dMd \ rfe D). Then

(i) M1

(ii) M± 1

COROLLARY 11. Let D be any event and let BcT. Then

(i) if B / 0, (Z)B)X = DBlvDL;
(ii) i f f i 1 ^ , (DB)LL = DB11;
(iii) if BL = 0, (DB)X± = DLL.

We now define a mapping ¥:<g(X, #)-+#(F, 1) by ¥(A) = A11 for A = A^e^iJ, i).
It is easy to verify that *P is a conditioning map and that its adjoint is given by *F*(Z?) =

https://doi.org/10.1017/S0017089500001129 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001129


40 D. J. FOULIS AND C. H. RANDALL

(BxnXf for all B = Bxle<tf(T, ±). Furthermore, V(X) = T and y¥*{T) = X; hence
4/:#(Z, #)-*<tf(T, 1) is not only a conditioning map, but also an injective homomorphism.
Notice that if ZcX, ^(Z**) = Z11. We shall refer to the map ¥ as the canonical embedding
of#(X, I) into ^(r , 1).

We omit the straightforward proof of the following lemma.

LEMMA 12. Let »F: <6(X, #) -> <$(T, 1) be the canonical embedding. Let ZcX. Then

(i)
(ii)
(iii) ifZ* i= 0, «P(Z**) = ZUT.

For </eF, we define a mapping yd: <#{T, 1) -> #(F, 1) by yd(A) = (dA)11 for /i =
, ±). By Corollary 11, we have

if Aj=T,

for all deT and all Ae%(T, 1).

LEMMA 13. IfAeW(T, 1) andifbeT, then b~lAe<S(T, ! ) •

Proo/. LeteeF. If eefc1, we have ^" ' e 1 = F . If eeAF, say e = bd for some rfeF, then
b~xe1 = d1. Ifefbrvb1, t h e n i " ^ 1 = 0. In any case, Z T V e ^ r , 1). Since A is closed,
we have A = (^(^ lee^ 1 ) ; henceft"1^ = f)(fe~1e1|ee/41). Since an intersection of closed
sets is closed, the lemma is proved.

THEOREM 14. For each deT, the map yd:^(r, 1) -> "^(F, 1) is a conditioning map and its
residual y£ is given by yd(A) = d~ 1A.

Proof. By Lemma 13, the map y / :^ ( r , -L)->#(r, 1) is well-defined. Evidently, for
A, 5 e # ( r , 1), we have yd(A) ̂  BoA ^ yd(B); hence y,, is residuated with yd as its residual.
For Ae<6(Y, 1), we have dALc(dA)\ so that ( ^ 1 ) l x c ( ^ ) i 1 1 ; that is, ylAL)ciyd{A)L.
It follows from part (i) of Lemma 1 that yd is a conditioning map.

For deT, we have yd(X) = d11; hence two conditioning maps y<,and ye are orthogonal if
and only if dl e in F. Consequently, if D is an event, then the family (yd | de D) is an ortho-
gonal family of conditioning maps, so by Lemma 8, env(yd\deD) is again a conditioning
map. For any event D we define -; o: "^(F, 1) -»#(F, 1) by yD = env (yd [ rfe D). Evidently,
for any event D and any A e<8(T, 1), yD(A) = (DA)11 and yD(T) = D11.

LEMMA 15. Let D be an event. Then, y*(F) = F. Hence yD: #(F, 1) -> <tf(T, 1) is
an injection preserving arbitrary infima and suprema as well as orthogonality. Also, if
A, Be^(T, 1), then A commutes with B in #(F, 1) if and only ifyD(A) commutes with yD{B) in

, 1).

Proof. For any AeV{T, 1), we have y%{A) = V((<T1i41)i|<*eZ)); hence y*D(T) = F.
Application of part (iv) of Lemma 3 and part (ii) of Corollary 7 completes the proof.
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LEMMA 16. Let deT, A eV(r, 1) and suppose that yf(A) # 0. Then yf(Al) = (yd
+04))x.

Proof. Suppose that eed~*A, so that dee A. We must show that d~lAL = (d~iA)1-.
Since it is clear that d~1A±cz(d~iA)1, it will suffice to show that (d~lA)Lczd~ 1A1. Let D be
a maximal orthogonal subset of A chosen so that deeD. Then DLl = A, DL = A1- and
eed-'D, so that 0 ± d~xD. Since 0 # d~lD, then {d~lD)L = d~iDL = iTM1; hence it
will suffice to show that (d-'A^cz^-^)1. Since D^A, then r ' J c r 1 ^ and G T ^ c
{d~lD)L as required.

COROLLARY 17. Suppose that A, Be^{T, 1) anrf that A commutes with B in #(F, _L).
Then, for every deT, yd

+(/4) commutes with yf(B) in ̂ (T, 1).

Proo/. We can assume that yd
+(/4) # 0. Hence, by Lemma 16, (yf(A))x = yf(A1).

Since yj" is an isotone map, yf(AL) v y/(B) ^ y^(/41 v B). Thus

yfiA) A yd
+(B) ^ yt(A) A [(y^/1))1 v yd

+(B)]

= yt(A) A [^(^l1) v yd
+(B)]

^ y*(A) A yd
+(Ax v B)

= y+(^ A B) = yd
+(,4) A y+(B).

It follows that y/(y4) commutes with y,J"(B).

THEOREM 18. If#(X, i) is a simple orthomodular lattice, then so is #(r, 1).

Proof. Suppose that <#(X, «) is simple but that <g(r, 1) is not. Then <#{T, 1) contains
a non-trivial p-ideal, J say. Then there exists Ae<tf(T, 1) with ^ i= 0, ^ # T and
Since A / 0, we can choose an element aeA. Since /4 ^ T, then a1 ^ 0. Since a

, then a ^ e / .
Every element aeT, other than the unit 1, can be written uniquely in the form a =

i 2 ... xn with JCI, x2,..., xneF. We define length (a) = n and we define length (1) = 0.
For each non-trivial p-ideal f in ^(T, ±), we define n(S) = min (length (a) | a e F, a1- ^ 0 and
fln£/). Choose ^ 0 to be a non-trivial />-ideal in #(F, 1) for which n(J0) = n0 is minimal
and choose aeF with a1 # 0, aLLeJ0 and length (a) = «0. Since ax # 0, then a # 1; hence
we can factor a as a = xb for some xeX and some beT.

Let Tr^Jlf, i ) -»#(r , 1) be the canonical embedding and put / 0 = ¥""'(•/<,)• By
Lemma 9, / 0 is a />-ideal in <${X, #); hence (since ^{X, i) is simple) / 0 = {0} or else / 0 =
(̂A", I). In the latter case, we would have T = f ( J ) e / 0 , contradicting the non-triviality

of y0; hence we conclude that /0 = {0}.
If ft1 = 0, we would have a11 = x1 1 so that n0 = 1 and a = x. But then x f t 6*" ' ( /o ) =

^o = {0}, by part (i) of Lemma 12; hence xn = 0, contradicting xex**. We conclude that
b1 # 0. Hence «0 = length (a) = 1 + length (b) > 1.

Since b1 # 0, we have yx(b
lx) = a11 e«/0- Let Jx = yj '(J^o)' noting that (by Lemma 9)

J î is a />-ideaI in ^(r , 1) and that bLLefv If./, = ^(r , 1), then x1 1 = y,(r)e^0, con-
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tradicting n(S0) - n0 > 1. Hence Jx is a non-trivial /7-ideal in <<f(r, 1 ) and «(«/,) ^
length (b) = n0 — 1, contradicting our choice of . / 0 and completing the proof.

If C and D are events, it is easy to check (using Corollary 11) that ycyD = yCD; hence the
set of all yD such that D is an event forms a monoid under composition. This monoid is
analogous to the Baer ^-semigroup Sn obtained by Pool [6] in his axiomatization of general
quantum mechanics; however, we shall not discuss the exact connection between this monoid
of conditioning maps and Pool's Sn in this paper.
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