Part E. New statistical approaches to dealing with bias associated with dietary data

Bias in dietary-report instruments and its implications for nutritional epidemiology

Victor Kipnis¹,*, Douglas Midthune¹, Laurence Freedman², Sheila Bingham³, Nicholas E Day⁴, Elio Riboli⁵, Pietro Ferrari⁵ and Raymond J Carroll⁶

¹Biometry Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892-7354, USA; ²Bar Ilan University, Ramat Gan, Israel and Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel; ³Medical Research Council, Dunn Human Nutrition Unit, Cambridge, UK; ⁴Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; ⁵Unit of Nutrition and Cancer, International Agency for Research on Cancer, Lyon, France; ⁶Department of Statistics, Texas A&M University, College Station, TX, USA

Abstract

Objective: To evaluate measurement error structure in dietary assessment instruments and to investigate its implications for nutritional studies, using urinary nitrogen excretion as a reference biomarker for protein intake.

Design: The dietary assessment methods included different food-frequency questionnaires (FFQs) and such conventional dietary-report reference instruments as a series of 24-hour recalls, 4-day weighed food records or 7-day diaries.

Setting: Six original pilot validation studies within the European Prospective Investigation of Cancer (EPIC), and two validation studies conducted by the British Medical Research Council (MRC) within the Norfolk cohort that later joined as a collaborative component cohort of EPIC.

Subjects: A sample of approximately 100 to 200 women and men, aged 35–74 years, from each of eight validation studies.

Results: In assessing protein intake, all conventional dietary-report reference methods violated the critical requirements for a valid reference instrument for evaluating, and adjusting for, dietary measurement error in an FFQ. They displayed systematic bias that depended partly on true intake and partly was person-specific, correlated with person-specific bias in the FFQ. Using the dietary-report methods as reference instruments produced substantial overestimation (up to 230%) of the FFQ correlation with true usual intake and serious underestimation (up to 240%) of the degree of attenuation of FFQ-based log relative risks.

Conclusion: The impact of measurement error in dietary assessment instruments on the design, analysis and interpretation of nutritional studies may be much greater than has been previously estimated, at least regarding protein intake.

Keywords

Dietary assessment methods
Measurement error
Biological markers

Researchers have long sought an association between diet and cancer. Animal experiments, international correlation studies and pooled results from some case–control studies suggest an important, albeit moderate, association between diet and major cancers. A number of highly visible large prospective studies have recently challenged this conventional wisdom in reporting no association between dietary fat and breast cancer⁷, dietary fibre and colorectal cancer⁸ and, most recently, fruit and vegetable intakes and colorectal cancer⁹. This controversy may be explained by a true lack of association between diet and cancer, the results of the international correlation and case–control studies being attributable to unmeasured confounding and recall bias, respectively. Alternatively, the prospective studies themselves may have serious methodological limitations, especially in the assessment of dietary measurement error and appropriate adjustment for it.

The food-frequency questionnaire (FFQ), which evaluates a person’s usual intake over a defined period, is relatively inexpensive and easy to administer (mass mailings are feasible), and has become the dietary assessment instrument of choice for large-scale nutritional epidemiological studies. Over the years, investigators have
recognised that the reported values from FFQs are subject to substantial error that can profoundly affect the design, analysis and interpretation of studies in nutritional epidemiology. At the individual level, error in the FFQ may include both systematic and random components. In general, systematic error comprises both intake-related and person-specific biases. Intake-related bias can be thought of as arising from correlation between error and true intake that usually manifests itself in a ‘flattened’ slope of the regression of reported on true intake. For example, given the socio-cultural pressure to follow a ‘correct’ dietary pattern, persons with a low intake of supposedly healthy food may be tempted to overreport their intake and those with a high intake of supposedly unhealthy food to underreport. Person-specific bias is the difference between an individual’s reported intake averaged over many repeated measures and true average intake, after taking intake-related bias into account. It varies from person to person and may be caused by personality characteristics such as susceptibility to socio-cultural influences. Examples of random within-person errors are day-to-day fluctuations in dietary exposure, processing variation, recording mistakes, and so on.

Usually, the presence of dietary measurement error attenuates (biases towards unity) the estimates of disease relative risk when analysing single exposure variables, and reduces the statistical power of the corresponding significance test. An important relation between diet and disease, therefore, may be obscured.

Realisation of this problem has prompted the integration into large epidemiological investigations of validation/calibration sub-studies that involve a more intensive, but presumably more accurate, dietary-report method, called the ‘reference’ instrument. Typically, multiple-day food records, sometimes with weighed quantities instead of estimated portion sizes, or multiple 24-hour recalls have been chosen as reference measurements. FFQs have been validated against such instruments, and correlations between the FFQ and reference instrument, sometimes adjusted for within-person random error in the reference instrument, have been quoted as evidence of FFQ validity. These reference instruments have also been used for adjusting FFQ-based relative risks for measurement error, using the ‘linear approximation’ version of the regression calibration approach that was introduced and made popular in epidemiology by Rosner et al.

Because, in principle, this approach allows for all three types of FFQ error (intake-related bias, person-specific bias and within-person variation), it gained recognition as the best currently available method for correcting risk estimates for dietary measurement error. The correct application of the regression calibration approach, however, requires that the adopted reference instrument satisfy some critical conditions. Although the reference instrument may be imperfect and contain errors of its own, these errors should be independent of (i) true intake and (ii) any error component in the FFQ. Throughout this paper we take these two conditions as requirements for a valid reference instrument.

A great deal of accumulated evidence suggests that dietary-report reference instruments are unlikely to meet these requirements. Studies involving biomarkers that represent valid reference measurements (‘reference’ biomarkers), such as doubly labelled water (DLW) for measuring energy expenditure and urinary nitrogen (UN) for measuring protein intake, suggest biased reporting on food records or recalls (on average towards under-reporting). More importantly, individuals are shown to differ systematically in their reporting accuracy. This could mean that all dietary-report instruments involve bias at the individual level. Part of the bias may depend on true intake (intake-related bias), therefore violating the first requirement for a valid reference instrument. Part of the bias may also be person-specific and correlate with its counterpart in the FFQ, thereby violating the second requirement.

These findings have led to proposals for new dietary measurement error models that might explain the failure of large prospective studies to find an association between diet and cancer, even when an important association to exist. For example, Kipnis et al. proposed a model that includes person-specific bias in the dietary-report reference instrument and allows this bias to be correlated with person-specific bias in the FFQ. Using a sensitivity analysis, they showed that this correlation is critical for valid regression calibration and, if ignored, could lead to substantial residual attenuation of FFQ-based relative risks. In a subsequent paper, Kipnis et al. generalised their model to also include intake-related bias in all dietary-report instruments and provided empirical evidence supporting their assumptions, based on the results from a calibration study that included UN biomarker for protein intake.

In this paper, we take this further and explore the structure of measurement error in different dietary assessment instruments and its implications for nutritional epidemiology, by analysing data from eight validation studies. In addition to repeat UN measurements, these studies included study-specific FFQs and the dietary-report reference instruments were 24-hour recalls, 4-day weighed food records or 7-day diaries.

Models and methods

Effect of measurement error

Consider the disease model

$$R(D, T) = \alpha_0 + \alpha_1 T,$$

where $R(D, T)$ denotes the risk of disease D on an appropriate scale (e.g. logistic) and T is true long-term usual intake of a given food or nutrient, also measured on
Bias and dietary-report instruments

an appropriate scale (e.g. logarithmic). The slope \(\alpha_1 \) represents an association between the nutrient intake and disease. Let \(Q = T + e_Q \) denote the intake obtained from an FFQ, where the difference between the reported and true intakes, \(e_Q \), defines measurement error. Note that short-term variation in diet is included in \(e_Q \) as well as systematic and random error components resulting from the instrument itself. We assume throughout that error \(e_Q \) is non-differential with respect to disease \(D \), i.e. reported intake contributes no additional information about disease risk beyond that provided by true intake.

Fitting model (1) to reported intake \(Q \), instead of true intake \(T \), yields a biased estimate \(\hat{\alpha}_1 \) of the exposure effect. To an excellent approximation\(^{20} \), the expected observed effect is expressed as

\[
E(\hat{\alpha}_1) = \lambda_1 \alpha_1,
\]

where the bias factor \(\lambda_1 \) is the slope in the linear regression of the true on observed intake,

\[
T = \lambda_0 + \lambda_1 Q + \xi,
\]

where \(\xi \) denotes random error. From the regression analysis,

\[
\lambda_1 = \frac{\text{cov}(T, Q)}{\sigma_Q^2} = \frac{\sigma_T}{\sigma_Q},
\]

where \(\sigma_T^2 \) and \(\sigma_Q^2 \) denote the variances of the true and reported intake, respectively, and \(\rho_{Q,T} \) is the correlation coefficient between the true and reported intakes. Although in general \(\lambda_1 \) could be negative or greater than one in magnitude, in nutritional studies usually \(\rho_{Q,T} > 0 \) and \(\sigma_T^2 \leq \sigma_Q^2 \) so \(\lambda_1 \) lies between 0 and 1 and can be thought of as an attenuation of the true effect \(\alpha_1 \) towards the null. Therefore, we call \(\lambda_1 \) the ‘attenuation factor’.

Measurement error also leads to loss of statistical power for testing the significance of the disease–exposure association. Assuming that the exposure is approximately normally distributed on an appropriate scale, the sample size required to reach the desired statistical power for a given exposure effect is proportional to\(^{21} \)

\[
N \propto 1/\left| \rho_T^2(Q, T)\sigma_T^2 \right| = 1/|\lambda_1^2 \sigma_Q^2|. \tag{4}
\]

Thus, the attenuation factor also has a strong influence on the statistical power and is extremely important in the design of a study.

Adjustment for measurement error

Following equation (2), the unbiased (adjusted) effect can be calculated as \(\hat{\alpha}_1^{\text{adj}} \), where \(\hat{\lambda}_1 \) is an unbiased estimate of the attenuation factor. Estimation of \(\lambda_1 \) usually requires simultaneous evaluation of additional dietary intake measurements made by the reference instrument in a calibration sub-study. Ideally, the reference measurement would be the ‘gold standard’ representing true intake \((T) \), and the attenuation factor would be estimated as the slope of regression (3). Unfortunately, such a standard does not exist in dietary studies. Instead, consider the reference measurement

\[
R = T + e_R,
\]

where error \(e_R \) satisfies the two requirements for a valid reference instrument:

\[
\text{cov}(e_R, T) = 0 \quad \text{(5)}
\]

and

\[
\text{cov}(e_R, e_Q) = 0. \quad \text{(6)}
\]

Then

\[
\lambda_1 = \frac{\text{cov}(T, Q)}{\sigma_Q^2} = \frac{\text{cov}(R, Q)}{\sigma_Q^2},
\]

and the attenuation factor can be estimated as the slope of the regression of the valid reference measurement on the FFQ.

Conventional approach

The above version of the regression calibration approach was first introduced in nutritional epidemiology by Rosner et al.\(^{10} \), who suggested using multiple-day food records as a reference instrument. Since then this method has become the state-of-the-art approach to adjustment for dietary measurement error. Other dietary-report instruments, such as 24-hour dietary recalls, have also been used as reference instruments. In applications of this approach, it is usually assumed that the dietary-report reference instrument contains only within-person random error, and that this error is uncorrelated with error in the FFQ. More precisely, for person \(i \) and repeat measurement \(j \), the conventional model for the dietary-report reference instrument \(F \) can be expressed as

\[
F_{ij} = T_i + e_{Qij},
\]

where

\[
E(e_{Qij}|T_i) = 0 \quad \text{(8)}
\]

and

\[
\text{cov}(e_{Qij}, e_{Qij}) = 0. \quad \text{(9)}
\]

Note that assumption (8) ensures that \(\text{cov}(e_{Qij}, T_i) = 0 \) and thus, together with assumption (9), guarantees that requirements (5) and (6) for a valid reference instrument are satisfied. Assumption (8) is especially convenient because it leads to uncorrelated within-person repeat measurements if they are taken reasonably far apart. As a result, in addition to estimating the attenuation factor, the reference instrument can also be used to estimate the correlation between FFQ and true usual intake known as the FFQ validity\(^{22} \).
A new dietary measurement error model

Based on recent evidence, as argued previously, it seems reasonable to question model (7)–(9) and to assume instead that all dietary-report instruments have systematic intake-related and person-specific biases. Moreover, because the same personality traits can influence person-specific biases in both the FFQ and the dietary-report reference instrument, one may anticipate that these two biases are positively correlated. A basic model that allows for this more general measurement error structure in all dietary-report instruments was introduced by Kipnis et al.19 and can be specified as follows. For person $i = 1, 2, \ldots, n$ and repeat measurement j, consider

$$Q_i = \beta_{Q0} + \beta_{Q1}T_i + r_i + u_{ij}, \quad j = 1, \ldots, m_Q$$ \hspace{1cm} (10)

and

$$F_i = \beta_{F0} + \beta_{F1}T_i + s_i + u_{ij}, \quad j = 1, \ldots, m_F$$ \hspace{1cm} (11)

where $\beta_{Q0} + (\beta_{Q1} - 1)T$ and $\beta_{F0} + (\beta_{F1} - 1)T_i$ represent intake-related biases, r_i and s_i denote person-specific biases, and u_{ij} and u_{ij} denote within-person random errors in the FFQ and dietary-report reference instrument, respectively. True intake T has mean μ_T and variance σ^2_T, and error components r, s, and u have mean zero and variances σ^2_r, σ^2_s, and σ^2_u, respectively. All random variables on the right-hand side of equations (10) and (11) are assumed to be mutually independent with two important exceptions. First, as was explained before, person-specific biases r and s are allowed to be correlated. Second, due to short-term fluctuation of diet over time, within-person random errors e and u may be correlated if different measurements are taken close in time.

The conventional model (7)–(9) is a special case of this more general model that assumes that both intake-related and person-specific biases in F are equal to zero, i.e. $\beta_{Q0} = 0$, $\beta_{F1} = 1$ and $\sigma^2_s = 0$. It is interesting to note that the presence of population-level bias in F, such as average underreporting, does not violate requirements (5) and (6) for a valid reference instrument, only if this bias is independent of true intake, i.e. if $\beta_{Q0} \neq 0$ but $\beta_{F1} = 1$. Under this condition, the additional presence of person-specific bias s also does not violate requirements (5) and (6), provided s is independent of person-specific bias r in the FFQ. Even correlation of random errors e and u due to short-term fluctuation in diet does not make the reference instrument invalid if at least one of its repeat administrations is made not too close to the administration of the FFQ22. It is the presence of bias related to true usual intake ($\beta_{F1} \neq 1$) and/or the presence of person-specific bias correlated with its counterpart in the FFQ that makes the dietary-report instrument invalid as a calibration reference instrument. Note, though, that bias related to either true usual intake or person-specific bias s, even if it is not correlated with r, violates assumption (8) and therefore would lead to a biased estimate of the FFQ validity.

Unfortunately, the more general model (10) and (11) is not identifiable2 without an alternative reference measurement that (i) is essentially unbiased and (ii) has errors that are unrelated to the errors in dietary-report instruments. In practice, these requirements may be satisfied only by certain ‘reference’ biomarkers that have a known functional relation to dietary intake which is independent of the amount of intake and other personal characteristics such as age, gender, body mass index, physical activity, etc.23. At the moment, there are only a few known biomarkers that satisfy this condition. For example, for any given person, the mean 24-hour UN excretion provides a practically constant proportion of 81% of dietary nitrogen intake19,24. After adjustment for this proportion, UN measurements become essentially unbiased at the individual level. Another known example is the measurement of total energy intake using DLW, provided that subjects in the study do not, on average, gain or lose weight15.

Consider now the second requirement for a valid reference instrument. Aside from day-to-day variation in diet, potential sources of remaining within-person random

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of men/women</th>
<th>Dietary-report instrument</th>
<th>Number of repeats of FFQ measurements</th>
<th>Number of repeats of dietary-report measurements for men/women</th>
<th>Number of repeats of 24-hour urinary nitrogen samples for men/women</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC pilot studies:</td>
<td></td>
<td>24-hour recall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0/119</td>
<td></td>
<td>2</td>
<td>0/12</td>
<td>0/4</td>
</tr>
<tr>
<td>Germany</td>
<td>49/55</td>
<td></td>
<td>2</td>
<td>12/12</td>
<td>4/4</td>
</tr>
<tr>
<td>Greece</td>
<td>43/38</td>
<td></td>
<td>2</td>
<td>12/12</td>
<td>3/3</td>
</tr>
<tr>
<td>Italy</td>
<td>59/158</td>
<td></td>
<td>2</td>
<td>10/12</td>
<td>3/6</td>
</tr>
<tr>
<td>Netherlands</td>
<td>68/68</td>
<td></td>
<td>2</td>
<td>12/12</td>
<td>4/4</td>
</tr>
<tr>
<td>Spain</td>
<td>46/47</td>
<td></td>
<td>2</td>
<td>12/12</td>
<td>4/4</td>
</tr>
<tr>
<td>MRC pilot study – Cambridge (UK)</td>
<td>0/160</td>
<td>4-day weighed food record</td>
<td>1</td>
<td>0/4</td>
<td>0/8</td>
</tr>
<tr>
<td>EPIC–Norfolk (UK)</td>
<td>64/93</td>
<td>7-day diary</td>
<td>2</td>
<td>2/2</td>
<td>6/6</td>
</tr>
</tbody>
</table>

FFQ – food-frequency questionnaire.

\[\text{https://www.cambridge.org/core}\]
errors in reference biomarkers are mostly physiological and should be different from errors in dietary-report instruments. It is therefore reasonable to assume that errors in reference biomarker measurements are independent from dietary-report errors, provided that the two types of measurement are not taken contemporaneously.

Formally, for person i and repeat measurement j, the model for a reference biomarker (M) can be expressed as

$$M_{ij} = T_i + v_{ij}, \quad j = 1, \ldots, m_M$$ \hspace{1cm} (12)$$

where v_{ij} denotes within-person random error with variance σ^2_v and is assumed to be independent of true intake T_i and of error components in dietary-report instruments, with one exception. As before, if the biomarker measurement is taken contemporaneously with dietary-report measurements, short-term fluctuation in diet may induce non-zero correlation among within-person random errors e_{ij}, u_{ij} and v_{ij}.

Validation data

The data come from six original pilot validation studies within the European Prospective Investigation of Cancer (EPIC)25, the pilot validation study conducted by the British Medical Research Council (MRC)26 and the validation study within the Norfolk cohort that joined later as a collaborative component cohort of EPIC27. The basic design of the eight validation studies is summarised in Table 1. Briefly, the six original EPIC validation studies in France, Germany, Greece, Italy, The Netherlands and Spain included country-specific FFQs, 24-hour recalls as the dietary-report reference instruments, and 24-hour urine collections. In most countries, FFQs were administered at the beginning and end of a one-year period. During this year, monthly 24-hour recalls were conducted, as far as possible covering equally all days of the week. In addition, at least three 24-hour urine collections were obtained at intervals of several months.

In the MRC pilot validation study, the principal measurements were a 4-day weighed food record (WFR) and two 24-hour urine collections obtained on each of four occasions (seasons) over the course of one year. Subjects were asked to make the first 24-hour urine collection on the third and fourth day of their WFR, and the second collection 3–4 days later. The study also included the Oxford FFQ that is based on the widely used Willett FFQ, modified to accommodate the characteristics of a British diet. This FFQ was administered once in season 3, one day before the start of the WFR.

The EPIC–Norfolk validation study covered a 9-month period. At baseline the participants filled out the first Oxford FFQ and completed the first 7-day diary (7DD) that was the dietary-report reference instrument. At the same time, the first series of two 24-hour urine collections (several days apart) were obtained. The other two series

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Means and variances of log-transformed nitrogen intake estimates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Gender</td>
<td>First FFQ mean</td>
</tr>
<tr>
<td>EPIC pilot – France</td>
<td>F</td>
<td>2.794</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2.778</td>
</tr>
<tr>
<td>EPIC pilot – Germany</td>
<td>F</td>
<td>2.745</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2.748</td>
</tr>
<tr>
<td>EPIC pilot – Greece</td>
<td>F</td>
<td>2.743</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2.756</td>
</tr>
<tr>
<td>EPIC pilot – Italy</td>
<td>F</td>
<td>2.743</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2.746</td>
</tr>
<tr>
<td>EPIC pilot – Netherlands</td>
<td>F</td>
<td>2.743</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2.746</td>
</tr>
<tr>
<td>EPIC pilot – Spain</td>
<td>F</td>
<td>2.743</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2.746</td>
</tr>
<tr>
<td>MRC pilot – Cambridge (UK)</td>
<td>F</td>
<td>2.743</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>2.746</td>
</tr>
</tbody>
</table>

* Averaged over all replications of dietary-report reference instrument.
† Averaged over all replications of urinary nitrogen.
Table 3 Parameter estimates (standard errors) for new and standard models

<table>
<thead>
<tr>
<th>Country</th>
<th>Model</th>
<th>Attenuation factor</th>
<th>Correlation of Q and T</th>
<th>Variance of T</th>
<th>β_Q</th>
<th>β_T</th>
<th>Variance of r</th>
<th>Variance of s</th>
<th>Correlation of r and s</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC pilot – France</td>
<td>New</td>
<td>0.073 (0.081)</td>
<td>0.124 (0.136)</td>
<td>0.032 (0.007)</td>
<td>0.211 (0.234)</td>
<td>0.674 (0.127)</td>
<td>0.061 (0.011)</td>
<td>0.013 (0.005)</td>
<td>0.590 (0.152)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>0.233 (0.050)</td>
<td>0.422 (0.084)</td>
<td>0.029 (0.005)</td>
<td>0.764 (0.173)</td>
<td>1.000 (0.000)</td>
<td>0.046 (0.009)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>EPIC pilot – Germany</td>
<td>New</td>
<td>0.103 (0.043)</td>
<td>0.189 (0.075)</td>
<td>0.046 (0.008)</td>
<td>0.349 (0.139)</td>
<td>0.375 (0.120)</td>
<td>0.063 (0.012)</td>
<td>0.039 (0.007)</td>
<td>0.505 (0.098)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>0.205 (0.081)</td>
<td>0.267 (0.102)</td>
<td>0.045 (0.008)</td>
<td>0.676 (0.132)</td>
<td>1.000 (0.000)</td>
<td>0.048 (0.011)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>EPIC pilot – Greece</td>
<td>New</td>
<td>0.086 (0.056)</td>
<td>0.208 (0.115)</td>
<td>0.044 (0.010)</td>
<td>0.440 (0.251)</td>
<td>0.646 (0.177)</td>
<td>0.118 (0.025)</td>
<td>0.052 (0.012)</td>
<td>0.683 (0.099)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>0.334 (0.074)</td>
<td>0.511 (0.068)</td>
<td>0.071 (0.013)</td>
<td>0.925 (0.156)</td>
<td>1.000 (0.000)</td>
<td>0.066 (0.019)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>EPIC pilot – Italy</td>
<td>New</td>
<td>0.158 (0.044)</td>
<td>0.259 (0.069)</td>
<td>0.032 (0.004)</td>
<td>0.424 (0.118)</td>
<td>0.586 (0.108)</td>
<td>0.039 (0.006)</td>
<td>0.031 (0.006)</td>
<td>0.375 (0.106)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>0.247 (0.049)</td>
<td>0.353 (0.071)</td>
<td>0.042 (0.006)</td>
<td>0.504 (0.103)</td>
<td>1.000 (0.000)</td>
<td>0.034 (0.006)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>EPIC pilot – Netherlands</td>
<td>New</td>
<td>0.334 (0.074)</td>
<td>0.406 (0.079)</td>
<td>0.037 (0.006)</td>
<td>0.495 (0.015)</td>
<td>0.596 (0.080)</td>
<td>0.034 (0.005)</td>
<td>0.014 (0.003)</td>
<td>0.597 (0.096)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>0.443 (0.056)</td>
<td>0.625 (0.061)</td>
<td>0.027 (0.004)</td>
<td>0.833 (0.115)</td>
<td>1.000 (0.000)</td>
<td>0.022 (0.004)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>MRC pilot – Spain</td>
<td>New</td>
<td>0.166 (0.081)</td>
<td>0.221 (0.105)</td>
<td>0.040 (0.009)</td>
<td>0.295 (0.146)</td>
<td>0.342 (0.137)</td>
<td>0.031 (0.009)</td>
<td>0.036 (0.007)</td>
<td>0.951 (0.091)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>0.511 (0.064)</td>
<td>0.673 (0.061)</td>
<td>0.041 (0.008)</td>
<td>0.885 (0.115)</td>
<td>1.000 (0.000)</td>
<td>0.003 (0.009)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
<tr>
<td>EPIC–Norfolk (UK)</td>
<td>New</td>
<td>0.068 (0.047)</td>
<td>0.120 (0.082)</td>
<td>0.024 (0.004)</td>
<td>0.212 (0.146)</td>
<td>0.614 (0.107)</td>
<td>0.042 (0.007)</td>
<td>0.019 (0.004)</td>
<td>0.545 (0.103)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>0.245 (0.047)</td>
<td>0.401 (0.070)</td>
<td>0.028 (0.004)</td>
<td>0.655 (0.129)</td>
<td>1.000 (0.000)</td>
<td>0.031 (0.006)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.000)</td>
</tr>
</tbody>
</table>

* In Germany the first and second replications of the food-frequency questionnaire (FFQ) have different variances, leading to different attenuation factors and correlations of Q and T.
† In MRC pilot there was only one administration of the FFQ, and therefore only the low limit for correlation of r and s could be estimated.
Bias and dietary-report instruments

Results

Table 3 displays the estimates of the most important parameters for the new and conventional models. They include the attenuation factor λ_1, the correlation $\rho(Q, T)$ between the FFQ and true usual intake, the variance of true intake σ_T^2, the slopes β_Q1 and β_T1 that represent intake-related biases, the variances σ_s^2 and σ_l^2 of the person-specific biases in the FFQ and dietary-report reference instruments, respectively, and the correlation $\rho(r, s)$ between person-specific biases. For the reasons explained above, for MRC pilot, Table 3 provides the low limit for $\rho(r, s)$. The estimates were obtained for the version of both models that allowed for different mean levels in repeat measurements of all of the instruments, but assumed the same variances in all studies but one. In EPIC–Germany, the two administrations of the FFQ had highly statistically significantly different variances, and they were allowed to be different. As a result, Table 3 displays two estimates of λ_1 and $\rho(Q, T)$ for this study, one for each FFQ administration.

For all parameters, except σ_l^2, there were major differences between the new and the conventional models. First, all parameters of the more general error structure in the new model were statistically significantly different from their assumed values in the conventional model. The slopes of the regression of the dietary-report reference instruments on true intake, β_Q1, assumed to be 1 in the conventional model, were statistically significantly smaller than 1, demonstrating the flattened slope phenomenon in the dietary-report reference instruments. In all eight studies, the variance σ_s^2 was statistically significantly different from zero, demonstrating the presence of person-specific bias in the dietary-report reference instruments. Although for most studies person-specific bias in the dietary-report instrument was somewhat smaller than person-specific bias in the FFQ, it was relatively large, with the variance from about 40% (EPIC–France, EPIC–Netherlands and MRC pilot study) to 80–100% of the variance of true intake. Most importantly, person-specific biases in the FFQ and dietary-report reference instruments were statistically significantly correlated, and their estimated correlation exceeded 0.5 in six out of seven studies where it could be estimated, with the highest value of 0.95 for EPIC–Spain.

Second, for all studies, the conventional approach suggested a slope, β_Q1, much closer to 1 in the regression of the FFQ on true intake, and substantially greater correlation $\rho(Q, T)$ between the FFQ and true usual intake compared with the new model, thereby overestimating the FFQ accuracy and validity.

The most important difference between the two models relates to the estimated attenuation factor λ_1, the parameter controlling the ability to detect diet–disease relationships using an FFQ. For all studies, the conventional approach yielded an attenuation factor substantially closer to 1 (i.e. much less attenuation) compared with the new model. In spite of relatively small sample sizes, the difference between the two attenuation factors was statistically significant in five out of eight studies. For each study, Table 4 displays the ratio of attenuation factors estimated by the conventional and new models. In half of the studies this ratio exceeded 3 and was below 1.5 for only one study (EPIC–Netherlands).

Discussion

We have applied a new, more general model for evaluating the structure of measurement error in dietary-report instruments to eight validation studies that included the UN biomarker for measuring nitrogen intake. The new model allows evaluation of whether conventional dietary-report reference methods meet two critical requirements for a valid reference instrument: (i) no correlation between its measurement error and true intake, and (ii) no correlation between its measurement error and that of the FFQ. We have documented consistent evidence that both requirements are violated due to the presence of both intake-related and person-specific biases in the dietary-report reference instruments and the correlation of the person-specific bias with that in the FFQ.

The statistical model that we have used relies on two assumptions about the UN biomarker for nitrogen intake: (a) that it is essentially unbiased and (b) that it does not contain errors related to errors in dietary-report instruments. Assumption (a) is supported by extensive literature on UN under various controlled-feeding situations. Assumption (b) is based on the strong intuition that random discrepancies between this biomarker measurement and true intake are caused by physiological factors and therefore will be unrelated to errors in dietary-report instruments.

Using a flawed dietary-report reference instrument has very important implications for evaluating, and adjusting for, measurement error in the FFQ. From Table 3, the common approach yielded an estimated correlation between the FFQ-based nitrogen intake and true intake

<table>
<thead>
<tr>
<th>Country</th>
<th>Ratio of attenuation factors (standard/new model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC pilot – France</td>
<td>3.192*</td>
</tr>
<tr>
<td>EPIC pilot – Germany</td>
<td>1.864</td>
</tr>
<tr>
<td></td>
<td>1.883</td>
</tr>
<tr>
<td>EPIC pilot – Greece</td>
<td>3.429*</td>
</tr>
<tr>
<td>EPIC pilot – Italy</td>
<td>1.563</td>
</tr>
<tr>
<td>EPIC pilot – Netherlands</td>
<td>1.326</td>
</tr>
<tr>
<td>EPIC pilot – Spain</td>
<td>3.078*</td>
</tr>
<tr>
<td>MRC pilot – Cambridge (UK)</td>
<td>1.508*</td>
</tr>
<tr>
<td>EPIC–Norfolk (UK)</td>
<td>3.603*</td>
</tr>
</tbody>
</table>

* $P < 0.05$ in testing for a difference in attenuation factors yielded by the two models.
substantially greater (by 36–240%) than the one estimated by the new model. This correlation is used as a measure of the FFQ validity and its squared value represents the loss in statistical power to test the significance of disease–exposure association. Thus the dietary-report reference instruments lead to serious overestimates of the statistical power of FFQ-based studies of diet and disease. Also, the flattened slope phenomenon estimated by the conventional model was less pronounced than when estimated by the new model.

Of most practical importance is the size of the differences in attenuation factors estimated by the new and conventional models. Following equation (2), the true effect of an exposure is calculated as the observed effect divided by the attenuation factor. From Table 4, the new model suggests that, for all studies but one, the true effect would be more than 50% greater, and for half the studies more than 200% greater, than the one estimated by the conventional approach.

There is also a much greater impact on the design of epidemiological studies. As follows from equation (4), for any two models, the ratio of the sample sizes for the same desired statistical power is the same as the squared ratio of their attenuation factors. Thus, the new model suggests that, based on half of the validation studies, the study size based on the conventional model should be increased by the factor of 9 or more. In other words, studies would have to be more than nine times as large as suggested by the conventional calculations in order to maintain nominal power.

Our results are limited in that they deal only with nitrogen intake, which is essentially the same as protein intake. Whether the same results apply to intakes of other nutrients or foods is not clear. Direct examination of the question will not be possible until valid reference biomarkers for other dietary variables are found. A partial answer might be obtained by analysing measurement error structure for other nutrients, such as potassium, where there seem to be reliable reference biomarkers, or for total energy intake using DLW. If there are some common elements in the structure of measurement error for different dietary variables, it may be possible to adjust the new model so that the remaining parameters are estimable without additional biomarker measurements.

Another limitation of our study is that it does not deal with energy-adjusted protein intake (protein density or residual), which is often used in preference to absolute protein intake in nutrition analyses. An answer to the question about the structure of measurement error and its effects on the analysis of energy-adjusted protein intake can only be obtained from biomarker studies that include both measurements of UN and DLW in the same participants.

In summary, our results suggest that the impact of measurement error in dietary-report instruments on the design, analysis and interpretation of nutritional studies may be much greater than has previously been suspected, at least regarding protein intake. Both the attenuation of relative risk estimates and the loss of statistical power in FFQ-based epidemiological studies may be substantially greater than previously estimated, due to the use of dietary-report methods as reference instruments. This means that current and past studies may be underpowered, and this may explain some of the null results that have been found in nutritional epidemiology. Until further research, including studies with simultaneous measurements of UN and DLW, gives a better understanding of the structure of dietary measurement error, the results of nutritional epidemiological studies should be interpreted with immense caution.

Acknowledgements

R.J.C.’s research was supported by a grant from the National Cancer Institute (CA-57030) and by the Texas A&M Center for Environmental and Rural Health via a grant from the National Institute of Environmental Health Sciences (P30-E509106).

References

Bias and dietary-report instruments

13 Heitmann BL. The influence of fatness, weight change, slimming history and other lifestyle variables on diet reporting in Danish men and women aged 55–65 years. Int. J. Obes. 1993; 17: 529–36.

