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Abstract

Identifying failure paths and potentially hazardous scenarios resulting from component faults and interactions is a challenge
in the early design process. The inherent complexity present in large engineered systems leads to nonobvious emergent be-
havior, which may result in unforeseen hazards. Current hazard analysis techniques focus on single hazards (fault trees),
single faults (event trees), or lists of known hazards in the domain (hazard identification). Early in the design of a complex
system, engineers may represent their system as a functional model. A function failure reasoning tool can then exhaustively
simulate qualitative failure scenarios. Some scenarios can be identified as hazardous by hazard rules specified by the en-
gineer, but the goal is to identify scenarios representing unknown hazards. The incidences of specific subgraphs in graph
representations of known hazardous scenarios are used to train a classifier to distinguish hazard from nonhazard. The algo-
rithm identifies the scenario most likely to be hazardous, and presents it to the engineer. After viewing the scenario and
judging its safety, the engineer may have insight to produce additional hazard rules. The collaborative process of strategic
presentation of scenarios by the computer and human judgment will identify previously unknown hazards. The feasibility of
this methodology has been tested on a relatively simple functional model of an electrical power system with positive results.
Related work applying function failure reasoning to a team of robotic rovers will provide data from a more complex system.
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1. INTRODUCTION

Complex engineered systems such as aerospace platforms and
power generation facilities exhibit complex forms of failure.
While some hazards may be identified and accounted for dur-
ing design time, others remain unknown until the system is
fully operational. These safety-critical systems do undergo
rigorous testing and validation to assure safe operation, and
are designed to be inherently robust and do regularly operate
with degraded components. However, highly publicized,
costly, and sometimes fatal accidents still occur, usually pre-
ceded by multiple seemingly innocuous events that com-
pound and cascade across subsystems. The recent grounding
of the Boeing 787 line, estimated to cost $5 billion; the im-
measurable economic, environmental, and human cost of
the Deep Water Horizon disaster; and the space shuttle Co-
lumbia accident all demonstrate the unacceptably high cost
of addressing complex failures and safety too late. For this
reason, a growing field of research has been exploring how

to move safety and risk analysis into the early design stage
to achieve safe system design (Papakonstantinou et al., 2011).

Specifically, while designing the space shuttle, NASA en-
gineers identified ice falling from the external fuel tank as a
hazard to the orbiter, and mitigated it by applying foam to
the tank. They impact-tested the heat shield material for small
chunks of ice and other debris, and found the risk due to fall-
ing ice after the foam installation was acceptable (Columbia
Accident Investigation Board, 2003). However, they did not
consider falling foam as a potential hazard until it was ob-
served to occur during missions. By that time, engineers
were not thinking about the exact parameters of the earlier im-
pact tests, only that they resulted in acceptable risk. Thus, a
new interaction between systems resulted in an unforeseen
hazard. The lack of action after the potential hazard was iden-
tified is not the focus of this paper. Instead, the methodology
outlined here can be used to systematically identify unfore-
seen potential hazards during the design phase.

Early in the design of a complex system, engineers may
represent their system as a functional model. A function fail-
ure reasoning tool can then exhaustively simulate qualitative
failure scenarios. Some scenarios can be identified as hazar-
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dous by hazard rules specified by the engineer, but the goal is
to identify scenarios representing unknown hazards.

The incidences of specific subgraphs in graph representa-
tions of known hazardous scenarios are used to train a classi-
fier to distinguish hazard from nonhazard. The algorithm
identifies the scenario most likely to be hazardous, and pre-
sents it to the engineer. After viewing the scenario and judging
its safety, the engineer may have insight to produce additional
hazard rules. The collaborative process of strategic presenta-
tion of scenarios by the computer and human judgment will
identify previously unknown hazards.

The feasibility of this methodology has been tested on a
relatively simple functional model of an electrical power sys-
tem (EPS) with positive results. Related work applying func-
tion failure reasoning to a team of robotic rovers will provide
data from a more complex system.

2. BACKGROUND

2.1. Design stage analysis of failure and safety

Design is fundamentally a decision-centric process (Ullman,
2003), and the criteria used to evaluate different concept so-
lutions provide a basis for making those decisions. While
other design aspects such as performance, manufacturability,
and sustainability can be design objectives in the early design
stage, for safety-critical systems the focus must at some point
be upon risk and reliability analysis, and hazard (safety) anal-
ysis.

Reliability is a property of a system and represents the ten-
dency for a system to not fail (be available). Traditional ap-
proaches for calculating reliability, such as aggregate failure
rates (Carter, 1986) or component property distributions
(Bain & Engelhardt, 1991), are data driven and require a
well-defined design to provide meaningful results. Examples
include top-down approaches such as fault tree analysis (Ve-
sely et al., 1981) and hazard and operability analysis (Redmill
et al., 1999) and bottom-up approaches such as failure modes
and effects analysis (MIL-STD-1629A, 1980) and probabilis-
tic risk assessment (Stamatelatos & Apostolakis, 2002).

Early work to move reliability assessment into the concep-
tual design stage focused on qualitative descriptions to
describe the nature of faults in the conceptual design perspec-
tive (Wang & Jin, 2002), and how those faults affect the per-
formance of other components in the system (Smith & Clark-
son, 2005; Huang & Jin, 2008; Kurtoglu & Tumer, 2008).
Quantitative methods use descriptions of fault probability to
provide a risk assessment at the early design stage (Hata
et al., 2000; Tumer & Stone, 2003; Stone et al., 2005; Gran-
tham-Lough et al., 2009). In order to provide an assessment at
the concept stage, failure was viewed in terms of its effect on
function (Clarkson et al., 2004; Stone et al., 2005, 2006;
Grantham-Lough et al., 2008, 2009).

Others have explored the design stage by reasoning about
failures based on the mapping between components, func-
tions, and nominal and off-nominal behavior (Padhke, 1989;

Umeda et al., 1992; Clausing, 1994; Umeda et al., 1994;
Sasajima et al., 1996; Hata et al., 2000; Clarkson et al.,
2004; Huang & Jin, 2008; Jensen et al., 2008, 2009a, 2009b;
Kurtoglu & Tumer, 2008; Kurtoglu et al., 2010). A com-
mon element to each of these different methods for risk anal-
ysis is the use of a conceptual system representation for iden-
tifying the system-level impact of faults.

While these methods are appropriate for reliability analy-
sis, they cannot provide an assurance of safety (i.e., hazard
analysis). Safety is viewed as an emergent property of a sys-
tem (Leveson, 2011). The functional approaches above as-
sume but do not specify the safety of functions. For example,
the functional model of a chemical reactor design would in-
clude high-level functions like “store” and “mix.” However,
safety functions like “ensure no loss of human life” are not
captured explicitly in the function structure. To assure safety,
other top-down approaches have been developed. A systems
theoretic approach has been developed to identify means of
reaching unsafe system states (Pereira et al., 2006; Leveson,
2011). However, identifying fault propagation paths from
component behaviors to system state has not yet been
achieved.

The systems theoretic process analysis method (Pereira
et al., 2006; Leveson, 2011) is an example of a top-down ap-
proach that attempts to assure safe system development. The
core concept of using the systems theoretic process analysis
method is identifying hazards and creating designs as control
structures to mitigate those hazards. For analysis with this
method, the potential for the hazard occurs when the safety
constraints designed into this control structure are violated
through a specific list of failures. Another method for safety
analysis is the hazard and operability study (Redmill et al.,
1999), which is based on modeling the interaction flow be-
tween components and recognizing a hazard if components
deviate from the operation that was intended for the compo-
nent during the design. The system-level impact of these fail-
ures is the identified hazard. Determining the probability of
these failures is not possible because of the complex and un-
known interaction behavior. Instead, work using this method
has used an inverse approach by specifying the probability
that the failure could be mitigated (Leveson, 2011).

2.2. Functional failure reasoning

Risk (and safety) analysis has the greatest impact on system
design when it can be incorporated into the early design stage
and be used as a decision-making tool. In this capacity, safety
becomes an attribute of the design and can be used in both ar-
chitecture and component selection. The challenge of risk as-
sessment at this design stage is the lack of refined system in-
formation. A fault is an undesired behavior in a component or
set of components that can lead to losses in system function-
ality. When these losses occur, the system experiences some
kind of hazard and can fail to prevent itself from being in an
unsafe state. This simple model of failure and safety forms the
basis of this research.
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Traditional methods of failure and risk analysis rely on sta-
tistical failure data and apply methods in which expert knowl-
edge of the system is needed to determine the impact and path
of fault propagation; hence, such methods are implemented at
the validation stage of design, where specific component fail-
ure probabilities and probable fault propagation paths can be
defined. To achieve the benefits of early risk-based decision
making, several methods for failure analysis using an abstract
functional approach have been developed, including the use
of historic failure rates associated with component types or
functions to identify risk (Stone et al., 2005; Grantham-
Lough et al., 2009), and behavioral approaches to determine
the potential impact of failures (Krus & Grantham-Lough,
2007; Huang & Jin, 2008; Kurtoglu et al., 2010).

The functional approach enables a high degree of failure
characterization. In particular, the function failure identifica-
tion and propagation (FFIP) framework is one of the methods
that use a behavioral approach for assessing the functional im-
pact of faults in the early design stages (Kurtoglu et al., 2008).
The result of using an FFIP-based analysis of a design is an
evaluation of the state of each function in the system in re-
sponse to a simulated failure scenario. In previous work,
these results have been used to evaluate the consequences
of different fault scenarios for a system design and for assess-
ing the state of the system due to functional loss (Jensen et al.,
2008; Kurtoglu & Tumer, 2008; Jensen et al., 2009a, 2009b;
Kurtoglu et al., 2010; Tumer & Smidts, 2010; Coatanea et al.,
2011; Papakonstantinou et al., 2011; Sierla et al., 2012).

To date, the goal of the FFIP analysis approach has been to
demonstrate that it is possible to identify failure propagation
paths by mapping component failure states to function
“health.” While the fundamentals of FFIP have shown great
promise, the value to the complex system design process
has not been demonstrated. We demonstrate a new important
use of the data generated by an FFIP analysis: to help identify
unforeseen hazardous scenarios.

3. UNKNOWN HAZARD IDENTIFICATION
METHODOLOGY

Figure 1 is a visualization of the entire methodology pre-
sented here. The engineer is of central importance, because
he or she will create the initial functional model, specify rules
for identifying hazardous scenarios, analyze individual sce-
narios and judge their hazard potential, and finally act on
that judgment by modifying previous input.

3.1. Functional modeling

In order to use function failure logic, the engineer must first
specify a system functional model. The level of abstraction
used to create the model will determine the precision of the
identified hazards. We will focus on a component-level ab-
straction. At this level, the engineer needs to study each sys-
tem component, and specify every function that it fulfills,
using a functional basis as specified in Hirtz et al. (2002).

All flows of mass, energy, and information (signals) within
the system need to be accounted for. Figure 2 shows a portion
of a basic functional model, demonstrating the functional ba-
sis, which will be used as an example throughout this section.

3.2. Failure propagation

At this point, the engineer must consider every state that each
function can attain. From the FFIP framework (Kurtoglu
et al., 2010; Jensen et al., 2014), we consider that each func-
tion state may be categorized as one of four health states:
healthy, degraded, lost, and no flow.

Fig. 2. A partial functional model.

Fig. 1. The iterative hazard identification process.
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The engineer must develop logic relating each function to its
input and output flows. The questions to answer include the fol-
lowing: what effect does each flow have on the connected func-
tion state and what effect does each function state have on each
connected flow? In Figure 2, for example, if the Store Electrical
Energy function is lost, the connected energy flow will be elimi-
nated, resulting in the Inhibit Electrical Energy function transi-
tioning to the No Flow state. This may be modeled using soft-
ware such as the Stateflow toolbox in MATLAB Simulink.

Next, faults are simulated. A MATLAB script creates fail-
ure scenarios by triggering one or more faults in the model
and running the behavioral model until a steady or stable state
is reached. This includes every possible fault, one at a time,
every pair of function-faults, and so on, until either the num-
ber of coincident faults becomes highly improbable or the to-
tal computation time becomes intractable. A large matrix of
data results from this step, containing the end health state of
each function in each failure scenario (for more details of
this approach, see Kurtoglu et al., 2010).

Some sets of faults result in identical scenarios; duplicates
are combined in the data set. For example, once again looking
to Figure 2, a failure in Store Electrical Energy might have the
exact same end state as a simultaneous failure in both Store
Electrical Energy and Actuate Relay. In addition, some func-
tions may be identified by the engineer whose states have no
imaginable effect on the safety of the system. These may be
removed from the data.

3.3. Initial hazard identification

When an engineer creates a component-level functional
model of a system, they (as an expert) should be able to iden-
tify at least some of the critical functions or sets of functions
that upon degradation or loss will result in a hazardous failure.
This knowledge may come from experience, historical data,
intuition, or some previously utilized hazard identification
technique. For example, they might judge that any scenario
based on the functional model from Figure 2 wherein simul-
taneously the Store Electrical Energy function is Nominal
and the Inhibit Electrical Energy function is Lost is a hazard.
Applying these rules to the complete set of failure scenarios
reveals a subset of scenarios representing known hazards.

3.4. Graph representation

Jensen et al. (2014) proposed using latent class analysis to
group failure scenarios by functional effect similarities.
This approach was initially attempted to train a classifier to
identify unknown hazards, but after performing various vali-
dation tests, it was found that it performed little better than
randomly guessing at scenarios. Instead, we require a method
that incorporates the topology of the functional model, rather
than treating the system as a list of independent functions.

Each failure scenario must then be represented as a graph.
We begin by creating a graph representation of the functional
model used in the FFIP process; Figure 2 is already repre-

sented as such. Each node represents a function labeled by
its type, and each directed edge represents a flow from one
function to another labeled by its type. The labels are derived
from the functional basis (Hirtz et al., 2002). Final results
from the proposed method may vary depending upon the
model abstraction level used.

Next, the graph is repeatedly modified to represent the func-
tional state at the end of each failure scenario. We relabel each
node to indicate the end health state of the represented function
(Nominal, Degraded, Lost, or No Flow), and relegate the func-
tion type to a new first-degree node connected by an edge la-
beled Type. The example from Figure 2 has been modified
to represent a partial failure scenario in Figure 3.

3.5. Subgraph analysis

In order to create a classifier that distinguishes between hazar-
dous and safe failure scenarios, hazard indicators must be
identified. The frequency of occurrence of various motifs or
subgraphs within each graph serves as such indicators. The
goal is to identify subgraphs that occur with a different fre-
quency in graphs representing hazardous scenarios versus
graphs representing safe scenarios. To identify subgraphs,
we used the software package Subdue: Graph-Based Knowl-
edge Discovery from Washington State University. It finds
subgraphs most prevalent in a set of graphs by way of com-
pressing the graph data (Ketkar et al., 2005).

In order for Subdue to identify subgraphs containing failed
functions, which might be helpful in identifying new hazards,
we run it on the set of graphs representing the known hazards.
However, because even in the known presence of hazards most
functions still finish in a nominal state, we trim excess nominal
functions from the graphs. This is done to focus the subgraph
identification on those functions critical to identifying haz-
ards. Any nominal node that is not adjacent to a failed node
is removed. This is done for each known hazardous scenario.

3.6. Naive Bayes classifier

In order to estimate which unknown scenario is most likely to
be hazardous, we calculate the unknown scenario most likely

Fig. 3. A single failure scenario.
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to be classified as hazardous, given a naive Bayes classifier
constructed from the frequency of subgraph occurrence in
the failure scenarios. We use a naı̈ve Bayes classifier due to
its simplicity of implementation and because the classifier
model fits our problem well.

Each subgraph i of n subgraphs becomes a feature in the
naive Bayes classifier. The simplest measure to use for the
classifier is the number of times x the subgraph occurs in
the graph representation of a scenario. A distribution is ap-
proximated for this frequency of occurrence of each subgraph
in the known hazardous scenarios pðxijhazardÞ. This is repeated
for the unknown scenarios pðxijunknownÞ and the known safe
scenarios pðxijsafeÞ. Note that initially there may not be any
known safe scenarios, and so pðxijsafeÞwill be zero for all x.

Under the naive independence assumptions, the Bayes
classifier has the following form

p(Ck) ¼ p(ck)
Qn

i¼1 p(xijck)Qn
i¼1 p(xi)

: (1)

In other words, the probability of an event with features x
belonging to class k is the probability of any event belonging
to class k times the product of the conditional probabilities of
each xi given class k divided by the product of the total prob-
abilities of each xi.

In this case, we are only interested in the relative likelihoods
of each scenario, represented by their respective x values, be-
longing to the hazard class. Thus we can reduce Eq. (1) to

p(hazardjx)/
Yn

i¼1

p(xijhazard)
p(xijhazard)þ p(xijunknown)þ p(xijsafe)

,

(2)

where the probability of a scenario represented by x belonging
to the hazard class is proportional to the product of the ratios of
each conditional probability of occurrence of xi given a hazard
classification and the sum of the conditional probabilities given
each class.

3.7. Iterative hazard identification

The scenario of unknown safety with the highest likelihood
calculated by Eq. (2) is estimated to be the scenario most
likely to be hazardous. It is then presented to the engineer,
who will study its functional state. A graphical representation
of the functional model will be displayed on screen, with the
health state of the functions and flows clearly indicated. If
the model is too large to display all at once, fully nominal
and or fully failed sections of the model may be collapsed
into blocks related to a higher level system function. The en-
gineer must judge the safety of a given scenario. If the engineer
judges the scenario as safe, then it will be reclassified as known
safe. The conditional probabilities of subgraph frequencies for
unknown and known safe classes are recalculated, and the like-
lihood of each scenario is updated. This is represented in Fig-
ure 1 by the engineer making the No decision.

If, however, the engineer classifies the scenario as hazar-
dous, he or she can create a new hazard identification rule
that will account for not only the scenario at hand but also po-
tentially others within the set of simulated failures. This ne-
cessitates rerunning the subgraph analysis. Once again, this
causes the appropriate conditional distributions and all likeli-
hoods to be updated, and a new scenario to be presented. This
is represented in Figure 1 by the engineer making the Yes de-
cision.

A third option is required should the engineer judge that the
hazard potential of the scenario depends upon some factor not
included in the system representation. At this point, he or she
can go back to the functional model and incorporate new
functions and connections as needed. While the failure sce-
narios and clustering results are being updated, the scenario
at hand will be temporarily classified as safe, so that the en-
gineer may continue to judge scenarios with the algorithm pe-
nalizing those that are similar to the current one.

This process is continued until one of a number of stopping
conditions is met. First, a minimum likelihood value may be
established, below which scenarios will no longer be justifi-
ably similar enough to known hazards to be considered. Sec-
ond, a predetermined consecutive number of safe judgments
may be deemed sufficient, especially if the identification of
new hazards has been shown to decrease approximately expo-
nentially. Third, the resources allocated to identify new un-
known hazards have been exhausted.

4. EPS CASE STUDY

We utilized data from an EPS functional model and accompa-
nying fault propagations from Jensen et al. (2014) to test our
methodology. The system includes four load types: pump,
fan, light, and generic DC load; it includes the power supply
to those loads, including battery and invertor; and it includes
the control of that power by circuit protection, sensors, soft-
ware, and relays. The system includes redundancy in load sat-
isfaction (two pumps, two fans, etc.), redundancy in power
supply, and a fully interconnected control system. Each com-
ponent has its own failure modes to populate a list of failure
scenarios, except the software control, which is assumed in-
fallible. The behavioral model and function-fault logic were
written in MATLAB Simulink and simulated exhaustively un-
der single and double fault conditions for previous work (see
Jensen et al., 2014, and references therein) The data consists
of 3508 unique failure scenarios represented by the states of
58 functions. A block diagram of the EPS is shown in Figure 4.

In order to demonstrate the power of the unknown hazard
identification method, we assumed that any scenario wherein
Fan 1 and Pump Sensor 1 were simultaneously failed was a
known hazard. Correspondingly, we assumed that any sce-
nario wherein Fan 2 and Pump Sensor 2 were simultaneously
failed was also a hazard, albeit an unknown one. Thus, there
were 16 known hazardous scenarios and 16 unknown hazar-
dous scenarios. We tested how many iterations of our method
were required to identify one of the unknown hazards.
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We represented the functional model as a graph, with each
component-as-a-function given a single word label from the
functional basis such as Store, Sense, Inhibit, or Actuate.
This effectively hid the unknown (test) hazards among
many similar failure scenarios.

Next, following the method as laid out in Sections 3.4 and
3.5, we used Subdue to identify 40 representative isomorphi-
cally unique subgraphs from the graphs of the 16 known hazar-
dous scenarios. Continuing with the iterative process in Section
3.6, we counted the frequency of each subgraph in each failure
scenario, and fitted probability distributions to the occurrence
of each subgraph in each class, the class of 16 known hazards,
and the class of 3492 unknown scenarios. After inspecting the
histograms of the subgraphs, we decided to fit a mixture of two
normal distributions to each to represent the distributions para-
metrically, due to their obviously bimodal nature.

This was implemented in a Python script that made an ex-
ternal call to run Subdue. We used the graph-tool package to
handle subgraph isomorphisms and frequency counts, and
wrote our own implementation of the naive Bayes classifier.

We then set up a while loop, which identified the most
likely to be hazardous scenario and judged it as safe, repeat-
ing the process until one of the test hazards appeared. In our
test, one of the test hazards appeared as the most likely hazard
on the 11th iteration.

In order to show the significance of this result, we per-
formed a statistical test to determine if identifying the hazard
in 11 iterations is likely to occur randomly. We used the
negative hypergeometric distribution implemented in the tol-
erance package in R. The negative hypergeometric is the ap-
propriate distribution to use when sampling from a finite pop-
ulation (e.g., population of scenarios) without replacement in

which each drawn sample can be classified into two mutually
exclusive categories, such as hazard/no hazard. To calculate
the probability of at least one test scenario being drawn ran-
domly from the set without replacement after 11 draws, we
used the R command pnhyper(11,16,3508,1), which returns
a probability of 4.9%. Thus, it is highly unlikely that our re-
sults using the proposed method occurred because of random
chance, there is less than a 5% chance of finding the hazard in
11 iterations using random sampling. To put this distribution
into perspective, its mean is 219 draws (median¼ 149 draws)
meaning that on average it would take 219 draws (versus 11)
to identify the hazard through random sampling. Thus, we
conclude with 95% confidence that our result of finding a
test scenario on the 11th iteration is significant (i.e., our
method is significantly different than random sampling).

5. METHOD ASSUMPTIONS

While the method is general in nature, there are a few assump-
tions we must make due to the human–computer interaction.
In order for the method to be useful, we must assume that a
subset of the failure scenarios implied by the functional
model specification represent hazards, and that they are rec-
ognizable as hazards by the engineer analyzing the Further-
more, we must assume that a subset of those scenarios recog-
nizable as hazards is not identified by hazard patterns
specified by the engineer a priori. We then assume that
each additional rule created by the engineer during the hu-
man–machine collaborative process to identify more hazar-
dous failure scenarios is useful to the engineer in order to
mitigate risk. We believe these assumptions to be plausible, but
they should be further tested.

Fig. 4. A block diagram of the electrical power system.
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We also make the assumption that types of hazards (groups
of hazards identified by rules) are inherently rare among the
failure scenarios. Therefore, we attempt to identify as many
as possible by presenting the engineer with the scenarios
most likely to represent a hazard. This assumption is true
for many high-safety systems that have evolved over time
or are generally well understood by the engineering commu-
nity; however, newer, more innovative highly complex sys-
tems may not meet this assumption.

Alternatively, we could have viewed hazards as more com-
monplace. Under this assumption, we would present the en-
gineer with the scenario whose safety estimate is the most
uncertain. We would be attempting to reduce the total uncer-
tainty in a measure of system safety. In this case, the engineer
would not be presented with the most likely to be hazardous
scenarios; those would be assumed hazardous.

Finally, we assume that any potential hazards reachable
purely through nominal operation of the various functions
have already been identified and mitigated, or require a differ-
ent type of model to identify. See, for example, the functional
resonance accident model (Hollnagel & Goteman, 2004).

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a new method for eliciting
and identifying unknown hazards in a complex system de-
scribed by a functional model. We suggest using subgraphs of
graph representations of known hazardous scenarios to build
a classifier capable of distinguishing hazard from nonhazard.
We used a naive Bayes classifier as a simple first attempt. The
classifier is updated by the expert judgments made by an en-
gineer, thus providing an innovative human–machine classifi-
cation system. We have shown that this method is superior to
a simple random selection of scenarios.

We plan to test this method on a slightly larger system cur-
rently being modeled to validate the FFIP method. This will
involve a swarm of autonomous rovers. We plan to once again
validate our method by defining a list of hazards, removing
some, then using the method to see if they reappear quickly.
We intend to use a variety of hazards in our test, rather than
the single hazard presented here to demonstrate the method-
ology.

We will also study the further application of subgraph anal-
yses on those failure scenarios identified as hazardous, in an
attempt to present the engineer with types or groups of faults
that often result in hazards, or common failure paths through
the model that result in hazards. Many challenges remain,
though, including testing the method with engineers familiar
enough with a complex system to fully test its effectiveness.
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