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A multi-agent deep reinforcement learning (DRL)-based model is presented in this study
to reconstruct flow fields from noisy data. A combination of reinforcement learning
with pixel-wise rewards, physical constraints represented by the momentum equation
and the pressure Poisson equation, and the known boundary conditions is used to build
a physics-constrained deep reinforcement learning (PCDRL) model that can be trained
without the target training data. In the PCDRL model, each agent corresponds to a
point in the flow field and learns an optimal strategy for choosing pre-defined actions.
The proposed model is efficient considering the visualisation of the action map and the
interpretation of the model operation. The performance of the model is tested by using
direct numerical simulation-based synthetic noisy data and experimental data obtained
by particle image velocimetry. Qualitative and quantitative results show that the model
can reconstruct the flow fields and reproduce the statistics and the spectral content with
commendable accuracy. Furthermore, the dominant coherent structures of the flow fields
can be recovered by the flow fields obtained from the model when they are analysed
using proper orthogonal decomposition and dynamic mode decomposition. This study
demonstrates that the combination of DRL-based models and the known physics of the
flow fields can potentially help solve complex flow reconstruction problems, which can
result in a remarkable reduction in the experimental and computational costs.
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1. Introduction

The understanding of fluid flows plays a crucial role in life (for instance, in medicine,
construction, transportation, aerospace and astronomy). However, fluid flow problems are
usually complex with highly nonlinear behaviour, especially turbulent flows, which occur
at generally high Reynolds numbers. In most cases, data from experiments and simulations
are used to understand and describe the behaviour of fluids with various accuracy levels
that are related to the experimental and numerical set-ups. Numerous methods have been
developed to improve the accuracy and practicality of the obtained flow fields. However,
several limitations still exist. One of the most notable limitations of the experimental
approach is the noise of the obtained flow fields due to the experimental set-up, so that
obtaining measurements with an acceptable signal-to-noise ratio is practically impossible
in some cases. Therefore, several methods for the reconstruction of flow fields have been
introduced. Methods based on linear data-driven approaches, such as proper orthogonal
decomposition (POD) (Lumley 1967) and dynamic mode decomposition (DMD) (Schmid
2010), have shown their capability to enhance the resolution of the flow data and filter
noisy flow data (Gunes & Rist 2007; He & Liu 2017; Fathi et al. 2018; Nonomura, Shibata
& Takaki 2019; Scherl et al. 2020). Additionally, various denoising methods for particle
image velocimetry (PIV) measurements, such as convolution filters, wavelet methods and
Wiener filters, have had various levels of success (Vétel, Garon & Pelletier 2011). All
the aforementioned methods showed limited success in terms of denoising flow fields
because they are based on linear mapping or handcrafted filtering processes, which are
mostly incapable of dealing with highly nonlinear fluid problems (Brunton, Noack &
Koumoutsakos 2020).

With the recent rapid development in machine learning (ML) and graphic processing
units, new data-driven methods have been introduced to provide efficient solutions for
problems in various fields, such as image processing, natural language processing, robotics
and weather forecasting. Several ML algorithms have been recently used to address
problems in fluid dynamics and have shown promising results (Duraisamy, Iaccarino
& Xiao 2019; Brunton et al. 2020; Vinuesa & Brunton 2022). In contrast to linear
methods, ML-based techniques can deal with complex nonlinear problems. This feature
has paved the way to exploring the feasibility of applying ML to various problems in
complex turbulent flows (Guastoni et al. 2021; Yousif et al. 2023b). Several supervised
and unsupervised ML-based methods have been proposed for flow reconstruction from
spatially limited or corrupted data (Discetti & Liu 2022). Recently, promising results have
been reported from using deep learning (DL) by applying end-to-end trained convolutional
neural network (CNN)-based models (Fukami, Fukagata & Taira 2019; Liu et al. 2020)
and generative adversarial network (GAN)-based models (Kim et al. 2021; Yu et al.
2022; Yousif et al. 2023a), where deep learning is a subset of machine learning, in
which neural networks with multiple layers are used in the model (LeCun, Bengio &
Hinton 2015). The GAN-based models have shown better performance than the traditional
CNN-based models. Nonetheless, a drawback of such methods lies in the need for the
target (high-resolution or uncorrupted) flow data to train the model, which are difficult
or impossible to obtain in most cases. Therefore, attempts have been recently made to
address this issue under certain conditions, for instance in the case of super-resolution
reconstruction of randomly seeded flow fields (Güemes, Vila & Discetti 2022) or applying
physical constraints in the loss function of the model to reconstruct high-resolution steady
flows from low-resolution noisy data (Gao, Sun & Wang 2021). However, insufficient
explainability and interpretability are the main concerns of using ML-based methods, for
which no concrete explanation nor control of the model performance is available.
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Alternatively, reinforcement learning (RL), which is an ML method where an agent
learns to make decisions by interacting with an environment, has shown remarkable results
in areas such as robotics, game playing and optimisation problems (Hickling et al. 2022).
In RL, the agent takes actions and receives feedback in the form of rewards or penalties.
Over time, it aims to learn the optimal actions to maximise cumulative rewards and achieve
its objectives through trial and error. This approach to learning makes deep reinforcement
learning (DRL) a good candidate method to apply to several problems in fluid dynamics,
such as flow control (Rabault et al. 2019), design optimisation (Viquerat et al. 2021),
computational fluid dynamics (Novati, de Laroussilhe & Koumoutsakos 2021) and others
(Garnier et al. 2021; Viquerat et al. 2022).

This paper presents a DRL-based approach that can be used for reconstructing flow
fields from noisy data. The main advantages of the presented model lie in overcoming the
need for the target data in the training process and the explainable filtering process of the
noisy data.

The remainder of this paper is organised as follows. Section 2 explains the method of
reconstruction of denoised flow fields using the proposed DRL model. Section 3 describes
the generation and preprocessing of the data used for training and testing the model.
Section 4 discusses the results of testing the proposed model. Finally, the conclusions
of this study are presented in § 5.

2. Methodology

In contrast to supervised and unsupervised learning, reinforcement learning is based on
the Markov decision process, which is an iterative process where an agent interacts with
an environment. This process comprises four elements: the state s, action a, policy π(a|s)
and reward r. The action is an operation that is applied by the agent. The policy represents
the action selection strategy of the agent. In other words, at each iteration step, the agent
obtains a state and chooses an action according to the policy. Owing to the action taken,
the state in the environment is then changed and the agent receives an immediate reward,
which is feedback showing the usefulness of the action taken. The agent gains experience
from the collected states, actions and rewards after several iterations, which it uses to find
an optimal policy π∗(a|s) that maximises the long-term reward. In DRL, a deep neural
network is used to obtain the optimal policy.

This study presents a physics-constrained deep reinforcement learning (PCDRL) model
that is built on reinforcement learning with pixel-wise rewards (PixelRL) (Furuta,
Inoue & Yamasaki 2020), which is a CNN-based multi-agent DRL method for image
processing (Li et al. 2020; Vassilo et al. 2020; Jarosik et al. 2021). In PixelRL, the
asynchronous advantage actor–critic (A3C) algorithm (Mnih et al. 2016) is applied for
learning policies, which determine the actions that are represented by the choice of
basic filters for each pixel. In other words, each pixel has one agent in PixelRL. A
model that applies optimal policies to change the velocity values is investigated in this
study by choosing the suitable actions for each point in the flow field at an instant,
as shown in figure 1. In contrast to image processing problems that require the target
data in the training process (Furuta et al. 2020), the physics of the flow represented
by the governing equations and the known boundary conditions are used to train the
model.

Let χn
i,j be the value of an instantaneous velocity component at iteration step n

and in location (i, j) of the field. Herein, each location has its own agent with a
policy πi,j(an

i,j|sn
i,j), where an

i,j ∈ A, which is a pre-defined set of actions (Appendix D).
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sn
i, j rn

i, j

an
i, j ˜ πi, j(·|s

n
i, j)

Episode

Step 1 Step n Step N

Figure 1. Learning process in the PCDRL model. Each agent at each iteration step in the episode obtains a
state from a point in the flow, calculates the reward and applies an action according to the policy.

Each agent obtains the next state, that is, sn+1
i,j , and reward rn+1

i,j from the environment by
taking the action an

i,j.
Physical constraints represented by the momentum equation, the pressure Poisson

equation and the known boundary conditions are embedded in the reward function, which
enables the model to follow an optimal denoising strategy that results in changing the
noisy data to the true flow field distribution. Hence, the objective of the model is to learn
the policy that maximises the expected long-term rewards:

π∗
i,j = argmax

πi,j

Eπi,j

( N∑
n=1

γ (n−1)rn
i,j

)
, (2.1)

where γ (n−1) is the (n − 1)th power of the discount factor γ , which determines the weights
of the immediate rewards in the iteration steps. In this study, the value of γ is set to 0.95.

The combination of the momentum equation,

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u, (2.2)

and the pressure Poisson equation,

∇ · (u · ∇)u = −∇2p, (2.3)

is used to build the physics-based immediate reward, (rn
i,j)Physics, where u, p, t and ν are the

velocity vector, pressure (divided by density), time and kinematic viscosity, respectively.
At each iteration step, the pressure field is obtained by numerically solving (2.3). Herein,

the pressure gradient calculated from the pressure field ((∇pn
i,j)Poisson) is used in (2.2) such

that

(rn
i,j)Physics = −

∣∣∣∣∣
(

∂u
∂t

+ (u · ∇)u − ν∇2u
)n

i,j
+ (∇pn

i,j)Poisson

∣∣∣∣∣ . (2.4)

The pressure integration in (2.3) is done by using a Poisson solver that applies a
standard five-point scheme (second-order central difference method) (Van der Kindere
et al. 2019) with the initial pressure field being estimated from numerically integrating
the pressure gradient obtained from the initial noisy data in (2.2) (van Oudheusden et al.
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2007). Notably, the central difference method is applied for all the spatial discretisations.
Regarding the temporal discretisation, for the first and the last time steps in each training
mini-batch, the forward difference and the backward difference are used, respectively,
and the central difference is applied for the other time steps. Furthermore, Neumann and
Dirichlet boundary conditions according to each case used in this study are enforced in the
calculations.

Additionally, the velocity values obtained after each action an
i,j are directly made

divergence-free by applying Helmholtz–Hodge decomposition (Bhatia et al. 2013) using
Fourier transformation. Furthermore, the known boundary conditions are used to obtain
the boundary conditions-based immediate reward (rn

i,j)BC for the velocity by considering
the absolute error of the reconstructed data at the boundaries of the domain.

Thus, the combined immediate reward function can be expressed as

rn
i,j = (rn

i,j)Physics + β(rn
i,j)BC, (2.5)

where β is a weight coefficient and its value is empirically set to 20.
This approach considers the convergence of the model output to satisfy the governing

equations and boundary conditions as a measure of the model performance without the
need for the target training data. Furthermore, the reward function is designed to mimic
the denoising process of PIV velocity field data without the need for measured pressure
field data in the model. Nine iteration steps for each episode, that is, N = 9, are used in
this study. In addition, the size of the training mini-batch is set to 4. The model is applied
to direct numerical simulation (DNS)-based data (corrupted by different levels of additive
zero-mean Gaussian noise) and real noisy PIV data of two-dimensional flow around a
square cylinder at Reynolds numbers ReD = 100 and 200, respectively. Herein, ReD =
u∞D/ν, where u∞ and D are the free stream velocity and the cylinder width, respectively.
Details regarding the source code of the proposed model, A3C, PixelRL and the selected
pre-defined denoising action set can be found in Appendices A, B, C and D, respectively.

3. Data description and preprocessing

3.1. Synthetic data
DNS data of a two-dimensional flow around a square cylinder at a Reynolds number of
ReD = 100 are considered as an example of synthetic data. The open-source computational
fluid dynamics finite-volume code OpenFOAM-5.0x is used to perform the DNS. The
domain size is set to xD × yD = 20 × 15, where x and y are the streamwise and spanwise
directions, respectively. The corresponding grid size is 381 × 221. Local mesh refinement
is applied using the stretching mesh technique near the cylinder walls. Uniform inlet
velocity and pressure outlet boundary conditions are applied to the inlet and the outlet
of the domain, respectively. No-slip boundary conditions are applied to the cylinder walls
and the symmetry plane to the sides of the domain. The dimensionless time step of the
simulation, that is, u∞Δt/D, is set to 10−2. The DNS data are corrupted by additive
zero-mean Gaussian noise, that is, S ∼ N (0, σ 2), where S , N and σ 2 represent the
noise, the normal distribution and the variance, respectively. The signal-to-noise ratio,
for which a large value yields a low noise level, is used to evaluate the noise level. Herein,
SNR = σ 2

DNS/σ
2
noise, where σ 2

DNS and σ 2
noise denote the variances of the DNS and the noise

data, respectively. Three levels of noise are applied, 1/SNR = 0.01, 0.1 and 1. The interval
between the collected snapshots of the flow fields is set to 10 times the simulation time
step; 1000 snapshots are used for training the model, whereas 200 snapshots are used for
testing the performance of the model.
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Figure 2. Progress of the mean reward during the training process. Cases 1, 2 and 3 represent the noisy DNS
data at noise levels 1/SNR = 0.01, 0.1 and 1, respectively.

3.2. Experimental data
Two PIV experiments are performed to generate noisy and clear (uncorrupted) data (for
comparison) of flow over a square cylinder to investigate the performance of the proposed
PCDRL model on real experimental data. The noisy data are generated by using a
return-type water channel. The test section size of the water channel is 1 m (length) ×
0.35 m (height) × 0.3 m (width). The free stream velocity is set to 0.02 m s−1, with a
corresponding ReD of 200. The background noise is generated at relatively high levels due
to the external noise and the sparse honeycomb configuration of the water channel. The
channel was seeded by polyamide12 seed particles from INTECH SYSTEMS with 50 μm
diameter. A high-speed camera (FASTCAM Mini UX 50) and a continuous laser with a
532 nm wavelength are used to build the complete PIV system. The snapshot frequency
is set to 24 Hz. Herein, 2000 and 500 instantaneous flow fields are used for the model
training and testing of its performance, respectively. Meanwhile, clear data of the flow
are generated by using a return-type wind tunnel. The test section size of the wind tunnel
is 1 m (length) × 0.25 m (height) × 0.25 m (width). The free stream velocity is set to
0.29 m s−1, with a corresponding ReD of 200. The turbulence intensity of the free stream
is less than 0.8 %. The wind tunnel is seeded by olive oil droplets generated by a TSI
9307 particle generator. The PIV system used in the wind tunnel comprises a two-pulsed
laser (Evergreen, EVG00070) and a CCD camera (VC-12MX) with 4096 × 3072 pixel
resolution. Herein, the snapshot frequency is set to 15 Hz. In the water channel and
wind tunnel experiments, the square cylinder model comprised an acrylic board and the
cross-section of the model is set to 1 × 1 cm. The model is not entirely transparent. Thus,
a shadow region is generated in the area below the bluff body when the laser goes through
the model.

4. Results and discussion

4.1. Performance of the model
The capability of the PCDRL model to denoise flow fields is investigated in this study
qualitatively and quantitatively by using the DNS and PIV data. The model is primarily
applied to DNS-based data. Figure 2 shows the progress of the mean reward during the
training process, that is,

r̄ = 1
IJN

I∑
i=1

J∑
j=1

N∑
n=1

rn
i,j. (4.1)
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n = 1 n = 3 n = 5 n = 7 n = 9Input

Do nothing

Box filter

Bilateral filter1

Bilateral filter2

Median filter

Gaussian filter1

Gaussian filter2

Value – = Scalar

Value + = Scalar

Figure 3. Action map of the prediction process for an instantaneous streamwise velocity field. The top panels
show the types of filters used in the process and the action map in each iteration step, and the bottom panels
show the corresponding velocity field. Results for the DNS noisy data at noise level 1/SNR = 0.1.

The solid line and light area indicate r̄ and the standard deviation of the reward at nine
iteration steps, respectively. As shown in the figure, the reward for the three different noise
levels rapidly increases and approaches its optimal level after a few episodes. This finding
indicates that the agents in PixelRL learn the policy in a few episodes in the training
process, compared with the other multi-agent networks, because they share the information
represented by the network parameters and also because of the averaged gradients (Furuta
et al. 2020). Thus, this approach can significantly reduce the computational cost of the
model. Furthermore, as expected, the magnitude of the optimal r̄ decreases with the
increase in noise level.

Figure 3 shows a visual overview of the prediction process of the PCDRL model. The
figure reveals that the choice of filters changes with the spatial distribution of the velocity
data and also with each iteration step in the episode. The visualisation of the action map is
one of the model features, providing additional access to the model considering the action
strategy. Furthermore, it can be seen that the action map is strongly correlated with the
physics of the flow, which is represented in this case by the vortex shedding behind the
square cylinder.

The instantaneous denoised flow data are presented in figure 4(a) by employing the
vorticity field (ω). The figure reveals that the model shows a remarkable capability to
reconstruct the flow field even when using an extreme level of noise in the input data of
the model.
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DNS

Case 1 Case 2 Case 3

y/
D

x/D

0
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–3.6

Noisy DNS

–1.8

1.8

ωD/u∞

0

–2.5

PCDRL

2.5

0 4 8 12

(a)
(b)

є(u)
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0.02

0.03

0.04

0.05

Case 1 Case 2 Case 3
0.05

0.10

0.15

0.20

Figure 4. (a) Instantaneous vorticity field; (b) relative L2-norm error of the reconstructed velocity fields.
Cases 1, 2 and 3 represent the noisy DNS data at noise levels 1/SNR = 0.01, 0.1 and 1, respectively.

The general reconstruction accuracy of the model is examined via the relative L2-norm
error of the reconstructed velocity fields,

ε(χ) = 1
K

K∑
k=1

‖χPCDRL
k − χDNS

k ‖2

‖χDNS
k ‖2

, (4.2)

where χPCDRL
k and χDNS

k represent the predicted velocity component and the ground truth
(DNS) one, respectively, and K is the number of test snapshots. Figure 4(b) shows that the
values of the error are relatively small for the velocity components and are proportional to
the increase in noise level.

Figure 5 shows probability density function (p.d.f.) plots of the streamwise (u) and
spanwise (v) velocity components. Herein, the p.d.f. plots obtained from the reconstructed
velocity fields are generally consistent with those obtained from DNS, indicating that
the proposed model could successfully recover the actual distribution of flow data.
Furthermore, the scatter plots of the maximum instantaneous velocity values in all the
test data are presented in figure 6. The figure reveals that the predicted data are generally
in commendable agreement with the DNS data for the entire range of each velocity
component, with a slight reduction in the consistency as the noise level increases.

The power spectral density (PSD) of the streamwise velocity fluctuations at two different
locations is plotted in figure 7 to examine the capability of the model to reproduce
the spectral content of the flow. Commendable agreement with the DNS results can be
observed, with a slight deviation in the high frequencies for the noise level 1/SNR = 1.

The statistics of the velocity fields, represented by the spanwise profiles of the root
mean square of the velocity (urms, vrms) and Reynolds shear stress (u′v′), are presented
in figure 8. The figure shows an accurate reconstruction of the statistics at two different
streamwise locations in the domain, indicating that the model could successfully reproduce
the statistics of the flow despite the extreme noise level.

The model performance is further examined by using actual noisy PIV data. The
reconstructed instantaneous vorticity field is shown in figure 9(a). The figure reveals
that the model could successfully denoise the velocity fields with commendable accuracy
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Figure 5. Probability density function plots of the (a) streamwise and (b) spanwise velocity components.
Cases 1, 2 and 3 represent the noisy DNS data at noise levels 1/SNR = 0.01, 0.1 and 1, respectively.

considering the noisy input data to the model. In addition, the model shows capability of
recovering the corrupted regions in the flow due to the experimental set-up. Furthermore,
the relative difference of the spanwise profile of the vorticity root mean square (ωrms)
between the reconstructed data and the clear PIV data (ε(ωrms)) presented in figure 9(b)
shows that the results from the model exhibit a smooth behaviour that is generally
consistent with that of the clear PIV data. These results indicate that the PCDRL model
can be practically applied to noisy PIV data.

4.2. POD and DMD results
In this section, the accuracy of the results from the PCDRL model is examined in terms of
flow decomposition. First, the results of applying POD to the denoised data are compared
with the POD results of the ground truth data. Figure 10 shows the contour plots of the
leading POD modes for the vorticity field obtained from the DNS data. As can be observed
from the figure, for the case of the highest noise level, i.e. 1/SNR = 1, all the seven true
leading modes can be recovered using the denoised data, while only three modes can be
recovered using the noisy data and no distinguishable features can be seen for the other
modes. Furthermore, the energy plots in figure 11 represented by the normalised POD
eigenvalues show that even for the case of the flow with the highest noise level, the energy
contribution values of the POD modes are consistent with those obtained from the ground
truth DNS data. As expected, the results from the noisy data reveal a different behaviour,
especially for the cases of noise levels 1/SNR = 0.1 and 1. Figure 12 shows a reconstructed
instantaneous vorticity field of the DNS data using the first ten POD modes. As shown
in the figure, the result from the PCDRL model reveals a commendable reconstruction
accuracy as compared with the ground truth DNS results, whereas the result obtained

973 A12-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.775


M.Z. Yousif, M. Zhang, L. Yu, Y. Yang, H. Zhou and H.C. Lim

1.2

0.8

0.4

0 0.4 0.8 1.2

1.2

0.8

0.4

0 0.4 0.8 1.2

1.2

0.8

0.4

0 0.4 0.8 1.2

0.8

0.4

0

0.8

0.4

0

0.8

0.4

0

(a)

(b)

max(u/u∞)PCDRLmax(u/u∞)PCDRLmax(u/u∞)PCDRL

max(v/u∞)PCDRLmax(v/u∞)PCDRLmax(v/u∞)PCDRL

m
ax

(v
/u

∞
) D

N
S

m
ax

(u
/u

∞
) D

N
S

–0.4

–0.4 0 0.4 0.8

–0.4

–0.4 0 0.4 0.8

–0.4

–0.4 0 0.4 0.8

Case 1 Case 2 Case 3

Figure 6. Scatter plots of the maximum instantaneous values of the (a) streamwise and (b) spanwise velocity
components. Cases 1, 2 and 3 represent the results from the PCDRL model using noisy DNS data at noise
levels 1/SNR = 0.01, 0.1 and 1, respectively. The contour colours (from blue to red) are proportional to the
density of points in the scatter plot.

10–6

10–5

10–4

10–3

10–2

10–1

10–6

10–5

10–4

10–3

10–2

10–1

10–6

10–5

10–4

10–3

10–2

10–1

10–5

10–4

10–3

10–2

100

10–1

10–5

10–4

10–3

10–2

100

10–1

10–5

10–4

10–3

10–2

100

10–1

P
S

D

10–2 10–1 100 10–2 10–1 100 10–2 10–1 100

10–2 10–1 100 10–2 10–1 100 10–2 10–1 100

P
S

D

Case 1 Case 2 Case 3

St St St

DNS
PCDRL
Noisy DNS

(a)

(b)

Figure 7. Power spectral density plots of the streamwise velocity fluctuations at two different locations:
(a) (x/D, y/D) = (1, 1) and (b) (x/D, y/D) = (6, 1). The dimensionless frequency is represented by the
Strouhal number, St = fD/u∞, where f is the frequency. Cases 1, 2 and 3 represent the noisy DNS data at
noise levels 1/SNR = 0.01, 0.1 and 1, respectively.

973 A12-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

77
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.775


Deep reinforcement learning for flow field denoising

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

0.05

0.10

0.15

0.20

–3.0 –1.5 1.5 3.00
0

0.1

0.2

0.3

0.4

y/D
–3.0 –1.5 1.5 3.00

y/D
–3.0 –1.5 1.5 3.00

–3.0 –1.5 1.5 3.00 –3.0 –1.5 1.5 3.00 –3.0 –1.5 1.5 3.00

y/D

u rm
s/

u ∞
u rm

s/
u ∞

v
rm

s/
u ∞

v
rm

s/
u ∞

u′
v
′ /

u2 ∞
—

—
u′

v
′ /

u2 ∞
—

—

DNS
Case 1
Case 2
Case 3

–0.06

–0.03

0

0.03

0.06

–0.02
–0.01

0
0.01
0.02

(a)

(b)

Figure 8. Spanwise profiles of flow statistics urms (left column), vrms (middle column) and u′v′ (right column)
at two different streamwise locations: (a) x/D = 3; (b) x/D = 6. Cases 1, 2 and 3 represent the results from the
PCDRL model using noisy DNS data at noise levels 1/SNR = 0.01, 0.1 and 1, respectively.

Noisy PIV

0

3.0

–3.0

–1.5

1.5

ωD/u∞PCDRL

2

0

–2

–2 0 2 4 6 8

2

0

–2

–2 0 2 4 6 8

100

200

–200

–100

0

0 1 2 3

100

200

–200

–100

0

–3 –2 –1 0 1 2 3

y/D y/D

x/D

y/D

x/D

ε(
ω

rm
s)

x/D = 3 x/D = 6

Noisy PIV

–3 –2 –1

PCDRL

(a)

(b)
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PCDRL model (right column); (b) relative difference of the spanwise profile of the vorticity root mean square
at two different streamwise locations.

from the noisy data indicates the limitation of POD in recovering the flow with the right
physics.

Similar results can be obtained by applying the POD to the PIV data. As can be observed
from figure 13, the seven leading POD modes obtained from the denoised PIV data are
relatively consistent with the modes obtained from the clear PIV data, considering that
the clean PIV data are obtained using a different experimental set-up, whereas the noisy
PIV data fail to recover the modes after the third mode. Notably, the shadow region is
clearly visible in some of the modes obtained from the clear PIV data, whereas no such
region can be seen in the modes obtained from the denoised data. This is consistent
with results from figure 9(a). The results from figure 14 further indicate the ability of
the model to reconstruct the flow data with POD modes that generally have a behaviour
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Figure 10. Leading POD modes obtained from the DNS data. Results from the ground truth DNS (left
column), PCDRL (middle column) and noisy data with 1/SNR = 1 (right column).
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similar to that of the clear PIV data. Furthermore, as shown in figure 15, the reconstructed
instantaneous vorticity field using the first ten modes of the denoised data shows a realistic
flow behaviour that is expected from the case of flow around a cylinder.

To further investigate the dynamics of the denoised flow data, DMD is then applied to
the flow data. As shown in figure 16, even in the case of the DNS data corrupted with the
level of noise 1/SNR = 1, the DMD eigenvalues of the vorticity field show a behaviour
close to that of the ground truth DNS data, whereas for the noisy data the eigenvalues
scatter inside the unit circle plot, indicating a non-realistic behaviour of the system.

As for the denoised PIV data, figure 17 reveals that the eigenvalues also show good
agreement with those from the clear PIV data. Notably, the leading DMD eigenvalues of
the clear PIV data are not exactly located on the circumference of the unit circle as in the
case of DNS data. This behaviour can be attributed to the fact that DMD is known to be
sensitive to noise (Bagheri 2014; Dawson et al. 2016; Hemati et al. 2017; Scherl et al. 2020)
and, unlike the DNS data, the clear PIV contains a relatively low level of noise, which can
affect the flow decomposition.

5. Conclusions

This study has proposed a DRL-based method to reconstruct flow fields from noisy data.
The PixelRL method is used to build the proposed PCDRL model, wherein an agent
that applies actions represented by basic filters according to a local policy is assigned
to each point in the flow. Hence, the proposed model is a multi-agent model. The physical
constraints represented by the momentum equation, the pressure Poisson equation and the
boundary conditions are used to build the reward function. Hence, the PCDRL model
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Figure 16. (a) DMD eigenvalues of the noisy DNS data at noise level 1/SNR = 1 and (b) the results from the
PCDRL model visualised on the unit circle.
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Figure 17. (a) DMD eigenvalues of the noisy PIV data and (b) the results from the PCDRL model visualised
on the unit circle.

is label-training data-free; that is, target data are not required for the model training.
Furthermore, visualisation and interpretation of the model performance can be easily
achieved owing to the model set-up.

The model performance was first investigated using DNS-based noisy data with
three different noise levels. The instantaneous results and the flow statistics revealed a
commendable reconstruction accuracy of the model. Furthermore, the spectral content of
the flow was favourably recovered by the model, with reduced accuracy as the noise level
increased. Additionally, the reconstruction error had relatively low values, indicating the
general reconstruction accuracy of the model.

Real noisy and clear PIV data were used to examine the model performance. Herein, the
model demonstrated its capability to recover the flow fields with the appropriate behaviour.

Furthermore, the accuracy of the denoised flow data from both DNS and PIV was
investigated in terms of flow decomposition by means of POD and DMD. Most of the
leading POD modes that describe the main features (coherent structures) of the flow
were successfully recovered with commendable accuracy and outperformed the results
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of directly applying POD to the noisy data. Additionally, the DMD eigenvalues obtained
from the denoised flow data exhibited behaviour similar to that of true DMD modes. These
results further indicate the model’s ability to recover the flow data with most of the flow
physics.

This study demonstrates that the combination of DRL, the physics of the flow, which
is represented by the governing equations, and prior knowledge of the flow boundary
conditions can be effectively used to recover high-fidelity flow fields from noisy data. This
approach can be further extended to the reconstruction of three-dimensional turbulent flow
fields, for which more sophisticated DRL models with more complex spatial filters are
needed. Applying such models to flow reconstruction problems can result in considerable
reduction in the experimental and computational costs.
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Appendix A. Open-source code

The open-source library Pytorch 1.4.0 (Paszke et al. 2019) was used for the implementation
of the PCDRL model. The source code of the model is available at click here.

Appendix B. Asynchronous advantage actor–critic (A3C)

The asynchronous advantage actor–critic (A3C) (Mnih et al. 2016) algorithm is applied in
this work. A3C is a variant of the actor–critic algorithm, which combines the policy- and
value-based networks to improve performance. Figure 18 shows that the actor generates an
action an for the given state sn based on the current policy, whilst the critic provides the
value function V(sn) to evaluate the effectiveness of the action.

Based on understanding of the actor–critic algorithm, A3C also has two sub-networks:
the policy and value networks. Herein, θp and θv are used to represent the parameters of
each network. The gradients of θp and θv can be calculated as follows:

Rn = rn + γ rn+1 + · · · + γ (N−1)rN + γ (N)V(sN), (B1)

dθv = ∇θ v(R
n − V(sn))2, (B2)

A(an, sn) = Rn − V(sn), (B3)

dθp = −∇θ p log π(an, sn)A(an, sn), (B4)

where A(an, sn) is the advantage.
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Figure 18. Architecture of the actor–critic algorithm.
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Figure 19. Architecture of the fully convolutional A3C.

Appendix C. PixelRL

A3C is modified in this study to a fully convolutional form (Furuta et al. 2020), and its
architecture can be found in figure 19. Through this approach, all the agents share the
same parameters, which saves on computational cost and trains the model more efficiently
compared with the case where agents need to train their models individually. The size
of the receptive field can also affect the performance of the CNN network, and a large
receptive field can result in superior capture connections between points. Therefore, a
receptive field (3 × 3) is used in the architecture; that is, the outputs of the policy and value
networks at a specific pixel will be affected by the pixel and its surrounding neighbour
pixels. Figure 19 shows that the input flow field data first pass through four convolutional
and leaky rectified linear unit (ReLU) (Goodfellow, Bengio & Courville 2016) layers
and are then inputted to the policy and value networks, respectively. The policy network
comprises three convolutional layers with a ReLU activation function, a ConvGRU layer
and a convolutional layer with a SoftMax activation function (Goodfellow et al. 2016), and
its output is the policy. The first three layers of the value network are the same as the first
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Number Action type Parameters

1 Do nothing filter size = 5 × 5
2 Box filter filter size = 5 × 5
3 Bilateral filter1 filter size = 5 × 5, σc = 1.0, σs = 5.0
4 Bilateral filter2 filter size = 5 × 5, σc = 0.1, σs = 5.0
5 Median filter filter size = 5 × 5
6 Gaussian filter1 filter size = 5 × 5, σ = 1.5
7 Gaussian filter2 filter size = 5 × 5, σ = 0.5
8 Value + = Scalar
9 Value − = Scalar

Table 1. Action set for the denoising process.

three layers of the policy network, and the value function is finally obtained through the
convolutional layer with a linear function.

The gradients of the parameters θp and θv are then defined on the basis of the architecture
of the fully convolutional A3C:

Rn = rn + γ W ∗ rn+1 + · · · + γ (N−1)W (N−1) ∗ rN + γ (N)W (N) ∗ V (sN), (C1)

dθv = ∇θv

1
I × J

1	{(Rn − V (sn)) 
 (Rn − V (sn))}1, (C2)

A(an, sn) = Rn − V (sn), (C3)

dθp = −∇θp

1
I × J

1	{log π(an, sn) 
 A(an, sn)}1, (C4)

where Rn, rn, V (sn), A(an, sn) and π(an, sn) are the matrices whose (i, j)th elements
are Rn

i,j, rn
i,j, V(sn

i,j), A(an
i,j, sn

i,j) and π(an
i,j, sn

i,j), respectively. Here, ∗ is the convolution
operator, 1 is the all-ones vector and 
 is element-wise multiplication. Additionally, W is
a convolution filter weight, which is updated simultaneously with θp and θv such that

dW = −∇W
1

I × J
1	{log π(an, sn) 
 A(an, sn)}1

+ ∇W
1

I × J
1	{(Rn − V (sn)) 
 (Rn − V (sn))}1. (C5)

Notably, after the agents complete their interaction with the environment, the gradients
are acquired simultaneously, which means that the number of asynchronous threads is one;
that is, A3C is equivalent to advantage actor–critic (A2C) in the current study (Clemente,
Castejón & Chandra 2017).

Appendix D. Denoising action set

The action set for removing the noise of the flow fields is shown in table 1. The agent
can take the following nine possible actions: do nothing, apply six classical image filters
or plus/minus a Scalar. The actions in this study are discrete and determined empirically.
The table shows that the parameters σc, σs and σ represent the filter standard deviation in
the colour space, the coordinate space and the Gaussian kernel, respectively. The Scalar in
the 8th and 9th actions is determined on the basis of the difference between the variance
of the clear and noisy data.
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