AUTOMORPHISMS OF CERTAIN P-GROUPS (P ODD).

M.J. Curran

Abstract

This paper shows that amongst the p-groups of order p^{5}, where p denotes an odd prime, there is only one group whose automorphism group is again a p-group. This automorphism group has order p^{6} and it is shown that this is the smallest order a p-group may have when it occurs as an automorphism group. The paper also shows that all groups of order p^{5} have an automorphism of order 2 apart from the group above and three other related groups.

In [6] MacHale considers p-groups which can occur as the automorphism group of a finite group. In particular he conjectures that for p odd, the smallest p-group which can arise in this way is of order p^{10} and is the automorphism group of a certain 3 -generator class $2 p$-group of order p^{6}. He also conjectures in connection with this that every group of order p^{5}, p odd, has an automorphism of order 2. The purpose of this paper is to show that both conjectures are false. Amongst the groups of order p^{5}, $p>3$, there is one group

$$
\begin{aligned}
G_{0}=\left\langle\alpha_{1}, \alpha\right| \alpha^{p} & =\left[\alpha_{1}, \alpha\right]^{p}=\left[\alpha_{1}, \alpha, \alpha\right]^{p}=\left[\alpha_{1}, \alpha, \alpha, \alpha\right]^{p}=\left[\alpha_{1}, \alpha, \alpha, \alpha, \alpha\right]=1, \\
\alpha_{1}^{p} & \left.=\left[\alpha_{1}, \alpha, \alpha, \alpha\right]=\left[\alpha_{1}, \alpha, \alpha_{1}\right]^{-1}\right\rangle
\end{aligned}
$$

defined when $(p-1,3)=1$, and three groups defined when $(p-1,3)=3$, which have no automorphisms of order 2 . The latter three groups however possess automorphisms of order 3. We show that G_{0} is the unique group of order p^{5} whose automorphism group is again a p-group, that $\left|\operatorname{Aut} G_{0}\right|=p^{6}$, and that p^{6} is the smallest order which can occur when a p-group, p odd, is an automorphism group.

The notation used is standard and that of Gorenstein [3]. In particular the commutator $[x, y, z, \ldots]=[[[x, y], z], \ldots]$, where $[x, y]=x^{-1} y^{-1} x y$. We do however denote the lower central series of a group G by $\gamma_{1}(G)=G, \gamma_{2}(G)=[G, G], \gamma_{i}(G)=\left[\gamma_{i-1}(G), G\right]$ for $i>2$, and the cyclic group of order n by C_{n}.

Throughout, p always denotes an odd prime.
We first consider which groups of order p^{5} have an automorphism of order 2. James [5] gives the groups of order $p^{n}, n \leqslant 6$, using the Hall-Senior method of classification

[^0]The group theory program CAYLEY was helpful in considering these groups of order \boldsymbol{p}^{5}.

[^1]by isoclinic families. We use James' list and adopt the same notation for the presentations. In particular, in any such presentation, trivial relations of the form $[\alpha, \beta]=1$ between generators are omitted for economy of space. We also use throughout the following standard procedure to produce an appropriate automorphism. If a group has presentation $G=\langle X \mid R\rangle$ and $\theta: X \rightarrow G$, we will denote the image x_{i}^{θ} of any generator $x_{i} \in X$ by \bar{x}_{i}. Then if $G=\langle\bar{X}\rangle$, where $\bar{X}=\left\{\bar{x}_{i} \mid x_{i} \in X\right\}$ and the generators \bar{x}_{i} also satisfy the relations R, θ extends to an automorphism of G.

We begin by extending a result of Heineken and Liebeck in Theorem 2, but first state a lemma proved using standard properties of commutators.

Lemma 1. Let G be a class 3 group. For any $a, b \in G$
(i) $\left[a^{-1}, b, b\right]=[a, b, b]^{-1}$
(ii) $\left[a, b^{-1}, b^{-1}\right]=[a, b, b]$
(iii) $\left[a^{-1}, b^{-1}, b^{-1}\right]=[a, b, b]^{-1}$
(iv) $\left[a^{-1}, b^{-1}, a^{-1}\right]=[a, b, a]^{-1}$

Theorem 2. If G is a p-group of order $p^{n}, n \leqslant 5$, and nilpotency class at most 3, then G has an automorphism of order 2.

Proof: The result is certainly true if G is abelian (Lemma 5 in [2]) or of class 2 (Lemma 7 in [6$]$) or of order p^{4} (Lemma 9 in [6$]$). We may thus assume G is a class 3 group of order p^{5}. From James' list there are four families, $\phi_{3}, \phi_{6}, \phi_{7}$ and ϕ_{8} of such groups. For each of these families we show it is possible to define an automorphism θ which inverts at least one of the generators and fixes the remainder, so θ has order 2.

The family ϕ_{3} consists of groups G with $G / Z(G) \approx \phi_{2}\left(1^{3}\right)$, the nonabelian group of order p^{3} and exponent p, and $G^{\prime} \approx C_{p} \times C_{p}$. Thus $G / G^{\prime} \approx C_{p}^{2} \times C_{p}$ or $G / G^{\prime} \approx C_{p} \times C_{p} \times C_{p}$ and $G=\left\langle\alpha, \alpha_{1}\right\rangle$ is a 2-generator group or $G=\left\langle\alpha, \alpha_{1}, \gamma\right\rangle$ is a 3-generator group respectively. However for convenience, as in [5], define additional generators $\alpha_{i+1}=\left[\alpha_{i}, \alpha\right], i=1,2$. Then in either the 2 or 3 generator case all the groups G satisfy the relations: $\alpha_{i+1}^{p}=1, i=1,2$; together with 2 (or 3) additional relations of the form: $\alpha^{p^{t}}=\alpha_{3}^{l}, \alpha_{1}^{p^{t}}=\alpha_{3}^{m},\left(\gamma^{p}=\alpha_{3}^{n}\right)$, where $t=1$ or $2,0 \leqslant l, m$ $n<p$. Note $\gamma_{2}(G)=\left\langle\alpha_{2}, \alpha_{3}\right\rangle$ and $\gamma_{3}(G)=\left\langle\alpha_{3}\right\rangle$. Now define θ so that $\bar{\alpha}=\alpha^{-1}$, $\bar{\alpha}_{1}=\alpha_{1}^{-1},\left(\bar{\gamma}=\gamma^{-1}\right)$. Then $\bar{\alpha}_{2}$ is a conjugate of α_{2} and, by Lemma $1, \bar{\alpha}_{3}=$ $\left[\alpha_{1}^{-1}, \alpha^{-1}, \alpha^{-1}\right]=\alpha_{3}^{-1}$. Thus the barred generators also satisfy the above relations, so θ is the required automorphism.

The fanily ϕ_{6} consists of groups G with $G / Z(G)=\phi_{2}\left(1^{3}\right)$ and $G^{\prime}=C_{p} \times C_{p} \times C_{p}$. Thus $G / G^{\prime} \approx C_{p} \times C_{p}$ and $G=\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ is a 2-generator group. Define additional generators $\beta=\left[\alpha_{1}, \alpha_{2}\right], \beta_{i}=\left[\beta, \alpha_{i}\right], i=1, .2$. Then all the groups G satisfy the relations: $\beta^{p}=\beta_{i}^{p}=1, i=1,2$; together with 2 further relations of the form: $\alpha_{i}^{p}=\beta_{1}^{m_{i}} \beta_{2}^{n_{i}}, i=1,2$. Note $\gamma_{2}(G)=\left\langle\beta, \beta_{1}, \beta_{2}\right\rangle$ and $Z(G)=\gamma_{3}(G)=\left\langle\beta_{1}, \beta_{2}\right\rangle$.

Now define θ so $\bar{\alpha}_{i}=\alpha_{i}^{-1}, i=1,2$. Then $\bar{\beta}$ is a conjugate of β and, by Lemma 1 , $\bar{\beta}_{1}=\left[\alpha_{1}^{-1}, \alpha_{2}^{-1}, \alpha_{i}^{-1}\right]=\left[\alpha_{1}, \alpha_{2}, \alpha_{i}\right]^{-1}=\beta_{i}^{-1}, i=1,2$. Again the barred generators satisfy the relations, so θ is an automorphism.

The family ϕ_{7}. consists of groups G with $G / Z(G) \approx \phi_{2}\left(1^{3}\right) \times C_{p}$ and $G^{\prime} \approx C_{p} \times C_{p}$. Thus $\gamma_{3}(G)=Z(G) \approx C_{p}$ and since $G / Z(G)$ is of exponent $p, G / G^{\prime} \approx C_{p} \times C_{p} \times C_{p}$, so $G=\left\langle\alpha, \alpha_{1}, \beta\right\rangle$ is a 3 -generator group. Define additional generators $\alpha_{i+1}=\left[\alpha_{i}, \alpha\right]$, $i=1,2$. Then all the groups G satisfy the relations: $\alpha_{i+1}^{p}=1, i=1,2,\left[\alpha_{1}, \beta\right]=\alpha_{3}$; together with 3 further relations of the form: $\alpha_{1}^{p}=\alpha_{3}^{l}, \alpha^{p}=\alpha_{3}^{m}, \beta^{p}=\alpha_{3}^{n}$, where $0 \leqslant l, m, n<p$ and m and n are not both nonzero. Note $\gamma_{2}(G)=\left\langle\alpha_{2}, \alpha_{3}\right\rangle$ and $\gamma_{3}(G)=\left\langle\alpha_{3}\right\rangle$. When $n=0$ define θ so $\bar{\alpha}_{1}=\alpha^{-1}, \bar{\alpha}=\alpha^{-1}, \bar{\beta}=\beta$. Then $\bar{\alpha}_{2}$ is a conjugate of $\alpha_{2}, \bar{\alpha}_{3}=\left[\alpha_{1}^{-1}, \alpha^{-1}, \alpha^{-1}\right]=\alpha_{3}^{-1}$ by Lemma 1 , and $\left[\bar{\alpha}_{1}, \bar{\beta}\right]=\left[\alpha_{1}^{-1}, \beta\right]=$ $\left[\alpha_{1}, \beta\right]^{-1}$ since $\left[\alpha_{1}, \beta\right] \in Z(G)$. When $n \neq 0$ and $m=0$ define θ so that $\bar{\alpha}_{1}=\alpha_{1}$, $\bar{\alpha}=\alpha^{-1}, \bar{\beta}=\beta$. Then $\bar{\alpha}_{2}$ is a conjugate of $\alpha_{2}^{-1}, \bar{\alpha}_{3}=\left[\alpha_{1}, \alpha^{-1}, \alpha^{-1}\right]=\alpha_{3}$ by Lemma 1 and $\left[\bar{\alpha}_{1}, \bar{\beta}\right]=\left[\alpha_{1}, \beta\right]$. In either case, the barred generators again satisfy the relations and θ is an automorphism.

Finally the family ϕ_{8} consists of just one group $G=\left\langle\alpha_{1}, \alpha_{2}, \beta\right|\left[\alpha_{1}, \alpha_{2}\right]=\beta=$ $\left.\alpha_{1}^{p}, \beta^{p^{2}}=\alpha_{2}^{p^{2}}=1\right\rangle$, which is a split extension of the cyclic group $\left\langle\alpha_{1}\right\rangle$ by the cyclic group $\left\langle\alpha_{2}\right\rangle$. Inverting α_{1} and fixing α_{2} thus gives the desired automorphism θ.

We now deal with the groups of order p^{5} and nilpotency class 4 , again with the aid of James' list. But first we define the following groups G_{r} which are denoted by $\phi_{10}(2111) b_{r}$ in that list:

Definition. For $p>3$, define G_{r} by

$$
G_{r}=\left\langle\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \mid\left[\alpha_{i}, \alpha\right]=\alpha_{i+1},\left[\alpha_{1}, \alpha_{2}\right]^{k}=\alpha_{4}^{k}=\alpha_{1}^{p}, \alpha^{p}=\alpha_{i+1}^{p}=1, i=1,2,3\right\rangle,
$$

where $r+1=1, \ldots,(p-1,3)$ and $k=g^{r}, g$ being the smallest positive integer which is a primitive root $(\bmod p)$.

Theorem 3. Excluding the group(s) G_{r} defined above, all remaining class 4 groups of order p^{5} have an automorphism of order 2.

Proof: In James' list of groups of order p^{5} there are two class 4 families ϕ_{9} and ϕ_{10}.

When $p=3$ these families have a slightly different form, so we consider the groups of order 3^{5} first. Each of these is of the form $G=\left\langle\alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$, where $\alpha_{i+1}=\left[\alpha_{1}, \alpha\right], i=1,2,3$. For each we content ourselves with giving below James' designation of the group, the defining relations, and the action of an automorphism of
order 2 on the two basic generators α_{1} and.α.

$$
\begin{array}{lll}
\phi_{9}(2111) a & : & \alpha^{3}=\alpha_{4}, \alpha_{1}^{3} \alpha_{3}=\alpha_{2}^{3} \alpha_{4}=\alpha_{3}^{3}=\alpha_{4}^{3}=1 ; \bar{\alpha}_{1}=\alpha_{1}^{-2}, \bar{\alpha}=\alpha_{1}^{-2} \alpha \alpha_{1} . \\
\phi_{9}(2111) b_{1} & : & \alpha_{1}^{3} \alpha_{3}=\alpha_{4}, \alpha^{3}=\alpha_{2}^{3} \alpha_{4}=\alpha_{3}^{3}=\alpha_{4}^{3}=1 ; \bar{\alpha}_{1}=\alpha_{1}^{-1}, \bar{\alpha}=\alpha^{-1} . \\
\phi_{9}\left(1^{5}\right) & : & \alpha^{3}=\alpha_{1}^{3} \alpha_{3}=\alpha_{2}^{3} \alpha_{4}=\alpha_{3}^{3}=\alpha_{4}^{3}=1 ; \bar{\alpha}_{1}=\alpha_{1}^{-1}, \bar{\alpha}=\alpha . \\
\phi_{10}(2111) a_{r} & : & {\left[\alpha_{1}, \alpha_{2}\right]^{r+1}=\alpha_{4}^{r+1}=\alpha^{3}, \alpha_{1}^{3} \alpha_{3}=\alpha_{2}^{3} \alpha_{4}=\alpha_{3}^{3}=\alpha_{4}^{3}=1 ; r=0,1 ;} \\
& \quad \bar{\alpha}_{1}=\alpha_{1}, \bar{\alpha}=\alpha_{1} \alpha^{2} \alpha_{1}^{-2} . \\
& \\
\phi_{10}\left(1^{5}\right) & {\left[\alpha_{1}, \alpha_{2}\right]=\alpha_{4}, \alpha^{3}=\alpha_{1}^{3} \alpha_{3}=\alpha_{2}^{3} \alpha_{4}=\alpha_{3}^{3}=\alpha_{4}^{3}=1 ;} \\
& \bar{\alpha}_{1}=\alpha_{1}, \bar{\alpha}=\alpha_{1} \alpha^{-1} \alpha_{1} .
\end{array}
$$

For $p>3$, the two families ϕ_{9} and ϕ_{10} consist of groups G with $G / Z(G) \approx$ $\phi_{3}\left(1^{4}\right)$, the non-abelian class 3 group of order p^{4} and exponent p, and $G^{\prime} \approx C_{p} \times$ $C_{p} \times C_{p}$. Thus $G / G^{\prime} \approx C_{p} \times C_{p}$ and $G=\left\langle\alpha, \alpha_{1}\right\rangle$ is a 2 -generator group. Define the additional generators $\alpha_{i+1}=\left[\alpha_{i}, \alpha\right]$ for $i=1,2,3$. Then the groups G all satisfy the relations: $\alpha_{i+1}^{p}=1$ for $i=1,2,3$; together with 2 relations of the form: $\alpha^{p}=\alpha_{4}^{m}$, $\alpha_{1}^{p}=\alpha_{4}^{n}, 0 \leqslant m, n<p$; where m and n are not both non-zero. The groups G in ϕ_{10} also satisfy the additional relation: $\left[\alpha_{1}, \alpha_{2}\right]=\alpha_{4}$. Note $\gamma_{2}(G)=\left\langle\alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$, $\gamma_{3}(G)=\left\langle\alpha_{3}, \alpha_{4}\right\rangle$ and $Z(G)=\gamma_{4}(G)=\left\langle\alpha_{4}\right\rangle$.

When $n=0$, define θ so that $\bar{\alpha}=\alpha^{-1}$ and $\bar{\alpha}_{1}=\alpha_{1}$. Then using standard commutator properties $\left[\alpha_{1}, \alpha^{-1}, \alpha^{-1}, \alpha^{-1}\right]=\left[\alpha_{1}, \alpha, \alpha, \alpha\right]^{-1}$ so $\bar{\alpha}_{4}=\alpha_{4}^{-1}$ and $\left[\alpha_{1}, \alpha^{-1}, \alpha_{1}\right]=\left[\alpha_{1}, \alpha, \alpha_{1}\right]^{-1}$ so $\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}\right]=\left[\alpha_{1}, \alpha_{2}\right]^{-1}$. Also $\bar{\alpha}_{2}$ and $\bar{\alpha}_{3}$ are conjugates of α_{2}^{-1} and α_{3} respectively.

With the exception of the groups G_{r} defined above, $n \neq 0$ and $m=0$ occurs only for groups G in ϕ_{9}. For these groups in ϕ_{9} define θ so that $\bar{\alpha}=\alpha$ and $\bar{\alpha}_{1}=$ α_{1}^{-1}. Then as above $\left[\alpha_{1}^{-1}, \alpha, \alpha, \alpha\right]=\left[\alpha_{1}, \alpha, \alpha, \alpha\right]^{-1}$ so $\bar{\alpha}_{4}=\alpha_{4}^{-1}$, and $\bar{\alpha}_{2}$ and $\bar{\alpha}_{3}$ are conjugates of α_{2}^{-1} and α_{3}^{-1} respectively. So in both cases the barred generators satisfy the relations above, and θ is the required automorphism of order 2.

We now treat the exceptional group(s) G_{r}.
Theorem 4. . The groups G_{r} defined above have no automorphisms of order 2. In particular, for $p>3$, if $(p-1,3)=3$ then \mid Aut $G_{r} \mid=3 p^{6}, r=0,1,2$, and if $(p-1,3)=1$ then \mid Aut $G_{0} \mid=p^{6}$.

Proof: $G=G_{r}$ has $\gamma_{2}(G)=\left\langle\alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle, \gamma_{3}(G)=\left\langle\alpha_{3}, \alpha_{4}\right\rangle$ and $Z(G)=$ $\gamma_{4}(G)=\left\langle\alpha_{4}\right\rangle$. Since $G / G^{\prime} \approx C_{p} \times C_{p}, G$ has $p+1$ maximal subgroups $M_{0}=\left\langle\alpha_{1}, G^{\prime}\right\rangle$, $M_{i}=\left\langle\alpha_{1}^{i} \alpha, G^{\prime}\right\rangle, 1 \leqslant i \leqslant p$. Now $M_{0}^{\prime}=\left\langle\left[\alpha_{1}, \alpha_{2}\right]\right\rangle=\left\langle\alpha_{4}\right\rangle$, whereas for $i>0$, $M_{i}^{\prime}=\left\langle\alpha_{3}, \alpha_{4}\right\rangle$ since $\left[\alpha_{2}, \alpha_{1}^{i} \alpha\right]=\left[\alpha_{2}, \alpha\right]\left[\alpha_{2}, \alpha_{1}\right]^{i}=\alpha_{3} \alpha_{4}^{-i}$ and $\left[\alpha_{3}, \alpha_{1}^{i} \alpha\right]=\left[\alpha_{3}, \alpha\right]=\alpha_{4}$. Thus M_{0} is characteristic.
G has exponent p^{2} since $\alpha_{1} \in G$ has order p^{2} but G has no elements of larger order since $G / Z(G) \approx \phi_{3}\left(1^{4}\right)$ has exponent p. Thus M_{0}, \ldots, M_{p-1} all have exponent p^{2} since $\alpha_{1} \in M_{0}$, and for $1 \leqslant i \leqslant p-1, \alpha_{1}^{i} \alpha \in M_{i}$ and $\left(\alpha_{1}^{i} \alpha\right)^{p}=\left(\alpha_{1}^{p}\right)^{i}=\alpha_{4}^{k i}$, using that G is regular. However, M_{p} clearly has exponent p, again using that G is regular. Thus M_{p} is characteristic.

Therefore since M_{0}, M_{p} and G^{\prime} are characteristic, any automorphism θ of G must be defined so that $\bar{\alpha}_{1}$ and $\bar{\alpha}$ have the form: $\bar{\alpha}_{1}=\alpha_{1}^{i} x, \bar{\alpha}=\alpha^{j} y$, where $1 \leqslant i$, $j<p$ and $x, y \in G^{\prime}$. In fact we use the relations $\alpha_{1}^{p}=\alpha_{4}^{k}=\left[\alpha_{1}, \alpha_{2}\right]^{k}$ to show that if θ is an automorphism then $i^{3} \equiv 1(\bmod p)$ and $j \equiv i^{-1}(\bmod p) .\left(^{*}\right)$

First

$$
\begin{equation*}
\bar{\alpha}_{1}^{p}=\left(\alpha_{1}^{i} x\right)^{p}=\alpha_{4}^{i k} . \tag{1}
\end{equation*}
$$

Next $\bar{\alpha}_{2}=\left[\bar{\alpha}_{1}, \bar{\alpha}\right]=\left[\alpha_{1}^{i} x, \alpha^{j} y\right]$ and by considering the image of this commutator in $G / \gamma_{3}(G)$, we see that $\bar{\alpha}_{2}=\alpha_{2}^{i j} w$, for some $w \in \gamma_{3}(G)$. So $\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}\right]=\left[\alpha_{1}^{i}, \alpha_{2}^{i j} w\right]=$ $\left[\alpha_{1}, \alpha_{2}\right]^{i^{2} j}=\alpha_{4}^{i^{2} j}$. Thus

$$
\begin{equation*}
\left[\bar{\alpha}_{1}, \bar{\alpha}_{2}\right]^{k}=\alpha_{4}^{i^{2} j k} \tag{2}
\end{equation*}
$$

Equating (1) and (2) gives

$$
\begin{equation*}
i j \equiv 1(\bmod p) \tag{3}
\end{equation*}
$$

Also $\bar{\alpha}_{3}=\left[\bar{\alpha}_{2}, \bar{\alpha}\right]=\left[\alpha_{2} w, \alpha^{j} y\right]$ and by considering the image of this commutator in $G / \gamma_{4}(G)$, we see that $\bar{\alpha}_{3}=\alpha_{3}^{j} z$, for some $z \in \gamma_{4}(G)$. Thus $\bar{\alpha}_{4}=\left[\bar{\alpha}_{3}, \bar{\alpha}\right]=\left[\alpha_{3}^{j} z, \alpha^{j} y\right]=$ $\left[\alpha_{3}, \alpha\right]^{j 2}=\alpha_{4}^{j 2}$, so $\bar{\alpha}_{4}^{k}=\alpha_{4}^{j^{2} k}$ so

$$
\begin{equation*}
\bar{\alpha}_{4}^{k}=\alpha_{4}^{j^{2} k} \tag{4}
\end{equation*}
$$

Equating (1) and (4) gives

$$
\begin{equation*}
j^{2} \equiv i(\bmod p) . \tag{5}
\end{equation*}
$$

Thus from (3) and (5) $i^{3} \equiv 1(\bmod p)$ and $j \equiv i^{-1}(\bmod p)$, which is $\left(^{*}\right)$. Conversely, if i and j satisfy $\left(^{*}\right)$, then the barred generators satisfy the defining relations of G, so any map θ of form $\bar{\alpha}_{1}=\alpha^{i} x, \bar{\alpha}=\alpha^{j} y$, for any $x, y \in G^{\prime}$, extends to an automorphism of G.

Now $\left|G^{\prime}\right|=p^{3}$. Thus if $(p-1,3)=3$, there are 3 solutions for i, so \mid Aut $G_{r} \mid=$ $3 p^{6}, r=0,1,2$. But if $(p-1,3)=1$, then $i=j=1$ so \mid Aut $G_{0} \mid=p^{6}$.

Corollary 5. The group G_{0}, defined for $p>3$ and $(p-1,3)=1$, is the unique group of order p^{5} whose automorphism group is again a p-group.

Note that in contrast to Ying's result (Theorem 2 in [8]) when $(p-1,3)=3$, the 2 -generator groups $G_{r}, 0 \leqslant r \leqslant 2$, have no automorphisms of order 2 yet Aut G_{r} is not a p-group either.

Finally we show in Theorem 9 that p^{6} is the smallest order that a p-group may have when it occurs as an automorphism group. We first state the following results, in which G denotes a finite group.

Theorem 6. If Aut G is a p-group then G is also a non-abelian p-group P or $G \approx C_{2} \times P$.

Proof: See Theorem 2 in [7].
Theorem 7. Every nilpotent group G with $|G|>2$ has an outer automorphism.
Proof: See Lemma 11 in [2].
Theorem 8. If G is a non-cyclic p-group of order greater than p^{2} such that $|G / Z(G)| \leqslant p^{4}$, then $|G|$ divides \mid Aut $G \mid$.

Proof: This is the main result in Davitt [1].
Theorem 9. There is no group G such that \mid Aut $G \mid=p^{n}, n \leqslant 5$.
Proof: Suppose on the contrary \mid Aut $G \mid=p^{n}$, for $n \leqslant 5$. By Theorem 6, we may suppose G is a non-abelian p-group. By Theorem $7 \operatorname{Inn} G$ is a proper subgroup of Aut G so Inn G divides p^{4}. Thus by Theorem $8|G|$ divides \mid Aut $G \mid$, so $|G|=p^{n}$, $n \leqslant 5$. But by Theorems 2 and 3 , all such groups apart from the groups G_{r} have an automorphism of order 2 , so G cannot be any of them. Finally, by Theorem 4, G cannot be one of the groups G_{r} either, so there is no such group G.

Corollary 10. Let G_{0} be the group defined above for $p>3$ and $(p-1,3)=$ 1. Then Aut G_{0} has the smallest order a p-group may have when it occurs as an automorphism group.

References

[1] R.M. Davitt, 'On the automorphism group of a fuite p-group with a small central quotient', Canad. J. Math. (1980), 1168-1176.
[2] D. Flamery and D. MacHale, 'Some finite groups which are rarely automorphism groups I', Proc. Roy. Irish Acad. Sect. A. 91 (1981), 209-215.
[3] D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).
[4] H. Heineken and H. Liebeck, 'On p-groups with odd order automorphism groups', Arch. Math. (Basel) 34 (1973), 465-471.
[5] R. James, 'The groups of order p^{6} (p an odd prime)', Math. Comp. 34 (1980), 613-637.
[6] D. MacHale, 'Some finite groups which are rarely automorphism groups II', Proc. Roy. Irish. Acad. Sect. A. 83 (1983), 189-196.
[7] D. MacHale, 'Characeristic elements in a group', Proc. Roy. Irish Acad. Sect. A 86 (1986), 63-65.
[8] J.H. Ying, 'On finite groups whose automorphism groups are nilpotent', Arch. Math. (Basel) 2θ (1977), 41-44.

Department of Maths and Statistics,
University of Otago,
P.O. Box 56,

Dunedin,
New Zealand.

[^0]: Received 21 December, 1987

[^1]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

