AUTOMORPHISMS OF CERTAIN P-GROUPS (P ODD).

M.J. CURRAN

This paper shows that amongst the *p*-groups of order p^5 , where *p* denotes an odd prime, there is only one group whose automorphism group is again a *p*-group. This automorphism group has order p^6 and it is shown that this is the smallest order a *p*-group may have when it occurs as an automorphism group. The paper also shows that all groups of order p^5 have an automorphism of order 2 apart from the group above and three other related groups.

In [6] MacHale considers p-groups which can occur as the automorphism group of a finite group. In particular he conjectures that for p odd, the smallest p-group which can arise in this way is of order p^{10} and is the automorphism group of a certain 3-generator class 2 p-group of order p^6 . He also conjectures in connection with this that every group of order p^5 , p odd, has an automorphism of order 2. The purpose of this paper is to show that both conjectures are false. Amongst the groups of order p^5 , p > 3, there is one group

$$G_{0} = \langle \alpha_{1}, \alpha \mid \alpha^{p} = [\alpha_{1}, \alpha]^{p} = [\alpha_{1}, \alpha, \alpha]^{p} = [\alpha_{1}, \alpha, \alpha, \alpha]^{p} = [\alpha_{1}, \alpha, \alpha, \alpha, \alpha] = 1,$$
$$\alpha_{1}^{p} = [\alpha_{1}, \alpha, \alpha, \alpha] = [\alpha_{1}, \alpha, \alpha_{1}]^{-1} \rangle$$

defined when (p-1,3) = 1, and three groups defined when (p-1,3) = 3, which have no automorphisms of order 2. The latter three groups however possess automorphisms of order 3. We show that G_0 is the unique group of order p^5 whose automorphism group is again a p-group, that $|\operatorname{Aut} G_0| = p^6$, and that p^6 is the smallest order which can occur when a p-group, p odd, is an automorphism group.

The notation used is standard and that of Gorenstein [3]. In particular the commutator [x, y, z, ...] = [[[x, y], z], ...], where $[x, y] = x^{-1}y^{-1}xy$. We do however denote the lower central series of a group G by $\gamma_1(G) = G$, $\gamma_2(G) = [G, G]$, $\gamma_i(G) = [\gamma_{i-1}(G), G]$ for i > 2, and the cyclic group of order n by C_n .

Throughout, p always denotes an odd prime.

We first consider which groups of order p^5 have an automorphism of order 2. James [5] gives the groups of order p^n , $n \leq 6$, using the Hall-Senior method of classification

Received 21 December, 1987

The group theory program CAYLEY was helpful in considering these groups of order p^5 .

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

M.J. Curran

[2]

by isoclinic families. We use James' list and adopt the same notation for the presentations. In particular, in any such presentation, trivial relations of the form $[\alpha, \beta] = 1$ between generators are omitted for economy of space. We also use throughout the following standard procedure to produce an appropriate automorphism. If a group has presentation $G = \langle X | R \rangle$ and $\theta: X \to G$, we will denote the image x_i^{θ} of any generator $x_i \in X$ by \overline{x}_i . Then if $G = \langle \overline{X} \rangle$, where $\overline{X} = \{\overline{x}_i \mid x_i \in X\}$ and the generators \overline{x}_i also satisfy the relations R, θ extends to an automorphism of G.

We begin by extending a result of Heineken and Liebeck in Theorem 2, but first state a lemma proved using standard properties of commutators.

LEMMA 1. Let G be a class 3 group. For any $a, b \in G$

$$(i) \ [a^{-1}, b, b] = [a, b, b]^{-1}$$

$$(ii) \ [a, b^{-1}, b^{-1}] = [a, b, b]$$

$$(iii) \ [a^{-1}, b^{-1}, b^{-1}] = [a, b, b]^{-1}$$

$$(iv) \ [a^{-1}, b^{-1}, a^{-1}] = [a, b, a]^{-1}$$

THEOREM 2. If G is a p-group of order p^n , $n \leq 5$, and nilpotency class at most 3, then G has an automorphism of order 2.

PROOF: The result is certainly true if G is abelian (Lemma 5 in [2]) or of class 2 (Lemma 7 in [6]) or of order p^4 (Lemma 9 in [6]). We may thus assume G is a class 3 group of order p^5 . From James' list there are four families, ϕ_3 , ϕ_6 , ϕ_7 and ϕ_8 of such groups. For each of these families we show it is possible to define an automorphism θ which inverts at least one of the generators and fixes the remainder, so θ has order 2.

The family ϕ_3 consists of groups G with $G/Z(G) \approx \phi_2(1^3)$, the nonabelian group of order p^3 and exponent p, and $G' \approx C_p \times C_p$. Thus $G/G' \approx C_p^2 \times C_p$ or $G/G' \approx C_p \times C_p \times C_p$ and $G = \langle \alpha, \alpha_1 \rangle$ is a 2-generator group or $G = \langle \alpha, \alpha_1, \gamma \rangle$ is a 3-generator group respectively. However for convenience, as in [5], define additional generators $\alpha_{i+1} = [\alpha_i, \alpha]$, i = 1, 2. Then in either the 2 or 3 generator case all the groups G satisfy the relations: $\alpha_{i+1}^p = 1$, i = 1, 2; together with 2 (or 3) additional relations of the form: $\alpha_i^{p^t} = \alpha_3^l$, $\alpha_1^{p^t} = \alpha_3^m$, $(\gamma^p = \alpha_3^n)$, where t = 1 or 2, $0 \leq l$, mn < p. Note $\gamma_2(G) = \langle \alpha_2, \alpha_3 \rangle$ and $\gamma_3(G) = \langle \alpha_3 \rangle$. Now define θ so that $\overline{\alpha} = \alpha^{-1}$, $\overline{\alpha}_1 = \alpha_1^{-1}$, $(\overline{\gamma} = \gamma^{-1})$. Then $\overline{\alpha}_2$ is a conjugate of α_2 and, by Lemma 1, $\overline{\alpha}_3 = [\alpha_1^{-1}, \alpha^{-1}, \alpha^{-1}] = \alpha_3^{-1}$. Thus the barred generators also satisfy the above relations, so θ is the required automorphism.

The family ϕ_6 consists of groups G with $G/Z(G) = \phi_2(1^3)$ and $G' = C_p \times C_p \times C_p$. Thus $G/G' \approx C_p \times C_p$ and $G = \langle \alpha_1, \alpha_2 \rangle$ is a 2-generator group. Define additional generators $\beta = [\alpha_1, \alpha_2], \ \beta_i = [\beta, \alpha_i], \ i = 1, 2$. Then all the groups G satisfy the relations: $\beta^p = \beta_i^p = 1, \ i = 1, 2$; together with 2 further relations of the form: $\alpha_i^p = \beta_1^{m_i} \beta_2^{n_i}, \ i = 1, 2$. Note $\gamma_2(G) = \langle \beta, \beta_1, \beta_2 \rangle$ and $Z(G) = \gamma_3(G) = \langle \beta_1, \beta_2 \rangle$. Now define θ so $\overline{\alpha}_i = \alpha_i^{-1}$, i = 1, 2. Then $\overline{\beta}$ is a conjugate of β and, by Lemma 1, $\overline{\beta}_1 = [\alpha_1^{-1}, \alpha_2^{-1}, \alpha_i^{-1}] = [\alpha_1, \alpha_2, \alpha_i]^{-1} = \beta_i^{-1}$, i = 1, 2. Again the barred generators satisfy the relations, so θ is an automorphism.

The family ϕ_7 consists of groups G with $G/Z(G) \approx \phi_2(1^3) \times C_p$ and $G' \approx C_p \times C_p$. Thus $\gamma_3(G) = Z(G) \approx C_p$ and since G/Z(G) is of exponent $p, G/G' \approx C_p \times C_p \times C_p$, so $G = \langle \alpha, \alpha_1, \beta \rangle$ is a 3-generator group. Define additional generators $\alpha_{i+1} = [\alpha_i, \alpha]$, i = 1, 2. Then all the groups G satisfy the relations: $\alpha_1^{p} = 1, i = 1, 2, [\alpha_1, \beta] = \alpha_3$; together with 3 further relations of the form: $\alpha_1^{p} = \alpha_3^{1}, \alpha^{p} = \alpha_3^{m}, \beta^{p} = \alpha_3^{n}$, where $0 \leq l, m, n < p$ and m and n are not both nonzero. Note $\gamma_2(G) = \langle \alpha_2, \alpha_3 \rangle$ and $\gamma_3(G) = \langle \alpha_3 \rangle$. When n = 0 define θ so $\overline{\alpha}_1 = \alpha^{-1}, \overline{\alpha} = \alpha^{-1}, \overline{\beta} = \beta$. Then $\overline{\alpha}_2$ is a conjugate of $\alpha_2, \overline{\alpha}_3 = [\alpha_1^{-1}, \alpha^{-1}, \alpha^{-1}] = \alpha_3^{-1}$ by Lemma 1, and $[\overline{\alpha}_1, \overline{\beta}] = [\alpha_1^{-1}, \beta] =$ $[\alpha_1, \beta]^{-1}$ since $[\alpha_1, \beta] \in Z(G)$. When $n \neq 0$ and m = 0 define θ so that $\overline{\alpha}_1 = \alpha_1$, $\overline{\alpha} = \alpha^{-1}, \overline{\beta} = \beta$. Then $\overline{\alpha}_2$ is a conjugate of $\alpha_2^{-1}, \overline{\alpha}_3 = [\alpha_1, \alpha^{-1}, \alpha^{-1}] = \alpha_3$ by Lemma 1 and $[\overline{\alpha}_1, \overline{\beta}] = [\alpha_1, \beta]$. In either case, the barred generators again satisfy the relations and θ is an automorphism.

Finally the family ϕ_8 consists of just one group $G = \langle \alpha_1, \alpha_2, \beta \mid [\alpha_1, \alpha_2] = \beta = \alpha_1^p, \beta^{p^2} = \alpha_2^{p^2} = 1 \rangle$, which is a split extension of the cyclic group $\langle \alpha_1 \rangle$ by the cyclic group $\langle \alpha_2 \rangle$. Inverting α_1 and fixing α_2 thus gives the desired automorphism θ .

We now deal with the groups of order p^5 and nilpotency class 4, again with the aid of James' list. But first we define the following groups G_r which are denoted by $\phi_{10}(2111)b_r$ in that list:

Definition. For p > 3, define G_r by

$$G_{r} = \langle \alpha, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \mid [\alpha_{i}, \alpha] = \alpha_{i+1}, [\alpha_{1}, \alpha_{2}]^{k} = \alpha_{4}^{k} = \alpha_{1}^{p}, \alpha^{p} = \alpha_{i+1}^{p} = 1, i = 1, 2, 3 \rangle,$$

where r+1 = 1, ..., (p-1,3) and $k = g^r$, g being the smallest positive integer which is a primitive root (mod p).

THEOREM 3. Excluding the group(s) G_r defined above, all remaining class 4 groups of order p^5 have an automorphism of order 2.

PROOF: In James' list of groups of order p^5 there are two class 4 families ϕ_9 and ϕ_{10} .

When p = 3 these families have a slightly different form, so we consider the groups of order 3^5 first. Each of these is of the form $G = \langle \alpha, \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle$, where $\alpha_{i+1} = [\alpha_1, \alpha], i = 1, 2, 3$. For each we content ourselves with giving below James' designation of the group, the defining relations, and the action of an automorphism of

[3]

order 2 on the two basic generators α_1 and α .

$$\begin{split} \phi_9(2111)a &: \alpha^3 = \alpha_4, \alpha_1^3 \alpha_3 = \alpha_2^3 \alpha_4 = \alpha_3^3 = \alpha_4^3 = 1; \ \overline{\alpha}_1 = \alpha_1^{-2}, \overline{\alpha} = \alpha_1^{-2} \alpha \alpha_1. \\ \phi_9(2111)b_1 &: \alpha_1^3 \alpha_3 = \alpha_4, \alpha^3 = \alpha_2^3 \alpha_4 = \alpha_3^3 = \alpha_4^3 = 1; \ \overline{\alpha}_1 = \alpha_1^{-1}, \overline{\alpha} = \alpha^{-1}. \\ \phi_9(1^5) &: \alpha^3 = \alpha_1^3 \alpha_3 = \alpha_2^3 \alpha_4 = \alpha_3^3 = \alpha_4^3 = 1; \ \overline{\alpha}_1 = \alpha_1^{-1}, \overline{\alpha} = \alpha. \\ \phi_{10}(2111)a_r &: [\alpha_1, \alpha_2]^{r+1} = \alpha_4^{r+1} = \alpha^3, \alpha_1^3 \alpha_3 = \alpha_2^3 \alpha_4 = \alpha_3^3 = \alpha_4^3 = 1; \ r = 0, 1; \\ \overline{\alpha}_1 = \alpha_1, \overline{\alpha} = \alpha_1 \alpha^2 \alpha_1^{-2}. \\ \phi_{10}(1^5) &: [\alpha_1, \alpha_2] = \alpha_4, \alpha^3 = \alpha_1^3 \alpha_3 = \alpha_2^3 \alpha_4 = \alpha_3^3 = \alpha_4^3 = 1; \\ \overline{\alpha}_1 = \alpha_1, \overline{\alpha} = \alpha_1 \alpha^{-1} \alpha_1. \end{split}$$

For p > 3, the two families ϕ_{θ} and ϕ_{10} consist of groups G with $G/Z(G) \approx \phi_3(1^4)$, the non-abelian class 3 group of order p^4 and exponent p, and $G' \approx C_p \times C_p \times C_p \times C_p$. Thus $G/G' \approx C_p \times C_p$ and $G = \langle \alpha, \alpha_1 \rangle$ is a 2-generator group. Define the additional generators $\alpha_{i+1} = [\alpha_i, \alpha]$ for i = 1, 2, 3. Then the groups G all satisfy the relations: $\alpha_{i+1}^p = 1$ for i = 1, 2, 3; together with 2 relations of the form: $\alpha^p = \alpha_4^m$, $\alpha_1^p = \alpha_4^n$, $0 \leq m$, n < p; where m and n are not both non-zero. The groups G in ϕ_{10} also satisfy the additional relation: $[\alpha_1, \alpha_2] = \alpha_4$. Note $\gamma_2(G) = \langle \alpha_2, \alpha_3, \alpha_4 \rangle$, $\gamma_3(G) = \langle \alpha_3, \alpha_4 \rangle$ and $Z(G) = \gamma_4(G) = \langle \alpha_4 \rangle$.

When n = 0, define θ so that $\overline{\alpha} = \alpha^{-1}$ and $\overline{\alpha}_1 = \alpha_1$. Then using standard commutator properties $[\alpha_1, \alpha^{-1}, \alpha^{-1}, \alpha^{-1}] = [\alpha_1, \alpha, \alpha, \alpha]^{-1}$ so $\overline{\alpha}_4 = \alpha_4^{-1}$ and $[\alpha_1, \alpha^{-1}, \alpha_1] = [\alpha_1, \alpha, \alpha_1]^{-1}$ so $[\overline{\alpha}_1, \overline{\alpha}_2] = [\alpha_1, \alpha_2]^{-1}$. Also $\overline{\alpha}_2$ and $\overline{\alpha}_3$ are conjugates of α_2^{-1} and α_3 respectively.

With the exception of the groups G_r defined above, $n \neq 0$ and m = 0 occurs only for groups G in ϕ_{θ} . For these groups in ϕ_{θ} define θ so that $\overline{\alpha} = \alpha$ and $\overline{\alpha}_1 = \alpha_1^{-1}$. Then as above $[\alpha_1^{-1}, \alpha, \alpha, \alpha] = [\alpha_1, \alpha, \alpha, \alpha]^{-1}$ so $\overline{\alpha}_4 = \alpha_4^{-1}$, and $\overline{\alpha}_2$ and $\overline{\alpha}_3$ are conjugates of α_2^{-1} and α_3^{-1} respectively. So in both cases the barred generators satisfy the relations above, and θ is the required automorphism of order 2.

We now treat the exceptional group(s) G_r .

THEOREM 4. . The groups G_r defined above have no automorphisms of order 2. In particular, for p > 3, if (p - 1, 3) = 3 then $|\operatorname{Aut} G_r| = 3p^6$, r = 0, 1, 2, and if (p - 1, 3) = 1 then $|\operatorname{Aut} G_0| = p^6$.

PROOF: $G = G_r$ has $\gamma_2(G) = \langle \alpha_2, \alpha_3, \alpha_4 \rangle$, $\gamma_3(G) = \langle \alpha_3, \alpha_4 \rangle$ and $Z(G) = \langle \gamma_4(G) = \langle \alpha_4 \rangle$. Since $G/G' \approx C_p \times C_p$, G has p+1 maximal subgroups $M_0 = \langle \alpha_1, G' \rangle$, $M_i = \langle \alpha_1^i \alpha, G' \rangle$, $1 \leq i \leq p$. Now $M'_0 = \langle [\alpha_1, \alpha_2] \rangle = \langle \alpha_4 \rangle$, whereas for i > 0, $M'_i = \langle \alpha_3, \alpha_4 \rangle$ since $[\alpha_2, \alpha_1^i \alpha] = [\alpha_2, \alpha] [\alpha_2, \alpha_1]^i = \alpha_3 \alpha_4^{-i}$ and $[\alpha_3, \alpha_1^i \alpha] = [\alpha_3, \alpha] = \alpha_4$. Thus M_0 is characteristic.

G has exponent p^2 since $\alpha_1 \in G$ has order p^2 but G has no elements of larger order since $G/Z(G) \approx \phi_3(1^4)$ has exponent p. Thus M_0, \ldots, M_{p-1} all have exponent p^2 since $\alpha_1 \in M_0$, and for $1 \leq i \leq p-1$, $\alpha_1^i \alpha \in M_i$ and $(\alpha_1^i \alpha)^p = (\alpha_1^p)^i = \alpha_4^{ki}$, using that G is regular. However, M_p clearly has exponent p, again using that G is regular. Thus M_p is characteristic.

Therefore since M_0 , M_p and G' are characteristic, any automorphism θ of G must be defined so that $\overline{\alpha}_1$ and $\overline{\alpha}$ have the form: $\overline{\alpha}_1 = \alpha_1^i x$, $\overline{\alpha} = \alpha^j y$, where $1 \leq i$, j < p and $x, y \in G'$. In fact we use the relations $\alpha_1^p = \alpha_4^k = [\alpha_1, \alpha_2]^k$ to show that if θ is an automorphism then $i^3 \equiv 1 \pmod{p}$ and $j \equiv i^{-1} \pmod{p}$. (*)

First

(1)
$$\overline{\alpha}_1^p = \left(\alpha_1^i x\right)^p = \alpha_4^{ik}$$

Next $\overline{\alpha}_2 = [\overline{\alpha}_1, \overline{\alpha}] = [\alpha_1^i x, \alpha^j y]$ and by considering the image of this commutator in $G/\gamma_3(G)$, we see that $\overline{\alpha}_2 = \alpha_2^{ij} w$, for some $w \in \gamma_3(G)$. So $[\overline{\alpha}_1, \overline{\alpha}_2] = [\alpha_1^i, \alpha_2^{ij} w] = [\alpha_1, \alpha_2]^{i^2 j} = \alpha_4^{i^2 j}$. Thus

(2)
$$[\overline{\alpha}_1, \overline{\alpha}_2]^k = \alpha_4^{i^2 jk}.$$

Equating (1) and (2) gives

$$(3) ij \equiv 1 \pmod{p}.$$

Also $\overline{\alpha}_3 = [\overline{\alpha}_2, \overline{\alpha}] = [\alpha_2 w, \alpha^j y]$ and by considering the image of this commutator in $G/\gamma_4(G)$, we see that $\overline{\alpha}_3 = \alpha_3^j z$, for some $z \in \gamma_4(G)$. Thus $\overline{\alpha}_4 = [\overline{\alpha}_3, \overline{\alpha}] = [\alpha_3^j z, \alpha^j y] = [\alpha_3, \alpha]^{j2} = \alpha_4^{j2}$, so $\overline{\alpha}_4^k = \alpha_4^{j^2 k}$ so

(4)
$$\overline{\alpha}_4^k = \alpha_4^{j^2 k}.$$

Equating (1) and (4) gives

(5)
$$j^2 \equiv i \pmod{p}$$
.

Thus from (3) and (5) $i^3 \equiv 1 \pmod{p}$ and $j \equiv i^{-1} \pmod{p}$, which is (*). Conversely, if *i* and *j* satisfy (*), then the barred generators satisfy the defining relations of *G*, so any map θ of form $\overline{\alpha}_1 = \alpha^i x$, $\overline{\alpha} = \alpha^j y$, for any $x, y \in G'$, extends to an automorphism of *G*.

Now $|G'| = p^3$. Thus if (p - 1, 3) = 3, there are 3 solutions for *i*, so $|\operatorname{Aut} G_r| = 3p^6$, r = 0, 1, 2. But if (p - 1, 3) = 1, then i = j = 1 so $|\operatorname{Aut} G_0| = p^6$.

COROLLARY 5. The group G_0 , defined for p > 3 and (p-1,3) = 1, is the unique group of order p^5 whose automorphism group is again a p-group.

Note that in contrast to Ying's result (Theorem 2 in [8]) when (p-1,3) = 3, the 2-generator groups G_r , $0 \leqslant r \leqslant 2$, have no automorphisms of order 2 yet Aut G_r is not a p-group either.

Finally we show in Theorem 9 that p^6 is the smallest order that a p-group may have when it occurs as an automorphism group. We first state the following results, in which G denotes a finite group.

THEOREM 6. If Aut G is a p-group then G is also a non-abelian p-group P or $G \approx C_2 \times P$.

PROOF: See Theorem 2 in [7].

THEOREM 7. Every nilpotent group G with |G| > 2 has an outer automorphism.

PROOF: See Lemma 11 in [2].

THEOREM 8. If G is a non-cyclic p-group of order greater than p^2 such that $|G/Z(G)| \leq p^4$, then |G| divides $|\operatorname{Aut} G|$.

PROOF: This is the main result in Davitt [1].

THEOREM 9. There is no group G such that $|\operatorname{Aut} G| = p^n$, $n \leq 5$.

PROOF: Suppose on the contrary $|\operatorname{Aut} G| = p^n$, for $n \leq 5$. By Theorem 6, we may suppose G is a non-abelian p-group. By Theorem 7 Inn G is a proper subgroup of Aut G so Inn G divides p^4 . Thus by Theorem 8 |G| divides |Aut G|, so $|G| = p^n$, $n \leq 5$. But by Theorems 2 and 3, all such groups apart from the groups G_r have an automorphism of order 2, so G cannot be any of them. Finally, by Theorem 4, Gcannot be one of the groups G_r either, so there is no such group G.

COROLLARY 10. Let G_0 be the group defined above for p > 3 and (p-1,3) =Then Aut G_0 has the smallest order a p-group may have when it occurs as an 1. automorphism group.

REFERENCES

- [1] R.M. Davitt, 'On the automorphism group of a finite p-group with a small central quotient', Canad. J. Math. (1980), 1168-1176.
- [2] D. Flannery and D. MacHale, 'Some finite groups which are rarely automorphism groups I', Proc. Roy. Irish Acad. Sect. A. 91 (1981), 209-215.
- [3] D. Gorenstein, Finite Groups (Harper and Row, New York, 1968).
- [4] H. Heineken and H. Liebeck, 'On p-groups with odd order automorphism groups', Arch. Math. (Basel) 34 (1973), 465-471.

1

Automorphisms of *p*-groups

- [5] R. James, 'The groups of order p^6 (p an odd prime)', Math. Comp. 34 (1980), 613-637.
- [6] D. MacHale, 'Some finite groups which are rarely automorphism groups II', Proc. Roy. Irish. Acad. Sect. A. 83 (1983), 189-196.
- [7] D. MacHale, 'Characeristic elements in a group', Proc. Roy. Irish Acad. Sect. A 86 (1986), 63-65.
- [8] J.H. Ying, 'On finite groups whose automorphism groups are nilpotent', Arch. Math. (Basel) 29 (1977), 41-44.

Department of Maths and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand.

[7]

305