Irish Section of The Nutrition Society, 17-19 June 2009

No effect of vitamin D supplementation on markers of immune function in apparently-healthy young adults

M. S. Barnes¹, L. K. Forsythe¹, G. Horigan¹, M. P. Bonham¹, E. M. Duffy¹, T. R. Hill², A. J. Lucey², K. D. Cashman², M. Kiely², J. J. Strain¹ and J. M. W. Wallace¹

¹Northern Ireland Centre for Food & Health (NICHE), University of Ulster, Coleraine BT52 1SA, UK and ²Department of Food and Nutritional Sciences, University College Cork, Cork, Republic of Ireland

1,25-Dihydroxyvitamin D, the hormonally-active form of vitamin D has been shown to be an effective immunomodulator, leading to a cytokine profile that is less inflammatory⁽¹⁾. Vitamin D supplementation has been shown to significantly reduce serum concentrations of TNF α by 10% and significantly increase serum concentrations of IL-10 by 40%, albeit in patients with congestive heart failure⁽²⁾. The effect of vitamin D supplementation on immune function in apparently-healthy individuals has not been investigated. Thus, the aim of the present study was to assess the effect of vitamin D supplementation on markers of immune function in a group of young adults.

A total of 236 apparently-healthy young males and females aged 20–40 years were recruited from Coleraine and Cork and randomly assigned to receive 5, 10 or 15 μ g cholecalciferol/d or placebo for 22 weeks⁽³⁾; 211 volunteers completed the study with >85% compliance (males 107; females 104). Vitamin D status (serum 25-hydroxyvitamin D, S-25(OH)D concentrations) and serum concentrations of the proinflammatory cytokine TNF α and anti-inflammatory cytokine IL-10 were assessed at baseline and post intervention using commerciallyavailable ELISA kits.

One-way between-groups analysis of covariance (ANCOVA) was conducted to assess the effect of treatment on vitamin D status and markers of immune function, controlling for age, gender, BMI and baseline concentrations. Vitamin D supplementation significantly affected S-25(OH)D concentrations (as shown in Table) but did not have an effect on serum concentrations of $TNF\alpha$ or IL-10.

	Treatment group (µg cholecalciferol/d)								
	Placebo (n 56)		5 (n 47)		10 (n 55)		15 (n 53)		
	Median	IQR	Median	IQR	Median	IQR	Median	IQR	P^*
S-25(OH)D (nmol/l)									
Pre	66.1	57.2-95.5	60.1	50.0-91.5	72.2	53.2-95.4	75.9	55.4-89.4	
Post	36.9 ^a	30.9-48.1	50.4 ^b	45.0-60.4	59.6°	51.3-70.3	69.0 ^d	59.1-84.4	< 0.0001
Serum TNFa (pg/ml)									
Pre	1.62	1.29-2.14	1.53	1.16-1.86	1.38	1.20 - 1.88	1.48	1.29-1.90	
Post	1.51	1.15-1.98	1.35	1.05-1.66	1.45	1.11-1.92	1.440	1.10-1.97	0.942
Serum IL-10 (pg/ml)									
Pre	0.87	0.76 - 1.07	0.80	0.71-0.96	0.87	0.79-1.06	0.85	0.71-1.03	
Post	0.89	0.78 - 1.0	0.88	0.72 - 1.07	0.96	0.80-1.14	0.91	0.74 - 1.01	0.346

IQR, interquartile range. ^{a,b,c,d}Means with unlike superscript letters were significantly different between groups (ANOVA; *P*<0.05). *Effect of treatment assessed by ANCOVA controlling for age, gender, BMI and baseline concentrations.

In conclusion, vitamin D supplementation had a significant effect on vitamin D status in a dose-responsive manner, but did not affect serum concentrations of TNF α or IL-10 in young adults. It has however, been suggested that circulating S-25(OH)D concentrations >100 nmol/l are required to optimise all vitamin D-dependent functions, levels higher than those observed in the present study, even after supplementation.

This work was supported by the UK Food Standards Agency.

- 1. Holick MF (2005) South Med J 98, 1024-1027.
- 2. Schleithoff SS, Zittermann A, Berthold HK et al. (2006) Am J Clin Nutr 83, 754-759.
- 3. Cashman KD, Hill TR, Lucey AJ et al. (2008) Am J Clin Nutr 88, 1535–1542.