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Abstract
The notion of cross-intersecting set pair system of sizem, ({Ai}mi=1, {Bi}mi=1) with Ai ∩ Bi = ∅ and Ai ∩ Bj �= ∅,
was introduced by Bollobás and it became an important tool of extremal combinatorics. His classical result
states thatm≤ (a+b

a

)
if |Ai| ≤ a and |Bi| ≤ b for each i. Our central problem is to see how this bound changes

with the additional condition |Ai ∩ Bj| = 1 for i �= j. Such a system is called 1-cross-intersecting. We show
that these systems are related to perfect graphs, clique partitions of graphs, and finite geometries. We prove
that their maximum size is

• at least 5n/2 for n even, a= b= n,

• equal to
(
� n

2 � + 1
)(

	 n
2 
 + 1

)
if a= 2 and b= n≥ 4,

• at most | ∪m
i=1 Ai|,

• asymptotically n2 if {Ai} is a linear hypergraph (|Ai ∩Aj| ≤ 1 for i �= j),
• asymptotically 1

2n
2 if {Ai} and {Bi} are both linear hypergraphs.
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1. Introduction, results
The notion of cross-intersecting set pair systems (SPSs) was introduced by Bollobás [4] and it
became a standard tool of extremal set theory. Because of its importance, there are many proofs
(e.g., Lovász [19], Kalai [16]) and generalisations (e.g., Alon [1], Füredi [7]). For applications and
extensions of the concept, the surveys of Füredi [8] and Tuza [21, 22] are recommended.

A cross-intersecting SPS of size m≥ 2 consists of finite sets A1, . . . ,Am and B1, . . . , Bm such
that

Ai ∩ Bi = ∅ for every 1≤ i≤m,

Ai ∩ Bj �= ∅ for every 1≤ i �= j≤m.

We will consider further constrains but always keep these two basic properties.
Bollobás’ theorem [4] states that

m≤
(
a+ b
a

)
(1)
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must hold for any cross-intersecting SPS if we have |Ai| ≤ a and |Bi| ≤ b for each i. This size can
be achieved by the standard example, taking all a-element sets of an (a+b)-element set for theAi-s
and their complements as Bi-s.

LetA= {Ai}mi=1 and B = {Bi}mi=1. The SPS is denoted by (A, B)= {(Ai, Bi)}mi=1. An SPS is (a, b)-
bounded if |Ai| ≤ a and |Bi| ≤ b for each i.

An SPS (A, B) is 1-cross-intersecting if |Ai ∩ Bj| = 1 for each i �= j. Our aim is to find good
estimates for the size under this condition. This leads to interesting but seemingly difficult
problems.

Our results are summarised in the next five subsections. In two warm-up sections, we show that
an 1-cross-intersecting (n, n)-bounded SPS (A, B) can have exponential size and that its size is
bounded by the sizes of the vertex sets ofA (and B). We show how the latter provides an alternate
ending of Gasparian’s proof of Lovász’s perfect graph theorem. The next two subsections present
our main results: sharp bound of the size in the (2, n)-bounded case (Theorem 1.4) and asymptot-
ically best bounds for the size in the (n, n)-bounded case when A, B are linear (Theorem 1.6) and
whenA, B are 1-intersecting (Theorem 1.7). Then, we show the connection of 1-cross-intersecting
SPS-s with clique partition of graphs.

Although the main results of this article are about 1-intersecting families, we propose the prob-
lem in a very general setting in Section 2. The proof of the upper bounds are in Sections 3 and
4. The constructions giving the lower bounds are in Section 5. We conclude with some open
problems in Section 6.

1.1 1-cross-intersecting SPS of exponential sizes
A 1-cross-intersecting (n, n)-bounded SPS can have exponential size.

Proposition 1.1. If there exist an (a1, b1)-bounded 1-cross-intersecting SPS of size m1 and an
(a2, b2)-bounded 1-cross-intersecting SPS of size m2 then there exists an (a1+a2, b1+b2)-bounded
1-cross-intersecting SPS of size m1 ·m2.

The proof of this, and most other proofs, are postponed to later sections.
Starting from the standard example (with a= b= 1 and m= 2), Proposition 1.1 yields an

(n, n)-bounded 1-cross-intersecting SPS of size 2n, exponential in n. Define the (2, 2)-bounded
1-cross-intersecting SPS, called H(2, 2), using the edges of a five cycle and its complement. The
five pairs ({i, i+1}, {i+2, i+4}) are taken modulo 5. Then Proposition 1.1 gives the following.

Corollary 1.2. There exists an (n, n)-bounded 1-cross-intersecting SPS of size 5n/2 if n is even and
of size 2 · 5(n−1)/2 if n is odd.

This is the best lower bound we know. It remains a challenge to decrease the upper bound of
essentially

(2n
n
)
in (1) for an (n, n)-bounded 1-cross-intersecting SPS.

Corollary 1.2 gives a (3, 3)-bounded 1-cross-intersecting SPS of size 10, in fact two different
ones, with 12 and with 15 vertices, depending on the order we apply Proposition 1.1. We have a
third example, the pairs ({i, i+1, i+2}, {i+3, i+6, i+9}) takenmodulo 10, it has 10 vertices. Samuel
Spiro (sspiro@ucsd.edu) informed us that his computer programme successfully checked that 10
is indeed the largest size of such a family.

1.2 1-cross-intersecting SPS and perfect graphs
One particular feature of a 1-cross-intersecting SPS (A, B) is that its size is bounded by the sizes of
the vertex sets of A (and B). This can be considered as a variant of Fischer’s inequality, and does
not hold for general SPS.
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Proposition 1.3. Assume that (A, B) is 1-cross-intersecting and V := ∪A. Then the characteristic
vectors of the edges of A are linearly independent in R

V .

A special case of Proposition 1.3 relates to perfect graphs and can be used in Gasparian’s proof
[6, 11] of Lovász’s characterisation [18] of perfect graphs: a graph G is perfect if and only if

|V(H)| ≤ α(H)ω(H) (2)
holds for all induced subgraphs H of G.

To prove the nontrivial part, Gasparian showed that if a minimal imperfect graph G would sat-
isfy (2) then there is a 1-cross-intersecting SPS of sizem= α(G)ω(G)+ 1 defined by independent
sets and complete subgraphs of G. By Proposition 1.3, |V(G)| ≥ α(G)ω(G)+ 1, contradicting (2).

1.3 (2, n)-bounded 1-cross-intersecting SPS
Here, we state the best bound for the size of (2, n)-bounded 1-cross-intersecting SPS showing that
the main term of the upper bound 1

2 (n+ 2)(n+ 1) in (1) can be halved.

Theorem 1.4. Let n≥ 4, and let (A, B) be a (2, n)-bounded 1-cross-intersecting SPS of size m.
Then

m≤
(⌊n

2

⌋
+ 1

) (⌈n
2

⌉
+ 1

)
.

This bound is the best possible. For n= 2, 3 the exact values are m= 5, 7.

1.4 1-cross-intersecting SPS in linear hypergraphs
A hypergraph H is called linear if the intersection of any two different edges has at most one
vertex.H is called 1-intersecting if |H ∩H′| = 1 for all H,H′ ∈H whenever H �=H′.

If one of (A, B), say A, in an SPS is linear, then the size of this SPS is bounded by n2 +O(n)
(without any assumption on |Bi ∩ Bj|, |Ai ∩ Bj|).
Proposition 1.5. Suppose that (A, B) is an (n, n)-bounded cross-intersecting SPS of size m such
that A is a linear hypergraph. Then m≤ n2 + n+ 1.

When A and B are both linear, and they form a 1-cross-intersecting SPS then this bound can
be approximately halved.

Theorem 1.6. Suppose that (A, B) is an (n, n)-bounded 1-cross-intersecting SPS of size m such that
bothA and B are linear hypergraphs. Then m≤ 1

2n
2 + n+ 1.

A further small decrement comes if in addition A and B are both 1-intersecting hypergraphs.
Then their union H=A∪ B can be considered as a ‘geometry’ where two lines intersect in at
most one point, and every line has exactly one parallel line.

Theorem 1.7. Assume that (A, B) is an (n, n)-bounded 1-cross-intersecting SPS of size m such that
bothA and B are 1-intersecting. Then m≤ (n2)+ 1 for n> 2. If n≥ 4 and equality holds, thenH is
n-uniform and n-regular (|Ai| = |Bi| = n for i= 1, . . . ,m and dA(v)= dB(v)= n).

In Section 5, we give constructive lower bounds. Constructions 5.1, 5.2 and 5.3 show that the
upper bounds in this subsection are asymptotically the best possible.

1.5 1-cross-intersecting SPS and clique partitions of graphs
The notion of 1-cross-intersecting SPS is closely related to the concept of clique and biclique par-
titions. A clique partition of a graph G is a partition of the edge set of G into complete graphs.
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Similarly, a biclique partition of a bipartite graph B is a partition of the edge set of B into complete
bipartite graphs (bicliques). The minimum number of cliques (bicliques) needed for the clique
(or biclique) partitions are well studied, see, for example [13]. Our problem relates to another
parameter of clique (biclique) partitions. The thickness of a clique (biclique) partition of a graph
(bipartite graph) is the minimum s such that every vertex of the graph (bipartite graph) is in at
most s cliques (bicliques). Let T2m be the cocktail party graph, i.e., the complete graph K2m from
which a perfect matching is removed. Let B2m be the bipartite graph obtained from the complete
bipartite graph Km,m by removing a perfect matching.

Assume that (A, B) is an (n, n)-bounded 1-cross-intersecting SPS of size m, and H=A∪ B.
The dual of this hypergraph,H∗, has vertex set

V∗ = {x1, . . . , xm, y1, . . . , ym}
where xi, yi correspond to Ai, Bi. The hyperedges of H∗ correspond to vertices of H. Since
|Ai ∩ Bj| = 1 for i �= j, every pair xi, yj for i �= j is covered exactly once by a hyperedge of H∗. On
the other hand, |Ai ∩ Bi| = 0 for every i so the pairs xi, yi are not covered by any hyperedge ofH∗.
Thus the complete graphs induced by the hyperedges ofH∗ form a biclique partition of thickness
n of the bipartite graph B2m.

If we have the additional assumption that A and B are both 1-intersecting then the pairs xi, xj
and the pairs yi, yj are also covered exactly once by the hyperedges of H∗. Thus in this case the
complete graphs induced by the hyperedges of H∗ form a clique partition of thickness n of the
cocktail party graph T2m.

The above argument gives the following.

Theorem 1.8. The maximumm such that B2m has a biclique partition of thickness n is equal to the
maximum size of an (n, n)-bounded 1-cross-intersecting SPS. The maximum m such that T2m has a
clique partition of thickness n is equal to the maximum size of an (n, n)-bounded 1-cross-intersecting
SPS in whichA and B are also 1-intersecting.

2. Notation and general setting
Let a, b positive integers and IA, IB, Icross three sets of non-negative integers. We denote by
m(a, b, IA, IB, Icross) the maximum size m of a cross-intersecting SPS (A, B) with the following
conditions.

1. Ai ∩ Bi = ∅ for every 1≤ i≤m,
2. |Ai| ≤ a for every 1≤ i≤m,
3. |Bi| ≤ b for every 1≤ i≤m,
4. |Ai ∩Aj| ∈ IA for every 1≤ i �= j≤m,
5. |Bi ∩ Bj| ∈ IB for every 1≤ i �= j≤m,
6. 0< |Ai ∩ Bj| ∈ Icross for every 1≤ i �= j≤m.

To avoid trivialities we always suppose that 0 �∈ Icross, also thatm≥ 2. If a constraint in 4)–6) is
vacuous (i.e., either {0, 1, . . . , a} ⊆ IA or {0, 1, . . . , b} ⊆ IB or {1, . . . , min{a, b}} ⊆ Icross) then we
use the symbol ∗ to indicate this. With this notation Bollobás’ theorem [4] states

m(a, b, ∗, ∗, ∗)=
(
a+ b
a

)
,

and our Theorem 1.4 states (for n≥ 4)

m(2, n, ∗, ∗, 1)=
(⌊n

2

⌋
+ 1

) (⌈n
2

⌉
+ 1

)
.
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In the rest of the results we deal with the case a= b= n and use the abbreviation of placing n as
an index

mn(IA, IB, Icross) := m(n, n, IA, IB, Icross).
Since in this paper the main results are about linear hypergraphs, we will have IA (and also IB)

is either {0, 1} (A is a linear hypergraph), or {1} (A is a 1-intersecting hypergraph), or ∗. Instead
of writing IA = {1} we write ‘1-int’, instead of IA = {0, 1} we write ‘01-int’, and for Icross = {1} we
use just ‘1’ (as we did above).

Adding more restrictions can only decrease the maximum size, so we have
mn(1-int, 1-int, 1)≤mn(1-int, 01-int, 1)≤mn(01-int, 01-int, 1). (3)

In fact, we examined all 18 cases for mn(IA, IB, Icross) where IA and IB are chosen from {1},
{0, 1}, or ∗ and Icross is either {1} or ∗. By symmetry they define twelve functions. Summarizing
our results, mn(∗, ∗, 1) and mn(∗, ∗, ∗) are exponential as a function of n, the other cases are
polynomial. Three of them, mentioned in (3), are asymptotically 1

2n
2 while the other seven are

asymptotically n2.
Several problems under assumptions similar to 1-cross-intersecting SPS have been studied

before, see, e.g., [3, 5, 9, 21] and more recently in [12, 20].

3. 1-cross-intersecting SPS – proofs
Proposition 1.1. If there exist an (a1, b1)-bounded 1-cross-intersecting SPS of size m1 and an
(a2, b2)-bounded 1-cross-intersecting SPS of size m2 then there exists an (a1+a2, b1+b2)-bounded
1-cross-intersecting SPS of size m1 ·m2.

Proof. We have to show that
m(a1+a2, b1+b2, ∗, ∗, 1)≥m(a1, b1, ∗, ∗, 1) ·m(a2, b2, ∗, ∗, 1).

Consider t =m(a2, b2, ∗, ∗, 1) pairwise disjoint ground sets V1, . . . ,Vt and for all i ∈ [t] a copy
(Ai, Bi) of a construction giving an (a1, b1)-bounded 1-cross-intersecting SPS of size s such
that Ai = {Ai,1, . . . ,Ai,s}, Bi = {Bi,1, . . . , Bi,s}, where s=m(a1, b1, ∗, ∗, 1). Let (A, B) be a copy
of an (a2, b2)-bounded 1-cross-intersecting SPS of size t on the ground set V such that A=
{A1, . . . ,At}, B = {B1, . . . , Bt}, where V is disjoint from all Vi-s. For any 1≤ i≤ t, 1≤ j≤ s
define

A′
i,j =Ai,j ∪Ai, B′

i,j = Bi,j ∪ Bi.

The pairs (A′
i,j, B′

i,j) form a 1-cross-intersecting SPS such that |A′
i,j| ≤ a1 + a2 and |B′

i,j| ≤
b1 + b2. �
Proposition 1.3. Assume that (A, B) is 1-cross-intersecting and V := ∪A. Then the characteristic
vectors of the edges of A are linearly independent in R

V .

Proof. Let ai (resp. bi) denote the characteristic vector of Ai (resp. Bi), i.e. ai(v)= 1 for v ∈V if
and only if v ∈Ai. Otherwise the coordinates are 0. Suppose that

m∑
i=1

λiai = 0.

Take the dot product of both sides of this equation with bj. Since |Ai ∩ Bj| = 1 for i �= j and
|Ai ∩ Bj| = 0 for i= j, we get that ( m∑

i=1
λi

)
− λj = 0.
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Adding these for all j yields (m− 1)(
∑m

i=1 λi)= 0. Consequently (using m> 1)
∑m

i=1 λi = 0.
Thus λj = 0 for all j. �
Theorem 1.4. Let n≥ 4, and let (A, B) be a (2, n)-bounded 1-cross-intersecting SPS of size m.
Then

m≤
(⌊n

2

⌋
+ 1

) (⌈n
2

⌉
+ 1

)
.

This bound is the best possible. For n= 2, 3 the exact values are m= 5, 7.

Proof. Let (A, B) be a (2, n)-bounded 1-cross-intersecting SPS of size m. It is convenient to
assume thatA is two-uniform (a graphwithoutmultiple edges) andB is an n-uniform hypergraph.
(For smaller sets dummy vertices can be added).

Consider the simple graphA.

Lemma 3.1. IfA contains a cycle then m≤ 2n+ 1.

Proof. The n-set Bi must be an independent transversal for all edges other than Ai (i.e., intersects
all edges ofA exceptAi but does not contain any edge ofA) and disjoint from the edgeAi. Suppose
that the graphA contains an even cycle with edges A1 = (x1, x2),A2 = (x2, x3). . . .A2k = (x2k, x1).
Since B1 is an independent transversal for all edges other than A1, we have x3 ∈ B1 which implies
x4 /∈ B1, and so on, finally x2k /∈ B1, x1 ∈ B1 contradicting A1 ∩ B1 = ∅. ThusA has no even cycles.

If there is an odd cycle C with k vertices, it cannot contain a diagonal, since any diagonal would
create an even cycle, contradicting the previous paragraph. If there is an edge Ai with exactly one
vertex, say x1 onC, then the argument of the previous paragraph implies x2 ∈ Bi, x3 /∈ Bi, . . . , x1 ∈
Bi, contradiction. Also, if there is an edge Ai with no vertex on C then Bi must intersect all edges
of C so it cannot be an independent transversal. Thus in this casem≤ |C| ≤ 2n+ 1. �

Assume next thatA is an acyclic graph.

Lemma 3.2. Assume that T ⊆A is a non-star tree component with t edges. Then

max
Ai∈T

|Bi ∩V(T)| ≥
⌈
t
2

⌉
.

Proof. Let P = x, y, z, z2, . . . be a maximal path of T, set A1 = {x, y},A2 = {y, z}. Let S⊆V(T)
the set of leaves connected to y. Note that t ≥ 3, |V(T)| = t + 1, NT(y)= S∪ {z} and x ∈ S. Then
B1 ∩V(T) is the set X of vertices with odd distance from y in the tree T − x. On the other hand,
B2 ∩V(T) is the set X′ = S∪D where D is the set of vertices with odd distance from z in the tree
T − (S∪ {y}). Then |X| + |X′| = t + |S| − 1≥ t. Therefore

max{|B1 ∩V(T)|, |B2 ∩V(T)|} =max{|X|, |X′|} ≥
⌈
t
2

⌉
.

�
Assume that there is a non-star tree component T in A with t edges, A1, . . . ,At , (t ≥ 3). We

define another (2, n)-bounded 1-cross-intersecting SPS (A′, B′) of size m. Let A′ be the graph
defined by replacing T with S, where S is the union of two vertex disjoint stars S1 and S2 with
centres s1, s2 having 	 t

2
 and � t
2� edges, respectively. We keep all edges of the other components

ofA, i.e.,A′ = (A \ E(T))∪ E(S).
For i= 1, . . . , t in case of A′

i ∈ E(Sα) let Ci be the complement of A′
i in the star Sα together

with the centre of the other star of S, i.e., Ci = (V(Sα) \A′
i)∪ {s3−α}. Note that |Ci| is either � t

2�
or 	 t

2
. According to Lemma 3.2 there is a hyperedge, say B1, with |B1 ∩V(T)| ≥ 	 t
2
. Define B′

as follows.

B′
i :=

⎧⎨
⎩Ci ∪ (B1 \V(T)) for 1≤ i≤ t,

{s1, s2} ∪ (Bi \V(T)) for i> t.
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Claim 3.3. (A′, B′) is a (2, n)-bounded 1-cross-intersecting SPS of size m.

Proof. It is clear that (A′, B′) is a 1-cross-intersecting SPS of size m. To prove that it is (2, n)-
bounded, assume first that 1≤ i≤ t. Then

|B′
i| = |Ci| + |B1 \V(T))| ≤ 	t/2
 + (|B1| − 	t/2
) = |B1| ≤ n.

If i> t, we have

|B′
i| = 2+ |Bi \V(T)| ≤ |Bi ∩V(T)| + |Bi \V(T)| ≤ n,

where the inequality 2≤ |Bi ∩V(T)| holds because T is not a star. �
Applying Claim 3.3 repeatedly, we may assume that all components of A are stars, S1, . . . , Sk,

where Si has ti ≥ 1 edges. For any edge Aj ∈ Si, n≥ |Bj| = ti − 1+ k− 1. Adding these inequalities
for i= 1, . . . , k, we obtain that kn≥m− 2k+ k2 which leads to k(n+ 2− k)≥m. Hence

m≤ k(n+ 2− k)≤
(⌊n

2

⌋
+ 1

)(⌈n
2

⌉
+ 1

)
.

Taking together the bounds for odd cycles and acyclic graphs, we get that

m≤max
{
2n+ 1,

(⌊n
2

⌋
+ 1

)(⌈n
2

⌉
+ 1

)}
.

For n= 2, 3 the first term is larger, for n= 4 they are equal, and for n≥ 5 the second term takes
over. This proves the upper bound form.

The matching lower bound for n≥ 4 comes from Proposition 1.1 applied to the standard con-
struction with values (1, 	n

2 
) and (1, �n
2 �). For n= 2 the hypergraph H(2, 2) works (defined in

Subsection 1.1). For n= 3 we can define H(2, 3) as the pairs ({i, i+1}, {i+2, i+4, i+6}) taken
modulo 7. �

4. 1-cross-intersecting linear SPS – upper bounds
For v ∈V , we denote by dA(v), dB(v), dH(v) the degree of v in the hypergraphs A, B,H,
respectively.

Proposition 1.5. Suppose that (A, B) is an (n, n)-bounded cross-intersecting SPS of size m such
that A is a linear hypergraph. Then m≤ n2 + n+ 1.

Proof. Our first observation here is the following. �
Claim 4.1. dA(v)≤ n+ 1 for each vertex v.

Proof. Suppose v ∈A1 ∩ . . . ∩An+2. Then v �∈ Bi for i≤ n+ 2 and in
⋃n+2

i=1 Ai \ {v} the sets
A′
i =Ai \ {v} are pairwise disjoint. The set Bn+2 must intersect each A′

1, . . . ,A
′
n+1 which is

impossible. �
Consider Bn2+n+2. For 1≤ i≤ n2 + n+ 1 the set Ai intersects Bn2+n+2, so there is a vertex

v ∈ Bn2+n+2 with dA(v)> n+ 1, a contradiction.

Theorem 1.6. Suppose that (A, B) is an (n, n)-bounded 1-cross-intersecting SPS of size m such that
bothA and B are linear hypergraphs. Then m≤ 1

2n
2 + n+ 1.

Proof. Suppose that (A, B) is an (n, n)-bounded 1-cross-intersecting SPS of size m such that
both A and B are linear hypergraphs. We have m2(01-int, 01-int, 1)≤ 5 by Theorem 1.4 so we
may suppose that n≥ 3. If m≤ 2n+ 2 then there is nothing to prove, so from now on, we may
suppose thatm≥ 2n+ 3.

We claim that for every v ∈V , dA(v), dB(v)≤ n. Indeed, dA(v)≤ n+ 1 (and in the same way
dB(v)≤ n+ 1) is obvious from Claim 4.1. Suppose dA(v)= n+ 1, say v ∈A1 ∩ · · · ∩An+1 then
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m> 2n+ 2≥ dA(v)+ dB(v) so there is a pair Ai, Bi with i> n+ 1 such that v /∈Ai ∪ Bi. Thus Bi
cannot intersect all Aj-s containing v, proving the claim.

Since (A, B) is 1-cross-intersecting we have∑v∈Bi dA(v)=m− 1 for each Bi. Adding up these
m equations we get ∑

v
dA(v)dB(v)=m2 −m. (4)

Let Ai be the set of Aj-s that intersect Ai and different from Ai. Our crucial observation is that
if Ai and Aj do not intersect then

|Ai| + |Aj| ≤ n2. (5)

Indeed, the left-hand side of (5) equals to
∑

�:� �=i,j |A� ∩ (Ai ∪Aj)|. For two disjoint sets X, Y we
say that a pair (x, y) joins X, Y if x ∈ X, y ∈ Y . For � �= i, j we have |A� ∩ (Ai ∪Aj)| ≤ 2. In case of
|A� ∩ (Ai ∪Aj)| = 2, we select two pairs (x, y), (x′, y′) joiningAi,Aj, namely (x, y)=A� ∩ (Ai ∪Aj)
and (x′, y′)= B� ∩ (Ai ∪Aj). In case of |A� ∩ (Ai ∪Aj)| = 1 we select one pair (x, y) joining Ai,Aj,
namely (x, y)= B� ∩ (Ai ∪Aj). These pairs are distinct because

|A� ∩ B
�
′ | ≤ 1, |A� ∩A

�
′ | ≤ 1, |B� ∩ B

�
′ | ≤ 1.

Since there are n2 pairs between Ai and Aj we obtain that
∑

�:� �=i,j |A� ∩ (Ai ∪Aj)| ≤ n2, complet-
ing the proof of (5).

If Ai ∩Aj = {v} then we will prove that

|Ai| + |Aj| ≤ (n− 1)2 + dA(v)+ dB(v)≤ n2 + 1. (6)

Indeed, as before,

|Ai| + |Aj| =
∑
�:� �=i

|A� ∩Ai| +
∑
�:� �=j

|A� ∩Aj|.

For every � �= i, jwe select (at most) two pairs joiningAi \ {v} toAj \ {v}, namelyA� ∩ ((Ai \ {v})∪
(Aj \ {v})) and B� ∩ ((Ai \ {v})∪ (Aj \ {v})). In this way we selected at least |A� ∩Ai| + |A� ∩Aj|
distinct pairs except if v ∈A� ∪ B�. In the latter case we still have selected at least |A� ∩Ai| + |A� ∩
Aj| − 1 pairs. So the left-hand side of (6) is at most the number of pairs joining Ai \ {v} to Aj \ {v}
plus dA(v)+ dB(v). This completes the proof of (6).

Next we prove that
∑
v∈V

dA(v)2 ≤m
(
1
2
n2 + n+ 1

2

)
. (7)

Add up inequalities (5) and (6) for all 1≤ i< j≤m

1
m− 1

∑
1≤i<j≤m

|Ai| + |Aj| ≤ 1
m− 1

(
m
2

)
(n2 + 1)=m

(
1
2
n2 + 1

2

)
.

Here, the left-hand side is

∑
1≤i≤m

|Ai| =
∑

1≤i≤m

⎛
⎝∑

v∈Ai

(dA(v)−1)

⎞
⎠=

∑
v∈V

(
dA(v)2 − dA(v)

)=
(∑
v∈V

dA(v)2
)

−mn.

The last two displayed formulas yield (7) and equality can hold only if (5) was not used. Note that
similar upper bound must hold for

∑
v∈V dB(v)2, too.
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Apply (7) toA and to B and subtract the double of (4). We obtain

0≤
∑
v∈V

(dA(v)− dB(v))2 =
∑
v

dA(v)2 +
∑
v

dA(v)2 − 2
∑
v

dA(v)dB(v)

≤ 2m
(
1
2
n2 + n+ 1

2

)
− 2m(m− 1)= 2m

(
1
2
n2 + n+ 3

2
−m

)
.

This implies m≤ 1
2n

2 + n+ 3
2 . As a last step, we show that this inequality is strict completing

the proof of the upper bound on m. Indeed, equality can hold only if (5) was never used to A
neither to B. This implies that A and B are 1-intersecting and because of (6) there exists a v with
dA(v)= dB(v)= n. Suppose

v ∈A1 ∩ · · · ∩An ∩ Bn+1 ∩ · · · ∩ B2n.
Then An+1 ∩ Bn+2 = ∅ because An+1 ∩ Bi, Bn+2 ∩Ai are nonempty for i= 1, . . . , n. This contra-
dicts the 1-intersection property. �
Theorem 1.7. Assume that (A, B) is an (n, n)-bounded 1-cross-intersecting SPS of size m such that
bothA and B are 1-intersecting. Then m≤ (n2)+ 1 for n> 2. If n≥ 4 and equality holds, thenH is
n-uniform and n-regular (|Ai| = |Bi| = n for i= 1, . . . ,m and dA(v)= dB(v)= n).

Proof. Recall thatH=A∪ B. First, consider the case when there exists a vertex v with dH(v)≥
n+ 1, say v ∈Ai ∪ Bi for i ∈ {1, 2, . . . , n+ 1}. Then one of the members of {An+2, Bn+2} does not
cover v, say, v /∈An+2. Then, An+2 cannot intersect all members of {Ai, Bi}1≤i≤n+1 containing v, a
contradiction. So in this casem= n+ 1 and we are done.

From now on, we may suppose that m> n+ 1, and dH(v)≤ n for all v ∈V . Since only B1 is
disjoint from A1 we get

2m= |H| = 2+
∑
v∈A1

(dH(v)− 1)≤ 2+ n(n− 1).

and we conclude that m≤ (n2)+ 1. If n≥ 4 and equality holds, then all vertices of A1 (and of all
other hyperedges) must have degree n. �

5. Constructing cross-intersecting linear hypergraphs
Here, we give constructions of large cross-intersecting SPS-s such that A is an intersecting linear
hypergraph. Constructions 5.1 and 5.2 show that

n2 − o(n2)≤mn(1-int, 1-int, ∗), (8)
n2 − o(n2)≤mn(1-int, ∗, 1). (9)

Since the right-hand sides of these inequalities are bounded above bymn(01-int, ∗, ∗) (which is at
most n2 + n+ 1), Proposition 1.5 is asymptotically the best possible. Construction 5.3 shows that

1
2
n2 − o(n2)≤mn(1-int, 1-int, 1). (10)

Hence, Theorems 1.6 and 1.7 are also asymptotically the best possible.
We use that the function mn(IA, IB, Icross) is monotone increasing in n so we have to make

constructions only for a dense set of special values of n.
Beyond Bertrand’s postulate (for each real x> 1 there always exists a prime p with x< p< 2x)

we need Hoheisel’s theorem [14] about the density of primes: There are constants x0 and 0.5≤
α < 1 such that for all x≥ x0 the interval

[x− xα , x] contains a prime number. (11)
The currently known best α is 0.525 by Baker, Harman, and Pintz [2].
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5.1 Building blocks: double stars and affine planes
The vertex set of a double star of size s consists of {vi,j | 1≤ i, j≤ s, i �= j} and two additional special
vertices wa and wb. Let Ai := {wa} ∪ {vi,j | 1≤ j≤ s, j �= i} and Bi := {wb} ∪ {vj,i | 1≤ j≤ s, j �= i}
for i= 1, . . . , s. Then (A, B) is a 1-cross-intersecting SPS of size s containing s-element sets such
that both A and B are 1-intersecting. The double star shows that mn(1-int, 1-int, 1)≥ n for all n
(consequently,mn(1-int, 1-int, ∗)≥ n andmn(1-int, ∗, 1)≥ n).

The affine plane AG(2, q)= (P,L) is a q-uniform hypergraph with a q2 element vertex set P,
such that each edge L ∈L (called line) has q vertices ( points), and L can be split into q+ 1 parts
L=L1 ∪L2 ∪ · · · ∪Lq+1 (directions or parallel classes of lines) such that each parallel class con-
tains q lines, Lδ = {L1,δ , . . . , Lq,δ}, the members of a parallel class are pairwise disjoint, but two
lines from distinct classes always meet in a single point. It is known that an AG(2, q) exists if q is
prime.

In the next subsection, we give three different (but similar) constructions to prove the lower
bounds (8)–(10). Each construction will use an associated Extension twice, where an Extension
starts with a weaker construction of the same type and combine it with AG(2, q) for getting a
stronger construction. In the following, p and q will always denote odd primes.

5.2 Extensions of the affine plane
Extension I. Let (A′, B′) be a cross-intersecting SPS of size at least q. For each 1≤ δ ≤ q+ 1 take
a new copy of (A′, B′) so that the ground sets of the q+ 1 copies are pairwise disjoint and also
disjoint from AG(2, q). For i= 1, . . . , q let (A′

i,δ , B
′
i,δ) be the disjoint pairs in the δth copy.

Let C1(q,A′) be the family of q2 + q sets Ai,δ := Li,δ ∪A′
i,δ , and let C1(q, B′) be the family of

q2 + q sets Bi,δ := Li+1,δ ∪ B′
i,δ . Here, Lq+2,δ := L1,δ .

Claim 5.1. (C1(q,A′), C1(q, B′)) is a cross-intersecting SPS. If A′ and B′ are 1-intersecting
hypergraphs, then so do C1(q,A′) and C1(q, B′).
Proof. Indeed, Ai,δ ∩ Bj,γ = (Li,δ ∩ Lj+1,γ )∪ (A′

i,δ ∩ B′
j,γ ). This is the singleton Li,δ ∩ Lj+1,γ for

δ �= γ , it contains the nonempty set A′
i,δ ∩ B′

j,δ for δ = γ and i �= j, and it is empty for
(i, δ)= (j, γ ).

In the case A′ is 1-intersecting and (i, δ) �= (j, γ ) we get that Ai,δ ∩Aj,γ = (Li,δ ∩ Lj,γ )∪ (A′
i,δ ∩

A′
j,γ ), a singleton. �

Construction 5.1. We prove (8), i.e.,mn(1-int, 1-int, ∗)≥ n2 − 10n1+α ≥ n2 − o(n2).
Claim 5.1 implies that whenever q is an odd prime andms(1-int, 1-int, ∗)≥ q then

mq+s(1-int, 1-int, ∗)≥ q2 + q. (12)
Since ms(1-int, 1-int, ∗)≥ s by the double star, apply (12) for (q, s)= (p, p). We get
m2p(1-int, 1-int, ∗)≥ p2 + p for all primes p> 2.

Suppose n> 2x0. There is a prime q between n− 5nα and n− 4nα by (11) and there is another
prime p between nα and 2nα . Sincem2p(1-int, 1-int, ∗)≥ p2 + p> n2α > n> q one can apply (12)
with s := 2p

mn(1-int, 1-int, ∗)≥mq+2p(1-int, 1-int, ∗)≥ q2 + q> n2 − 10n1+α .

Note that |Ai,δ ∩ Bj,γ | can be as large as q+ 1 (for i= j+ 1).
Next we prove (9) and (10). The proofs are rather similar to the one presented above, so we

leave out most of the details.

Extension II. Let (A′, B′) be a 1-cross-intersecting SPS of size at least q− 1. For each 1≤ δ ≤ q+ 1
take a new copy of (A′, B′) so that the ground sets of the q+ 1 copies are pairwise disjoint and
also disjoint from AG(2, q). For i= 1, . . . , q− 1 let (A′

i,δ , B
′
i,δ) be the disjoint pairs in the δth copy.
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Let C2(q,A′) be the family of q2 − 1 sets Ai,δ := Li,δ ∪A′
i,δ , and let C2(q, B′) be the family of

q2 − 1 sets Bi,δ := Lq,δ ∪ B′
i,δ .

Claim 5.2. (C2(q,A′), C2(q, B′)) is a 1-cross-intersecting SPS. If A′ is a 1-intersecting hypergraph,
then so does C2(q,A′).
Construction 5.2. We prove (9), i.e.,mn(1-int, ∗, 1)≥ n2 − o(n).

Claim 5.2 implies that whenever q is an odd prime andms(1-int, ∗, 1)≥ q− 1 then

mq+s(1-int, ∗, 1)≥ q2 − 1. (13)

Since ms(1-int, ∗, 1)≥ s by the double star, apply (13) for (q, s)= (p, p− 1). We get
m2p−1(1-int, ∗, 1)≥ p2 − 1 for all primes p> 2.

There is a prime q between n− 5nα and n− 4nα and there is another prime p between nα and
2nα . Sincem2p−1(1-int, ∗, 1)≥ p2 − 1> n2α − 1≥ n> q one can apply (13) with s := 2p− 1

mn(1-int, ∗, 1)≥mq+2p−1(1-int, ∗, 1)≥ q2 − 1> n2 − 10n1+α .

Note that C2(q, B′) is not linear.
Extension III. Let (A′, B′) be a 1-cross-intersecting SPS of size at least (q− 1)/2. For each 1≤ δ ≤
q+ 1 take a new copy of (A′, B′) so that the ground sets of the q+ 1 copies are pairwise disjoint
and also disjoint from AG(2, q). For i= 1, . . . , (q− 1)/2 let (A′

i,δ , B
′
i,δ) be the disjoint pairs in the

δth copy.
Let C3(q,A′) be the family of (q2 − 1)/2 sets Ai,δ := Li,δ ∪A′

i,δ , and let C3(q, B′) be the family
of (q2 − 1)/2 sets Bi,δ := Li+(q−1)/2,δ ∪ B′

i,δ .

Claim 5.3. (C3(q,A′), C3(q, B′)) is a 1-cross-intersecting SPS. If A′ and B′ are 1-intersecting
hypergraphs, then so do C3(q,A′) and C3(q, B′).

Construction 5.3. We prove (10), i.e.,mn(1-int, 1-int, 1)≥ 1
2n

2 − o(n2).
Claim 5.3 implies that whenever q is an odd prime andms(1-int, 1-int, 1)≥ (q− 1)/2 then

mq+s(1-int, 1-int, 1)≥ (q2 − 1)/2. (14)

Since ms(1-int, 1-int, 1)≥ s by the double star, apply (14) for (q, s)= (p, (p− 1)/2). We get
m(3p−1)/2(1-int, 1-int, 1)≥ (p2 − 1)/2 for all primes p> 2.

There is a prime q between n− 5nα and n− 4nα and there is another prime p between nα

and 2nα . Since m(3p−1)/2(1-int, 1-int, 1)≥ (p2 − 1)/2> n2α/2≥ n> q one can apply (14) with
s := (3p− 1)/2

mn(1-int, 1-int, 1)≥mq+(3p−1)/2(1-int, 1-int, 1)≥ 1
2
(q2 − 1)>

1
2
n2 − 5n1+α .

6. Conjectures, open problems
We conjectured [10] that there exists a positive ε such that mn(∗, ∗, 1)≤ (1− ε)

(2n
n
)
for every

n≥ 2. This was proved by Holzman [15] in the following stronger form. If a, b≥ 2, then
m(a, b, 1)≤ (29/30)

(a+b
a
)
. More recently, Kostochka, McCourt, and Nahvi [17] showed that the

factor 29/30 in this bound can be replaced by 5/6, which is the best possible sincem(2, 2, 1)= 5.
Although Constructions 5.1 and 5.3 together with Proposition 1.5 and Theorem 1.6 show that

lim
n→∞

mn(1-int, 1-int, 1)
mn(1-int, 1-int, ∗) = lim

n→∞
mn(01-int, 01-int, 1)
mn(01-int, 01-int, ∗) = 1

2
,

we strongly believe that the following is also true.
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Conjecture 1.

lim
n→∞

mn(∗, ∗, 1)
mn(∗, ∗, ∗) = 0.

We obtained some tight results for m(a, b, IA, IB, Icross) in the case a= b and also in the case
a= 2. There is plenty of room for further investigations.
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