REFLEXIVE HOMOMORPHIC RELATIONS

G.D. Findlay

(received December 7, 1959)

It is well known that a symmetric and transitive relation on a set is reflexive wherever it is defined. In this note we show that a converse is true for homomorphic relations in certain classes of algebras.

Consider a class ℓ of similar algebras which contains the sub-algebras and quotient algebras of each of its members. Assume also that the direct product $A \times B$ of each pair A, B in ℓ is also an algebra belonging to ℓ . The algebras of ℓ , being similar, have the same set of operations. We observe that other operations, called compound operations, may be obtained by composition from the assigned operations.

By a homomorphic relation ρ on an algebra A we mean a subalgebra of the direct product $A \times A$. If the pair $(a,a') \in \rho$, we write, as usual, a $\rho a'$.

PROPOSITION. Let the class ℓ have a (possibly compound) ternary operation $f: (x,y,z) \rightarrow f(x,y,z)$ such that

(*)
$$f(x,y,y) = x$$
, $f(x,x,y) = y$.

Then a reflexive homomorphic relation $\,\rho\,$ on an algebra A of $\,\theta\,$ is also symmetric and transitive and hence is a congruence on A.

Proof. Let a ρ a'. Then, since ρ is reflexive, a ρ a and a' ρ a'. Therefore f(a,a,a') ρ f(a,a',a') so that a' ρ a, on account of (*). Hence ρ is symmetric.

Can. Math. Bull. vol. 3, no. 2, May 1960

This note was written while the author was a Fellow of the Summer Research Institute, Canadian Mathematical Congress.

Again, let a ρ a' and a' ρ a''. Then a' ρ a'. Therefore f(a,a',a') ρ f(a',a',a'') so that a ρ a''. Hence ρ is transitive.

An example of such a class of algebras is the class of all groups, which includes, of course, the classes of rings and of Boolean algebras, with $f(x,y,z) = xy^{-1}z$.

A discussion of algebras satisfying (*) is contained in [1], where further examples are given.

REFERENCE

1. J. Lambek, Goursat's theorem and the Zassenhaus lemma, Canad. J. Math. 10 (1957), 45-56.

McGill University