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Abstract

In the absence of surface tension, the problem of determining a travelling surface
pressure distribution that displaces a portion of the free surface in a prescribed manner
has been solved by several authors, and this “planing-surface” problem is reasonably
well understood. The effect of inclusion of surface tension is to change, in a dramatic
way, the singularity in the integral equation that describes the problem. It is now
necessary in general to allow for isolated impulsive pressure, as well as a smooth
distribution over the wetted length. Such pressure points generate jump discontinuities in
free-surface slope. Numerical results are obtained here for a class of problems in which
there is a single impulse located at the leading edge of the planing surface and
detachment with continuous slope at the trailing edge. These results do not appear to
approach the classical results in the limit as the surface tension approaches zero, a
paradox that is resolved in Part II, which follows.

1. Introduction

This paper addresses itself primarily to a mathematical question arising in the
problem of two-dimensional irrotational flow, under a prescribed finite-length
fixed surface of small draft, and a free surface with gravity and surface tension.
The problem is thus relevant to the practical problem of planing of a high-
aspect-ratio vessel. In the limit as the penetration of the vessel beneath the free
surface tends to zero, the disturbance it causes to the stream vanishes and hence,
to leading order of smallness of draft, we may expect to be able to linearize the
free-surface boundary condition.
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In the absence of surface tension, this problem has long been considered
solved, and is reviewed by Wehausen and Laitone in [7], page 587. The standard
procedure is to seek a fictitious travelling pressure distribution, P(x), to replace
the planing surface. If such a P(x) is known, it is straightforward to write down
the linearized free-surface displacement it generates. All that is necessary then is
to equate the generated (small) free-surface displacement with the given (small)
displacement of the planing vessel, over the finite segment corresponding to that
vessel. In practice, this leads to a singular integral equation of the first kind, to
determine P(x), that is readily solvable with modern computers. The computed
results appear to be quite reasonable, and to predict pressure distributions and
lift in accordance with measurements.

There are a few aspects of this classical problem that are still not fully
understood, however, even without surface tension. The integral equation is
singular and in principle allows infinitely many solutions. However, a unique
solution for P(x) is obtainable if we insist that the free-surface slope agrees with
the planing-surface slope where they join at the trailing edge; thus this is
equivalent to the Kutta condition of aerodynamics.

Even though the resulting P(x) is uniquely determined for a given input hull,
there is still a certain amount of confusion, reflected in the literature on the
problem, regarding the connection to the original input surface. The fact is that
in general there is no solution at fixed wetted length, for a given planing-surface
shape over that length! If we do insist on prescribing the wetted length, the
hydrodynamics will not accept just any input shape; it insists on its own degree
of freedom, equivalent to a vertical up or down shift of the planing surface as a
rigid body. In practice, this is a reflection of the fact that, for a given
planing-surface shape of small draft that is not allowed to move up or down, the
hydrodynamics must be allowed to determine how much of that surface is
wetted at speed, by moving the leading edge forward or back an appropriate
amount.

Those authors (for example, Squire [6] and Oertel [S) who have concerned
themselves with this aspect of the planing problem, have found it convenient to
dispense a posteriori with the idea of fixing wetted length. That is, although it is
convenient (if not almost essential) to fix the wetted length in order to perform
the computations, once P(x) is determined it is better to re-plot the results in
such a way that the wetted length itself is an output quantity. Thus the
conventional wetted-length-based Froude number is a rather inappropriate
measure of speed for planing vessels, and other more-practical choices suit the
final output better. Oertel [5] also concerns himself with some additional quite
difficult questions, that occur for planing surfaces without sharp trailing edges
or transoms; here, yet another uncertainty enters, because the water must now
be allowed to choose not only the leading but also the trailing-edge location.
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These difficulties are mentioned now, only to add weight to the additional
difficulties, only partly-resolved here, that arise when surface tension is signifi-
cant. These are difficulties associated with the fact that surface tension smooths
the free-surface displacement generated by non-smooth pressure distributions.

For example, suppose we consider P(x) = 8(x), that is, a travelling point
impulse of pressure. Then (Lamb [3], page 403) the free-surface displacement at
x = 0 (that is, immediately beneath the point pressure singularity) is unbounded
in the absence of surface tension, specifically tending to infinitely like log|x| as
x — 0. This logarithmic singularity is the fundamental singularity of the integral
equation described earlier.

However, when surface tension, however small, is present, such a §-function
of imposed pressure no longer generates an infinite free-surface displacement.
Indeed (Lamb [3], page 465) the resulting free-surface displacement is every-
where continuous. There is, however, a discontinuity in the slope of the free
surface at the singular point x = 0, of a magnitude proportional to the strength
of the é-function.

At first sight, this is good news. Surely, such a more-gentle disturbance,
created by a very non-gentle disturber, is helpful in solving the problem?
Unfortunately, it is not. Indeed, the singularity in the surface-tension-less case is
of great benefit, in producing a solvable integral equation. Non-singular first-
kind integral equations are notoriously hard to solve, and the planing-surface
integral equation is almost non-singular, when surface tension is present.

A non-existence result, very much more dramatic than the one described
above, now occurs. Specifically, at fixed wetted length, no smooth solution for
P(x) exists unless we allow the hydrodynamics not only to move the input hull
up and down, but also to rotate or pitch it. But this is quite unacceptable, since,
for example, it implies that there is no solution at all for a flat plate at a given
(small but non-zero) angle or attack. The hydrodynamics will simply shift and
rotate it, until there is no displacement and no disturbance to the stream at all.

How do we escape from this dilemma? The only way out is to abandon the
requirement that P(x) be smooth. Once this is accepted, its reasonableness
becomes apparent. Since a pressure distribution as singular as P(x) = 8(x)
produces a quite-acceptable (even continuous!) free-surface displacement, why
should not such singularities be present in the generating (fictitious) pressure
distribution? Indeed, we should anticipate presence of such a §-function in P(x)
whenever there is a slope discontinuity in the body and/or free surface.

The external pressure distribution, including the above-mentioned §-function
singularity, is in principle only a mathematical artifice, arranged so as to
generate the given planing surface. However, the actual hydrodynamic pressure
distribution in the flow immediately beneath the free surface or the planing
surface may be obtained directly from this fictitious external pressure, the
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difference being simply proportional to the surface curvature in each case. No
singularities of 8-function type ocur in the interior pressure, the §-function in the
exterior pressure being cancelled by the d-function in the surface curvature
induced by that point pressure.

In general, a discontinuity in slope may be expected to occur at the leading
edge, where the free surface (including surface tension) makes contact with the
body. On the other hand, smooth separation suggests that no such discontinuity
is tolerable at the trailing edge. It is the conclusion of the present paper that a
unique solution can be obtained for the linearized planing problem with surface
tension, involving both a continuous pressure P(x) over the whole wetted length
and an isolated 8-function singularity located at the leading edge. The integral
equation corresponding to such a formulation is set up and solved analytically in
the long-wave limit, and numerically for some ranges of non-dimensional gravity
and surface tension parameters.

Computed results are given here for plane surfaces and for parabolic curved
surfaces. In the former case, a non-zero d-function singularity in the external
generating pressure appears to be inevitable, and corresponds (as expected) to a
finite jump discontinuity in the slope of the free surface at the point where it
converts into the planing surface at its leading edge. The numerical results
appear to be well converged, and predict the strength of the §-function ade-
quately, down to quite small values of the effective surface tension.

However, these results for the flat plate appear to be unacceptable physically.
The §-function strength increases without bound as the surface tension T tends
to zero, and a capillary wave is generated ahead of the body, of an amplitude
that grows without bound as 7 — 0. As the same time, the smooth part of the
pressure distribution approaches a limit curve that is quite unlike the known
pressure distribution at 7 = 0. This paradox is resolved in Part II, which
follows.

One can escape this paradox for some families of curved bodies. The results
for parabolic planing surfaces indicate that smooth attachment (no leading edge
discontinuity of slope), and hence absence of §-function generating pressure, is
possible for suitable choice of the parameters of the parabola. This is equivalent
to the process of raising and rotating the basic parabola, described above. The
computed results for these special families now have the property that the
capillary-wave amplitude tends to zero as T — 0, and the free-surface shape and
pressure distribution now tend to the classical results for T = 0.

2. Impulse and step pressures

The free-surface elevation y = n(x) produced by a 8-function pressure ap-
plied on the free surface at x = 0 is given by Lamb ([3], page 465; see also
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DePrima and Wu, [2]), and can readily be computed in terms of the even
auxiliary function

F(x) = cos x [ (cos 1) /¢ dit + sin|x [Psinoy/ean, @.1)

of the sine and cosine integrals (Abramowitz and Stegun [1), p. 232, where f'(x)
is written as —g(x)). Thus, if the free stream has speed U in the positive x
direction, and p is the (constant) fluid density, we have

pUMy(x) = K'(x), (22)
where

sink x forx >0,

sink,x forx <O. (2.3)

() = - [ flkx) - £k, )] - —{

In (2.3), k_, k, are respectively the gravity and capillary wave numbers defined
by

2
ke =2 (12 0), 24)
where (with g the acceleration of grav1ty and T the surface tension),
172
(1 - 43T) . (2.5)
pU*

Figure 1 shows 3pU? v ny(x), plotted against k_x for various values of ». A
similar plot is given by Lamb. Note that the slope dn,/dx is discontinuous at
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Figure 1. Free-surface shape due to a unit §-function pressure at x = 0, for » = 0.2 (u = 0.96) and
v =038 (p = 0.36).
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x = 0, but the function 7, itself is continuous and everywhere bounded, taking a
finite value immediately beneath the infinite-pressure point. As |x| — o0, f' >0,
and we obtain gravity waves of wave length 27 /k_ as x — + o0 (behind the
disturbance) and equal-amplitude (unit) capillary waves of wavelength 27 /k
as x — —o0, ahead of it.

We are also interested in the free-surface elevation y = 5,(x) produced by a
unit-step pressure, that is, zero pressure for x < 0 and unit pressure for x > 0.
This is simply the iniegral of g, that is, it satisfies nj(x) = n¢(x), and can be
written in terms of the (odd) auxiliary function f(x) whose derivative is f'(x) in
(2.1). Thus

pUn,(x) = K(x), (2.6)
where

K(x) = —#[ki_f(k_x) - %f(hx)]

2 1{1 1
—Vk—_COS k_x—;(k—_—;:) forx >0, (2.7)
+
Vi, cos k+’f forx < 0.

Note that, since f also tends to zero at infinity, we obtain capillary waves on
y = 0 as x — —o0, but gravity waves on

1 1{1 1 1
d pU’[ v(k_ k+)] og’ (28)
as x »> +oo. That is, the waves at x = +co are on the equilibrium free surface,
depressed hydrostatically by the unit pressure field. The function pgn,(x) is
plotted against k_x in Figure 2 for various ». Note that the capillary waves are
now reduced in amplitude as well as wavelength, compared to the gravity waves,
and there is no longer a slope discontinuity at the origin.
In the zero-surface-tension limit 7— 0, we have v —» 1, k, — o0 and k_—
g/ U2 Thus the elevation due to a step-function pressure is given by

pU%,(x) > Ki(x), (2.9)
where
gx
2cos = -1 forx>0,
£ Ky(x) = - j(ﬂ‘z-) + U? 2.10)
Y T\U 0 for x <0,

displaying only pure gravity waves (Lamb [3], page 403). It is also important to
note that the degree of singularity at x = 0 is much increased in this limit, and
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Figure 2. Free-surface shape due to a unit step-function pressure distribution for » = 0.2 and
y = 0.8,

we have 7,(x) = O(x log|x|) as x — 0, with infinite slope where the pressure
jumps. The situation for the T — 0 limit of the elevation due to an impulsive
pressure is of course even “worse”, for then n(x) = O(log|x|]) as x >0, is
unbounded immediately beneath the pressure point. The expression (2.2) also
has the property that the capillary-wave amplitude remains finite as 7'— 0,
although its wavelength is tending to zero. This is a peculiarity of the §-function
pressure; any smoother forcing (for example, the step function) leads to a
vanishing capillary wave as T — 0. Hence the appropriate limiting expression for
7o is best thought of as the derivative of (2.10), which has no upstream waves.

3. The planing integral equation without surface tension

We now suppose that there is some smooth distribution of pressure
p = pUP(x) 3.1

over a portion |x| </ of the free surface. If T = 0, the resulting free-surface
elevation is

n(x) = [ :dsp(z)Kz,(x ) (3.2)
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where

Ky = r(

. gx
2sin == for >0,
U2) - { U2 * (33)

0 for x <0.
If n(x) is given for |x| </, (3.2) is a weakly-singular Fredholm integral equation
to determine P(x). The singularity is logarithmic since, as x — 0,

Ky(x) - - (1/7)log|x| + O(1). (34)
It is possible to differentiate (3.2) once, to give a Cauchy-principal-value singular
integral equation with the slope #’(x) as input, that is,

w(x) = [ at POK(x - 9 (35)

whose kernel K’ possesses a simple-pole singularity at x = §.

The general theory of such integral equations (for example, Muskhelishvili {4])
indicates that (3.2) possesses a unigue solution P(x) for any prescribed n(x). In
particular, there is a unique solution Py(x) when 7(x) =1, which is also
necessarily a solution of the homogeneous case of (3.5), that is, with '(x) = 0.
Thus, (3.5) does not possess a unique solution, its general solution being of the
form

P(x) = P,(x) + C Py(x), (3.6)

where P,(x) is any solution, and C is an arbitrary constant.

An important characteristic of the solution to (3.2) is that in general it is
unbounded at both ends x = */, possessing inverse-square-root singularities
there. In the application to planing surfaces, this is tolerable at the leading edge
x = -I, where it models spray formation, but intolerble at the trailing edge
x = +1, where smooth detachment is assumed. In fact, in order to achieve
continuity of free-surface slope and planing-surface slope at x = /, we must
require P to vanish there, that is,

P(l)=0. 3.7
Equation (3.7) is equivalent to the Kutta condition of aerodynamics.

Thus, although (3.2) possesses a unique solution for any given displacement
1n(x), in general that solution is physically unacceptable, since it does not satisfy
(3.7). On the other hand, it is always possible to choose the constant C in (3.6) so
that (3.7) is satisfied. That is, for any given slope 7'(x), there exists a unique
solution of (3.5) satisfying (3.7). Thus, if n,(x) is any given displacement,
although there may be no acceptable solution for n(x) = n4(x), there will always
be a constant C such that the solution corresponding to

7(x) = mo(x) + C (3-8)
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does satisfy the Kutta condition (3.7). This means that, if the wetted length 2/ is
held fixed, we must allow the planing surface to rise or fall bodily, until the
Kutta condition is satisfied.

The linearized two-dimensional planing-surface problem in the absence of
surface tension, has a long and interesting history, partially surveyed by Wehau-
sen and Laitone in [7), page 587. Good numerical solutions of (3.5) subject to
(3.7) are not difficult to achieve, by a number of methods, and some such results
are shown in the Figures to follow. The numerical work must be performed at
fixed values of the wetted length 2/, and is initially parametrized by the Froude
number based on that length, or on its reciprocal square, say

y=gl/ U 39
Once the computations are done, it is preferable to re-plot, for example, as done
by Squire [6] and Oertel [5], in ways which allow 2/ to be determined by the
hydrodynamics, as is the case in practice. However, in the present work we
retain y as our basic parameter.

4. The planing integral equation with surface tension

The equivalent of (3.2) when 7 # O is
n(x) = [ d& POK(x — 9) @.1)

where K’(x) is given by (2.3). This kernel is much less singular than K, and we
have,as x - 0,
k k, —k k, +k
K’(x)e;lp—log-f— + (—*—')|x| - (—*—V-——')x + O(k% x? log|x|).

2v
4.2)

Although the theory of such non-singular first-kind Fredholm integral equations
is much less well developed than the singular case, it is not hard to see by
heuristic arguments that we cannot expect any smooth solution of (4.1) for a
general input 7(x)!

For example, the character of the integral equation (4.1) is modelled by the
long-wave case k. — 0, in which the kernel K” is replaced by its small-x limit
(4.2) everywhere. Then the limiting equation is

1.k, Kk, +k_ k, +k_
n(x) = [ j[ —log 7t + —7—£]P(§)d£ - P a o

N ("+_2:";)f_:1>(g)|x — gd¢ + O(Kk2).
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Upon twice differentiating (4.3), we have
P(x) = 9" (x)v/ (k, —k) + O(k%), (4.9)

which appears to determine P(x) uniquely, given only the linearized curvature n”
of the planing surface.

However, the “solution” (4.4) cannot be expected to satisfy (4.3) in general. If
we substitute (4.4) into ihe righi-hand side of (4.3), we musi expect io obiain, noi
n(x) itself, but rather 9(x) + C — ax, which involves two unique constants C
and a, whose effect is lost in the double differentiation. Thus, in order to achieve
a smooth pressure distribution P(x) for a given planing surface in the presence
of surface tension, we must expect to have to raise or lower the planing surface,
and to pitch or rotate it through an angle a that is determined by the hydrody-
namics. In particular, for a flat plate " = constant, the only smooth pressure
distribution is P(x) = 0, and n(x) = 0, that is, no disturbance at all.

The “raise and rotate” procedure can be made the basis of a numerical
solution. However, it is clearly too restrictive, and the failure to provide a
solution for a flat plate is unacceptable. Why indeed should we expect a
“smooth” generating pressure distribution? We have seen in Section 2 that, even
when the pressure distribution is as singular as a §-function, the resulting
free-surface elevation is still bounded and continuous. Thus, for example, we
may wish to allow §-function behaviour in P(x). If so, what is the effect on the
flow?

As we have seen, a §-function pressure produces a free-surface slope discon-
tinuity, and hence a weak infinity in the local flow velocity. Such a discontinuity
is acceptable at the leading edge, and is inevitable if the planing surface itself
possesses internal slope discontinuities, but is apparently unacceptable at the
trailing edge. That is, the form taken by the Kutta condition if T 5 0 is no
longer (3.7), but simply proscription of §-function pressure singularities at the
trailing edge.

This leaves the leading edge, and internal discontinuities. We consider only
leading-edge pressure impulses here; if there are slope discontinuities to the
body, the strength of the necessary §-function is prescribed by that discontinu-
ity, and is not be be considered as an unknown. However, the strength P, of the
leading-edge pressure impulse is an unknown, and must be determined as part of
the solution process. But, as (4.4) indicates, this is not enough freedom to
guarantee a unique solution. We need two disposable constants, and, by analogy
with the T = 0 case, we also allow vertical displacement C of the input planing
surface. Thus we suggest, instead of (4.1), the integral equation

a(x) + C = PoK'(x + 1) + f :dg POK'(x - 8), (4.5)
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where the constants Py, and C, as well as the smooth pressure distibution P(x),
are unknown. We expect, based on the above intuitive arguments, that the
system (4.5) will possess a unique solution. Certainly if it does so, the Kutta
condition will be satisfied, since n will be bounded and continuously differentia-
ble at x = + /, and there will be smooth flow separation from the transom.

As an example, suppose we again consider the long-wave (high Froude
number) limit k., — 0. Equation (4.4) still holds and determines the smooth part
P(x) of the pressure distribution in terms of the body surface curvature only. In
particular, for a flat plate with zero curvature, P(x) — 0 as k, — 0. However,
this is no longer an unacceptable result, since we still have the term of P, in (4.5)
to balance n(x). Thus, as k. — 0, if 7'(x) = —a = constant, we find P(x) =0
but

Py =2va/ (k, +3k_). (4.6)

That is, in this limit, a flat plate is generated simply by a leading-edge §-function
of known strength.

S. Numerical method

It is convenient when T # 0 to differentiate (4.5), thus eliminating the
arbitrary constant C. We first attempt to solve

m(x) = PK"(x + 1) + [ jdg POK"(x — 9, ¢.1)

numerically, for given values of the body slope n'(x). Having done so, we can
then compute the unknown vertical shift C, simply by computing the position of
one point on the body, and comparing this with the input n(x).

First we assume that the unknown P(x) is a step function, that is, that P(x)
has the form

P(x)=Pj,xj_,<x<xj forj=1,2,...,N, (5.2)
for some constants P,j=12,..., N to be determined. Thus we have divided
the body (-/, /) into N intervals, the jth interval having ends (X1, x;), with

xo = —-I, xy =/, and have approximated the pressure as constant on each
interval. Thus

N
7 (x) = PK"(x + 1) + 21 P[K'(x—-x_)) - K(x~-x)]. (53

There are N + 1 unknowns, Py, P, P,, ..., Py; we obtain N + 1 equations to
solve for these unknowns by forcing (5.3) to hold at the N + 1 end-points
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x=x,i=0,1,...,N. This leads to a set of N + 1 equations in N + 1
unknowns, that can be written in vector form as
Ap=b, (5.4)
where, foralli =0, 1,2, ..., N, the matrix A has components
A= K"(x; +1), (5.5)
and
A;=K'(x;— x_)) — K'(x; — x) forj=12,...,N, (5.6)
with
p=[P] and b=[7'(x)] (5.7)

In computing the element 4, one must be a little careful, since (4.2) indicates
that K”(x) possesses a jump discontinuity at x = 0. The correct interpretation of
(5.5) for i = O corresponds to the right-hand limit of this step function, since we
must force satisfaction of the body boundary condition only for x strictly
greater than —/. No such problem occurs with x; = x; or x;_, for j > 0, since
K’(x) 1s a continuous function.

The linear system (5.4) may now be solved using any convenient procedure,
and yields the pressures and hence forces on the body directly. The matrix A
appears to be well conditioned, and always inverts without difficulty.

The accuracy of the computed results depends only on the number N of
intervals of discretization. All computations reported here were performed on a
TRS-80 microcomputer which allowed a maximum of 50 intervals. Although a.
much finer subdivision would have been possible on a large computer, this value
was always sufficient to exhibit the trends in the output.

For any fixed value of N, the program loses accuracy when the capillary
wavelength becomes comparable to the mean mesh length 2//N. In practice,
two or three figure accuracy is attainable with N = 50, almost down to this
wavelength. This is especially so if extrapolation on N is used, exploiting the fact
that the error appears to decrease like N . Although in principle any set of
intervals will suffice, a Chebyshev mesh, with

x; = ~I cos(jn/N), (5.8)

was found to give best results.

6. Flat plate solutions

The program was run first with '(x) = —a = constant, representing a flat
plate at angle of attack «; without loss of generality we may scale a = 1. Results
were computed for various ranges of the parameters, but are presented here only
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Figure 3. Computed §-function strength and net lift as a function of scaled surface tension g, for a
flat plate at y = g//U? = 1.

for one (typical) Froude number, corresponding to y = 1. Figure 3 shows a plot
of two important output quantities against the non-dimensional surface tension

p=4gT/(pU* =1 -} 6.1)
appearing in (2.5). These quantities are the strength P, of the §-function, and the
normalized net lift force

F=/[ jP(x) dx. (62)

Note that the range of values of u is between 0 and 1. Although p can be
thought of as a scaled surface tension, p~'/# can also be thought of as a speed
parameter, scaled relative to the minimum speed

U, =[4¢T/p]"* (6.3)
of free gravity-capillary waves. The value of U, is about 23 cm./sec. for
air-water interfaces. Thus as p—»1, U—> U, v -0, k, - k_, and the waves
ahead and behind the body have the same length. If u > 1, no wave-like flow
can exist.

At the other extreme, as u — 0, the effect of surface tension might be expected
to vanish. However, there seems no evidence that this is happening here. As
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p — 0, the values of —P; and F both appear to be tending to infinity, while their
sum F + P, approaches a constant (negative) value (about -0.13 for y = 1),
Although little about this limit is presently understood, it is not in fact surprising
that P, tends to minus infinity, in view of the fact [5] that the free surface
without surface tension is vertical at its point of contact with the leading edge of
the plate. Consideration of the jump in the free-surface slope due to a §-function
pressure (for example, as given by (4,2)) confirms that a vertical slope downward
requires a negative-infinite strength to that 8-function.

4L
P(x) }
L
( Pressure
8~ |
T](X) ZT
=
I\
s N AL - - -
o ]
-1 0 1
2.—
.I\ l P
0 = - .
\\\\ ) //
~a_ _ -
_2—
_4—
o U
i ] | 1 ] ]
-2.0 -1.0 0 1.0 2.0 3.0

Figure 4. Free-surface shape and pressure distribution for a flat plate at y = 1 and u = 0.2. Results
for zero surface tension shown dashed.

However, the apparent limiting solution as T — 0 is quite unlike that for
T = 0. Figure 4 shows results, for the case u = 0.2 at y = 1, for the free-surface
shape and the smooth part of the pressure function P(x). At p = 0.2 the
capillary wave has a wavelength only 6% of the gravity wavelength. One might
therefore expect quite small effects of surface tension. However, the apparent
height of the capillary waves ahead of the plate is rather enormous, some 7 times
the vertical displacement between trailing edge and leading edge, and also 7
times the height of the gravity waves behind the plate. The pressure P(x) is
concentrated mostly near the leading edge, going negative at about mid-body,
but remaining quite small over the whole rear half.
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As p decreases below 0.2, the capillary waves appear to become even higher as
they shorten, and the concentration of P(x) near the leading edge increases. In
both respects the results are totally dissimilar to the T = 0 results (for example,
those of Oertel [5]) shown dashed on Figure 4. At the same time, there is no
comparison between the vertical shifts of the body at 7 = 0 and as T'— 0. For
example, Figure 4 shows the p = 0.2 output surface only barely touching the
equilibrium free surface, with n(1) = —0.2 but the T = 0 plate has a substantial
draft of about (1) = -1.6.

It appears that, at least for a flat plate, the T = O results are not obtainable by
taking the continuous limit as 77— 0 of the present results. This paradox is
resolved in Part II.

7. Parabolic surfaces with smooth attachment

We now consider cases where the input planing surface n = n(x) is curved,
specifically parabolic, with

1”(x) = B = constant. (7.1)
If, without loss of generality, we set n(0) = 0, and input
n(x) = —ax +3Bx%, (7.2)

for some a, the program will compute a solution corresponding to 7(x) = n(x)
+ C, such that §(0) = C, as in the flat-plate case 8 = 0. Such a solution, in
general, possesses a §-function singularity at the leading edge, corresponding to
free-surface attachment with a finite change in slope, and suffers the same
paradox as for the flat-plate case, of failing to approach the T = 0 solution as
T-0.

However, among the family of curved bodies, there exists one member (that
is, one value of « for every 8) such that the attachment is smooth, that is, occurs
without change in slope. The solution does not require a leading-edge §-function,
does not generate large-amplitude capillary waves as T — 0, and may be ex-
pected to approach the T = 0 solution in that limit.

There are two ways to generate this smooth solution. Clearly, we can simply
run the standard program, for a range of input values of the angle of attack
parameter «, and pick out the value of a at which the strength P, of the output
d-function vanishes. Alternatively, we may use the “raise and rotate” procedure
described in Section 4, to allow the program to determine « itself. In fact this
can be done with only a slight modification of the computational procedure
outlined in Section 5. All that is necessary is to replace the term P,K”(x + /) in
(5.3) by the unknown constant a. Hence, the matrix elements 4, of (5.5) are alk
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Figure 5. Free-surface shape and pressure distribution for a parabolically curved planing surface at
Y = 1 and p = 0.05. Results for zero surface tension shown dashed.

replaced by unity, and the element i = 0 of the solution vector p is re-interpreted
as a, rather than P,

Figure 5 shows the resulting computed free-surface and pressure plots at
y =1 and p = 0.05, with 8 and / both scaled to unity. The capillary waves are
now quite small (about 15% of the gravity-wave amplitude) and their amplitude
is tending to zero as T'— 0. This is shown more clearly by an expanded view of
the leading-edge region, in Figure 6, for u = 0.05, 0.1 and 0.2. This plot shows
the (slow) decrease in amplitude as 7 —» 0, while the wavelength decreases, and
also clearly indicates the smooth attachment between free surface and planing
surface at the leading edge, for all non-zero values of T.

Of course, the planing surface itself is not quite the same, for the three
different values of pu shown in Figure 6, since both the vertical position C and
angle of attack a change with u. However, the difference is less than plotting
accuracy in Figure 6. The actual value of a is about 0.7; results were also
obtained at T = 0 using Oertel’s [S] procedure with a = 0.7, and showed good
agreement with the trend of mean free surface and body surface shapes as 7— 0
in Figure 6.

This is also true of the pressure P(x) shown in Figure 5. It is important to
recall that the hydrodynamic pressure felt by the planing surface is not pU?P(x)
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Figure 6. Expanded view of free-surface shape very close to point of contact with leading edge of
parabolically-curved planing surface at y = 1, with p = 0.05 (solid), p = 0.1 (dashed) and u = 0.2
(chain-dotted).

but rather pU?P(x) — Tn”(x). However, for the small effective surface tension
corresponding to u = 0.05, the correction due to curvature is not significant on
the scale of Figure 5.
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