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On the Poincaré inequality for

one-dimensional foliations

Vincent Cavalier and Daniel Lehmann

Abstract

Let d be the degree of an algebraic one-dimensional foliation F on the complex projective
space Pn (i.e. the degree of the variety of tangencies of the foliation with a generic hyper-
plane). Let Γ be an algebraic solution of degree δ, and geometrical genus g. We prove, in
particular, the inequality (d− 1)δ + 2− 2g � B(Γ), where B(Γ) denotes the total number
of locally irreducible branches through singular points of Γ when Γ has singularities, and
B(Γ) = 1 (instead of 0) when Γ is smooth. Equivalently, when Γ =

⋂n−1
λ=1 Sλ is the complete

intersection of n−1 algebraic hypersurfaces Sλ, we get (d+n−
∑n−1

λ=1 δλ)δ � B(Γ)−E(Γ),
where δλ denotes the degree of Sλ and E(Γ) = 2− 2g + (

∑
λ δλ − (n+ 1))δ the correction

term in the genus formula. These results are also refined when Γ is reducible.

1. Introduction

In connection with the existence of first integrals, Poincaré raised the question of bounding the
degree δ of an algebraic solution Γ for an algebraic differential system F on the complex projective
plane P2, in terms of the degree d of F . This is not possible without further conditions on F or
on Γ. For example, Lins Neto proved in [Lin02] that the problem has no solution in the presence
of dicritical singularities, i.e. of singularities through which there are infinitely many germs of
separatrices (see Example 5.6 below).

In fact, the inequality d + 2 − δ � 0 has been proved by Cerveau and Lins Neto [CL91]
(see also [Soa01]) when Γ has only nodal singularities, and by Carnicer [Car94] when the foliation
has no dicritical singularity. Moreover, Brunella [Bru97] recovered Carnicer’s result by observing
that the negativity of the GSV-indices (see [GSV91]) is an obstruction to the above inequality, and
proving that these indices are always non-negative in the non-dicritical case. Carnicer and Campillo
[CC97] proved also that there exists some non-negative integer a, depending on conditions imposed
on F or on Γ, such that d+ 2 − δ � −a.

In higher dimension (i.e. for one-dimensional algebraic foliations on the complex projective
space Pn leaving invariant an algebraic curve Γ), the inequality (d+n−

∑n−1
λ=1 δλ) � 1 has been proved

by Soares [Soa00], when Γ is the complete intersection
⋂n−1

λ=1 Sλ of n − 1 algebraic hypersurfaces
Sλ of degree δλ, under the further conditions that Γ be smooth, and the restriction of the foliation
to Γ has non-degenerate singularities. More generally, in [Soa97, Soa00] he gave a lower bound for
the degree of the algebraic foliations leaving invariant a smooth submanifold of Pn, under conditions
of non-degeneracy of the foliation. Also, Esteves and Kleiman [EK03] proved the inequality
(d− 1)(δ − 1) − 2g � 1 − r(Γ), r(Γ) denoting the number of globally irreducible components.

In this paper, we consider the case of curves with any kind of singularity, in any dimension.
Let F be the one-dimensional holomorphic foliation on a holomorphic manifold M defined by a
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morphism � : L → TM of holomorphic vector bundles from a line bundle L into TM. Let Γ be a
curve in M (i.e. a complex analytic set of pure complex dimension one) invariant by F . Assume that
Γ is compact and connected. The normal bundle NΓ0 to the non-singular part Γ0 of Γ in M has a
stable class which always admits a natural extension [NΓ] in the Grothendieck group K0(Γ). If Γ
is, moreover, a locally complete intersection (LCI) in M , [NΓ] may even be realized as the stable
class of a natural bundle NΓ which is a natural extension of NΓ0 to all of Γ. (See, for instance,
[LS95, LSS95] for the LCI case, and [CLS04] in general). Denote by Σ = SingΓ ∪ (SingF ∩ Γ) the
union (made of isolated points) of the singular part of Γ with the set of singular points of F which
are in Γ. To each point mα in Σ, we can associate an integer GSVmα(F ,Γ), generalizing the index
of Gomez-Mont et al. [GSV91], such that

c1([TM − L]|Γ − [NΓ]) � [Γ] =
∑
α

GSVmα(F ,Γ).

In particular, we prove, when Γ is irreducible, the inequality∑
α

GSVmα(F ,Γ) � B(Γ) − E(Γ),

where B(Γ) denotes the total number of locally irreducible branches through singular points of Γ
when Γ has singularities or when M is not a projective space, and B(Γ) = 1 (instead of 0) when
Γ is smooth and M = Pn; and E(Γ) = 2 − 2g − c1(TM|Γ − [NΓ]) � [Γ] denotes the correction term
in the genus formula (g being the geometrical genus of Γ).

Equivalently, we get −c1(L) � [Γ] + 2 − 2g � B(Γ).
When F is an algebraic foliation of degree d on Pn, and when Γ is no longer assumed to be

smooth, but is still the complete intersection
⋂n−1

λ=1 Sλ of n− 1 algebraic hyper-surfaces Sλ, we get(
d+ n−

n−1∑
λ=1

δλ

)
δ � B(Γ) − E(Γ),

where δλ and δ =
∏

λ δλ denote the degree of Sλ and of Γ, respectively. More generally, even when
Γ is not a LCI, we have

(d− 1)δ + 2 − 2g � B(Γ).
A significative example (but others are also given in the last section) arises from irreducible curves
in P2, whose singularities are all ‘elementary’, i.e. are multiple points with local branches all smooth
and having distinct tangents. Let nr be the number of the r-uple points of Γ (r � 2). We have then
B(Γ) =

∑
r nrr when Γ is singular, and E(Γ) =

∑
r nrr(r − 1). We therefore get

(d+ 2 − δ)δ � −
∑

r

nrr(r − 2).

These results will also be refined when Γ is reducible.
In § 2, we fix our notation and recall some basic facts. Most of them are well known. Theorem 2.4,

proved in [CLS05], is the main technical tool needed in this paper for computing the various residues.
Also, the definition of the normal Chern class of a complex analytic singular compact curve, nec-
essary for writing a genus formula in § 4, is recalled. For that, K-theory is indispensable in the
non-LCI case, and enlightening in general. Note, however, that when Γ is the complete intersection⋂n−1

λ=1 Sλ of n− 1 algebraic hypersurfaces Sλ as above, it is theoretically sufficient to know1 that NΓ

is the restriction of
⊕

λ O(δλ) to Γ with the notation as above; in particular, NΓ = O(δ)|Γ for n = 2.
In § 3, we bound from below the degree of an algebraic foliation in words of the geometrical genus

of a prescribed algebraic invariant curve. This is only a first step: in the case n = 2 for instance,

1As usual, O(k) will denote the |k|th tensorial power of the tautological line bundle over Pn (respectively of its dual)
if k is a negative (respectively positive) integer.
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we wish to get a lower-bound expressed as much as possible in words of the degree of this invariant
curve and not of its genus.

This is achieved in § 4, giving by the way a K-theoretical interpretation of the GSV-index which
may be interesting in itself.

Some examples of applications are given in § 5.

2. Notation and backgrounds (without proof)

2.1 Index of an analytic vector field along a branch of Γ
Let m be a point of Γ, singular or not, and Γh a local irreducible branch of Γ through m (we write
briefly m ∈ h). Let (x1, x2, . . . , xn) be local coordinates in M near m, such that m has coordinates
(0, 0, . . . , 0).

Let ϕ : D̃ → M be a minimal Puiseux-parametrization of Γh such that ϕ(0) = m, where D̃
denotes some open 2-disk in C centered at 0: to each t ∈ D̃, ϕ associates the point ϕ(t) of local
coordinates xi = ϕi(t). After shrinking D̃, we can assume moreover that all points of ϕ(D̃) are
regular points of Γ, except perhaps the point m itself. Let D be a closed disk included into D̃, with
center 0 and boundary the circle ∂D.

For any holomorphic function f on D̃, and also for meromorphic function with pole at 0, denote
by ν(f) = (1/2

√
−1π)

∫
∂D(df/f) the order of f at 0. In particular, denote by pi the integer

pi = ν(ϕi): this number is always greater than one if m is a singular point of Γ, and greater
or equal to one (one at least of the pi being equal to 1) if m is a regular point.

An analytic vector field w =
∑n

i=1 ai(∂/∂xi) tangent to Γh is a map w : t �→ w(t) which, to
each t ∈ D̃, associates the vector

∑n
i=1 ai(t)(∂/∂xi)ϕ(t) ∈ Tϕ(t)M such that w(t) be tangent to Γh

at any point ϕ(t), and such that all components ai are holomorphic, including at the point t = 0.
By abuse of notation, we sometimes write w =

∑n
i=1 ai(t)(∂/∂xi). In particular, denote by w0 =∑n

i=1 ϕ
′
i(t)(∂/∂xi) the tangent vector field to Γh given by the parametrization, and for any integer

r � 0, set more generally wr = trw0.

Lemma 2.1. Let w be an analytic vector field tangent to Γh. The meromorphic function σ on D̃ such
that w = σw0, which might have a priori a pole at 0, is in fact holomorphic. In other words, there
is a well-defined non-negative integer r = ν(σ) and a unit holomorphic function u of t (u(0) �= 0)
such that w = uwr.

Definition. For any analytic vector field w = σw0 tangent to Γh, the non-negative integer r = ν(σ)
above will be denoted by

µm(w,Γh) = ν(σ),
= ν(ai) − pi + 1

and will be called the ‘index’ of w at m.

In particular, let v =
∑n

i=1Ai(∂/∂xi) be a holomorphic vector field on M , defined on a
neighborhood of m in M , and such that ϕ−1v =

∑n
i=1(Ai ◦ ϕ)(∂/∂xi) be tangent to Γh.

The number µm(ϕ−1v,Γh) does not depend on the choices of the local coordinates, of the Puiseux-
parametrization (as far as it is a minimal one), and remains unchanged if v is multiplied by a unit
function: we sometimes write this number as µm(F ,Γh) if v defines the foliation F .

Lemma 2.2. If v denotes a local holomorphic vector field on M , not identically zero, vanishing at m,
and leaving Γ invariant, we get

µm(ϕ−1v,Γh) � 1,
and ν(Ai ◦ ϕ) � pi for all i such that ϕi is not identically zero.
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2.2 Residues for the relative K-theory
Let S = {m1,m2, . . . ,mα, . . . ,ms} be a finite family of points on the complex analytic curve Γ in
the holomorphic manifold M . Let π : Γ′ → Γ be the normalization of Γ, and π̂ the composition of
π with the inclusion Γ ⊂ M . Denote by (m′

h)h the points in S′ = π−1(S): we get one point m′
h for

any locally irreducible branch Γh of Γ through a point mα of S, and π(m′
h) = mα if and only if Γh

is a branch through mα, which will be written α ∈ h. Similarly, the notation h ⊂ C will mean that
the branch Γh is included into the irreducible component C.

Separate all points m′
h by open 2-disks D̃h in Γ′ centered at m′

h. (The restriction of π̂ to D̃α,h

may be seen as a minimal Puiseux-parametrization of Γh, once D̃h identified to a 2-disk D̃ of center
0 in C by means of a biholomorphism). Let Dh be a closed 2-disk, still centered at m′

h, and bounded
by circles ∂Dh. The excision theorem in K-theory asserts that the family of the restrictions

K(Γ′,Γ′ \ S′) → K(D̃h, D̃h \ {m′
h}) = K(Dh, ∂Dh)

defines an isomorphism K(Γ′,Γ′ \ S′) ∼=
⊕

hK(Dh, ∂Dh). Recall also (see [Ati64]) that the data of
a family (P0, P1, . . . , Pk) of vector bundles over Γ′ and of a sequence of bundles exact above Γ′ \ S′

0 → P0|Γ′\S′ → P1|Γ′\S′ → · · · → Pk|Γ′\S′ → 0

defines naturally an element θ ∈ K(Γ′,Γ′ \ S′), which is a lift of
∑

λ(−1)λ+1Pλ ∈ K(Γ′) by the
natural map K(Γ′,Γ′ \ S′) → K(Γ′).

We call the ‘residue’ of θ the image Res(θ) = c1(θ) � [T , ∂T ] of the Chern class c1(θ) ∈
H2(Γ′,Γ′ \ S′; Z) by the Alexander duality

( . ) � [T , ∂T ] : H2(Γ′,Γ′ \ S′; Z) → H0(S′; Z)

(where [T , ∂T ] =
∑

h[Dh, ∂Dh)] denotes the fundamental class of (Γ′,Γ′ \ S′)).
Denoting by (θh)h ∈ K(Dh, ∂Dh) the components of θ relative to the isomorphism above, we can

define in the same way Resh(θ) = c1(θh) � [Dh, ∂Dh] ∈ Z.
We write Resmα(θ) =

∑
h,α∈h Resh(θ) for any mα ∈ S so that Res(θ) =

∑
mα∈S Resmα(θ).

Similarly, for any irreducible component C of Γ, we define the image θC of θ by the restriction
K(Γ′,Γ′ \ S′) → K(C ′, C ′ \ (C ′ ∩ S′)). We set ResC(θ) =

∑
h,h⊂C Resh(θ).

Lemma 2.3. We get [ k∑
λ=0

(−1)λ+1c1(Pλ)
]
� [Γ′] =

∑
mα∈S

Resmα(θ),

and, for any C, [ k∑
λ=0

(−1)λ+1c1(Pλ)
]
� [C ′] =

∑
h,h⊂C

Resh(θ).

2.3 Computation of the residues
Let D be a closed 2-disk centered at a point a in C, and ξ the element in K(D,∂D) defined by a
sequence (Pλ, βλ)λ of holomorphic complex fibre bundles above Da whose restriction

0 → P0|D\{a}
β0−→ P1|D\{a}

β1−→ · · · βk−2−−−→ Pk−1|D\{a}
βk−1−−−→ Pk|D\{a} → 0

to D \ {a} is exact.
As D is contractible, one can assume that all bundles Pλ are trivial and the morphism βλ

defined by a matrix with holomorphic coefficients. As the sequence of morphisms is exact
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above D\{a}, any of these matrices has a constant rank rλ above D\{a}: for any point m ∈ D\{a},
the value (βλ)m of βλ has a square submatrix of size rλ with non-vanishing determinant. As any
holomorphic function defined on D, which vanishes at all points of a sequence in D \{a} converging
to a, is identically zero, it is possible to choose the same lines and the same columns at any point
m in D \ {a} for the determination of the above square submatrix: more precisely, by induction on
λ we can define, a square submatrix ψλ of βλ, of size rλ, whose determinant ∆λ does not vanish
on D \ {a}, and such that Pλ = Kλ ⊕ Cλ when ψλ : Cλ → Kλ+1 is interpreted as a linear map
from a subbundle Cλ of Pλ into a subbundle Kλ+1 of Pλ+1. Denote by νλ = ν(∆λ) the order of the
determinant ∆λ at a.

Theorem 2.4 [CLS05]. The following formula holds:

c1(ξ) � [D,∂D] =
∑

λ

(−1)λ νλ.

2.4 Definition of the normal Chern classes to Γ in the non-smooth case

Let Γ be a compact complex analytic curve in a holomorphic manifold M of complex dimension n.
Denote by OM the sheaf of germs of holomorphic functions on M , by I the sheaf of ideals of
the germs of holomorphic functions on M vanishing on Γ, and by OΓ the quotient sheaf OM/I.
Let π : Γ′ → Γ denote the normalization of Γ, and π̂ : Γ′ → M the composition of π with
the natural inclusion Γ ⊂ M . After [AH61], there exists a A-locally free resolution of length at
most 2:

0 → E∗
2

λ∗
2−→ E∗

1

λ∗
1−→ E∗

0

λ∗
0−→ A⊗OΓ′ π̂

−1[(OM/I) ⊗OM
(I/I2)] → 0 (∗)

of the sheaf A ⊗OΓ′ π̂
−1[(OM/I) ⊗OM

(I/I2)], where A denotes the sheaf of germs of R-analy-
tical C-valued functions on Γ′ and E∗

j the sheaf of germs of R-analytical sections of some R-analytical
complex vector bundle E∗

j over Γ′. Let Ej denote the dual of E∗
j .

Note that the restriction of (I/I2) to Γ is the conormal sheaf, which coincides on Γ0 with the
sheaf of germs of holomorphic sections of the bundleN∗

Γ0
dual to NΓ0 . Thus, [E0−E1+E2] ∈ K0(Γ′)

is an extension to all of Γ′ of the stable class [π−1NΓ0 ] of π−1NΓ0 , and it does not depend after [AH61]
on the choice of the resolution (∗). Moreover, π induces a monomorphism π∗ : K0(Γ) → K0(Γ′),
and [E0 −E1 +E2] belongs to its image, so that we get a well-defined element [NΓ] ∈ K0(Γ) whose
image by π∗ is [E0 −E1 +E2]. We define the normal Chern classes of Γ in M as being those of [NΓ].

By duality, we get a sequence of R-analytical complex vector bundles above Γ′, exact above
Γ′

0 = π−1(Γ0)

0 → π−1(NΓ0)
λ0−→ E0|Γ0

λ1−→ E1|Γ0

λ2−→ E2|Γ0 → 0. (∗0)

If the length of (∗) is smaller than 2, we understand that some of the E∗
i may be of rank 0.

In particular, when Γ is a LCI in M , the conormal sheaf I/I2 is (OM/I)-locally free, and
(OM/I)-isomorphic to the sheaf of sections of some (OM/I)-complex vector bundle N∗

Γ, whose
dual NΓ is a natural extension of NΓ0 . Therefore, in this case, we can take E0 = π−1N∗

Γ , E1 =
E2 = 0. More precisely, near each of its points m, Γ is defined locally by a reduced equation
f = 0 (f : U → C

n−1 denoting some holomorphic map from an open neighborhood U of m in M),
whose components fi (1 � i � n − 1) generate the ideal I|U . Moreover, the data of the local
reduced equation f = 0 for Γ defines a local trivialization of NΓ, such that df : TM|Γ0∩U → C

n−1

corresponds to the natural projection � : TM|Γ0 → NΓ0 by this trivialization.
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3. Bounding from below the degree of an algebraic foliation
having a prescribed algebraic solution Γ

Let � : L → TM be a one-dimensional holomorphic foliation F on a holomorphic manifold M , and
Γ a compact curve in M invariant by F . Let π : Γ′ → Γ be the normalization of Γ. Let Σ be the
union of Sing(Γ) and of Sing(F) ∩ Γ, and set Σ′ = π−1(Σ). Assume that Σ is a finite family of
isolated points mα. For each mα, write (Γh)α∈h the family of local branches Γh of Γ through mα,
and denote by m′

h the point of Σ′ contained in the lift of Γh. Denote by B(Γ) the total number
of locally irreducible branches of Γ through singular points of Γ, when Γ is singular or is not a
projective space, and B(Γ) = 1, when Γ is non-singular and M = Pn.

The homomorphism � determines an isomorphism π−1(�) between the restrictions of π−1(L) and
TΓ′ to Γ′ \ Σ′. Thus, after § 2.1, we get a lift ζ = ζ(F ,Γ) of [TΓ′ − π−1(L)] in K(Γ′,Γ′ \ Σ′).

For any irreducible component C of Γ when Γ is reducible, denote by g
C

its geometric genus
(i.e. the genus of the connected component C ′ = π−1(C) in Γ′), and by BC(Γ) the total number of
locally irreducible branches included into C through points mα in Sing(Γ) ∩ C (such a branch will
be denoted shortly by h ⊂ C). Observe that in the reducible case, BC(Γ) is always at least 1, even
if C is smooth.

Theorem 3.1. With the notation of § 2, we assume that F is defined locally near mα by the
vector field

∑n
i=1Ai(∂/∂xi) with respect to local coordinates (x1, . . . , xn). The following equality

and inequality hold:

2 − 2g
C
− (c1(L) � [C]) =

∑
h,h⊂C

µmα(ϕ−1v,Γh),

=
∑

h,h⊂C

ν(Ai ◦ ϕ) − pi + 1

� BC(Γ),

i being any index such that ϕi(t) is not identically zero along Γh.

Proof. As v is the image of a trivialization of L by �, the restriction of π−1(L) (respectively TΓ′) to
a small disk Dh around m′

h is trivialized by ϕ−1v (respectively w0), with the notation of § 2, a mini-
mal Puiseux-parametrization ϕ of Γh being given by the composition of π with a biholomorphism
D → Dh. Set ϕ−1v = σw0. The homomorphism π−1(�) is then defined by the multiplication by σ,
and the formula of Lemma 2.3 and Theorem 2.4 applied to ζ give the equality

2 − 2g
C
− (c1(L) � [C]) =

∑
h,h⊂C

µmα(ϕ−1v,Γh).

As µmα(ϕ−1v,Γh) � 1 after Lemma 2.2, we get the conclusion of the theorem, when Γ is singular.
When Γ is non-singular and M = Pn, the foliation has necessarily at least one singular point on Γ,
according to an argument of Soares [Soa97, Soa00], and we still have µmα(ϕ−1v,Γh) � 1 at such a
point, hence the wanted formula with BC(Γ) = 1.

Corollary to Theorem 3.1. For an algebraic foliation of degree d on Pn, the previous formulae
become, denoting by δ the degree of Γ and by δC the degree of C,

d � 1 + sup
C

2g
C
− 2 + BC(Γ)
δC

,

with the sup running through all irreducible components C of Γ.

Proof. In fact, for an algebraic foliation of degree d, L is equal to O(1 − d). The corollary then
results from the equality

c1(O(1 − d)) � [C] = −(d− 1)δC .
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Remarks.
(1) The right-hand term in the inequality of the corollary depends only on the curve Γ.
(2) In [EK03, Corollary 6.2], Esteves and Kleiman proved the inequality

d � 1 +
2g − r(Γ) + 1

δ − 1
,

where r(Γ) denotes the number of irreducible components of Γ. Their lower-bound for d may
be better than ours in some cases: for instance, if Γ is non-singular (in fact, both lower bounds
coincide for n = 2, and our lower bound coincides with that given in [Soa00] for smooth
complete intersections). However, our lower bound is better when Γ is sufficiently singular: for
instance, we recover the result of [CL91] for nodal singularities.

4. The GSV-index

Let Σ1 be the singular part Γ \ Γ0 of a complex analytic curve Γ in the holomorphic manifold M .
We still write π : Γ′ → Γ the normalization of Γ, and π̂ the composition of π with the inclusion
Γ ⊂M . Set Σ′

1 = π−1(Σ1). We get an exact sequence above Γ′
0 = π−1(Γ0)

0 → TΓ′
0 → π̂−1(TM)|Γ′

0

λ0◦q−−−→ E0|Γ′
0

λ1−→ E1|Γ′
0

λ2−→ E2|Γ′
0
→ 0, (∗∗)

q denoting the natural projection q : TM|Γ0 → NΓ0, and the Ei defined as in § 2.4.
Thus, we get a natural lift ξ = ξ(Γ) ∈ K(Γ′,Γ′\Σ′

1) by the canonical map K(Γ′,Γ′\Σ′
1) → K(Γ′)

of [π̂−1(TM) − π−1(NΓ) − TΓ′] in K(Γ′). We denote by

E(Γ) =
∑

h

Eh(Γ), Emα(Γ) =
∑
α∈h

Eh(Γ) and EC(Γ) =
∑
h⊂C

Eh(Γ)

the residues of −ξ, according to the notation of § 2.2.
A foliation � : L → TM leaving Γ invariant being given, again let Σ = Σ1 ∪ (SingF ∩ Γ) be the

union of the singular part of Γ with the set of singular points of F which are in Γ. Set Σ′ = π−1(Σ).
The above definition of Emα(Γ) and Eh(Γ) make sense for mα belonging to Γ0 (in particular, for
mα ∈ Σ \ Σ1), and Γh being a local branch through such a point, but both are then zero, as the
exact sequence (∗∗) remains exact at the point mα. Thus, we can see ξ(Γ) ∈ K(Γ′,Γ′ \ Σ′

1) =∏
π(m′

h)∈Σ1
K(Γ′,Γ′ \ {m′

h}) as an element still denoted ξ(Γ) in

K(Γ′,Γ′ \ Σ′) =
∏

π(m′
h)∈Σ

K(Γ′,Γ′ \ {m′
h}),

understanding that the h-components of ξ(Γ) such that π(m′
h) belongs to Σ \ Σ1 are zero.

Combining the exact sequence (∗0) of § 2.4 with � and the natural morphism TΓ′ → π̂−1(TM),
we get the sequence over Γ′

0 = Γ′ \ Σ′

0 → π̂−1(L)
π̂−1(�)−−−−→ π̂−1(TM)

λ0◦q−−−→ E0
λ1−→ E1

λ2−→ E2 → 0, (∗∗∗)
q denoting the natural projection q : TM|Γ0 → NΓ0 . Moreover, as (∗∗∗) is exact above Γ′ \Σ′, and as
all bundles in this sequence are defined over all of Γ′, we get an element in K(Γ′,Γ′ \Σ′), which is a
lift of π−1[[TM−L]|Γ− [NΓ]] by the natural map K0(Γ′,Γ′ \Σ) → K(Γ′). We denote by η = η(F ,Γ)
this element in K(Γ′,Γ′ \ Σ′), and denote by GSV(F ,Γ) = Res(η(F ,Γ)) its residue.

We also set, with the notation of § 2.2,

GSVmα(F ,Γ) = Resmα(η(F ,Γ)) and GSVh(F ,Γ) = Resh(η(F ,Γ)).
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Remarks.
(1) As (∗∗∗) is obtained by composition of the exact sequence (∗∗) with �, we get

η = ζ + ξ in K(Γ′,Γ′ \ Σ′).

(2) In the case n = 2, and if v is a local vector field on M vanishing at m and tangent to each Γh

through m, GSVm(v,Γ) is equal to the GSV-index of v at m with respect to Γ such as defined
in [GSV91], hence the notation in higher dimension. The case of Γ being a locally complete
intersection in M defined by a section (s-LCI) has already been defined in [LSS95] and [LS99].
The K-theoretical definition of GSV has already been given in [CL01] for n = 2, and in [CLS05]
in the general case.

(3) Be careful not to confuse GSVmα,h(F ,Γ) (the contribution of the branch Γh to the GSV-index
at mα with respect to Γ), with GSVmα(F ,Γh) (the GSV-index at mα with respect to Γh).
See, for instance, [Suw95] in the case n = 2.

Theorem 4.1. For any irreducible component C of Γ, the following formulae hold:

(c1([TM −NΓ]) � [C]) + 2g
C
− 2 = −

∑
h⊂C

Eh(Γ)

and

(c1([TM −NΓ]) � [C]) − (c1(L) � [C]) =
∑
h⊂C

GSVh(Γ).

Proof. Apply Lemma 2.3 to ξ and to η = ξ + ζ.

We want now to compute Eh(Γ). We can trivialize TΓ′ by ∂/∂t, and TM by (∂/∂x1, . . . , ∂/∂xn).
Define in the same way β1(t) for λ0◦q, β2(t) for λ1 and β3(t) for λ2. With the notation of Theorem 2.4,
take for ψ0 the 1 × 1 matrix (ϕ′

i), the index i being chosen such that ϕi(t) is not constant near 0.
Define by induction, as in Theorem 2.4, ψ1 = ψ1,i, ψ2 = ψ2,i and ψ3 = ψ3,i from this choice
of i. Denoting by ν1,i (respectively ν2,i, respectively ν3,i) the order ν(det ψ1,i(u)) (respectively
ν(det ψ2,i(u)), respectively ν(detψ3,i(u))).

Theorem 4.2. We have the following.

(i) With the notation above, the residue Eh(Γ) is given by the formula

Eh(Γ) = ν1,i − ν2,i + ν3,i − pi + 1,

which is independent of the index i such that ϕi(t) is not constant along Γh.

(ii) The following inequality holds: GSVh(Γ) � pi − ν1,i + ν2,i − ν3,i.

Proof. Apply Theorem 2.4 to ξ, and use the equality GSVh(F ,Γ) = µmα(ϕ−1v,Γh) − Eh(Γ).

In particular, if Γ is a LCI locally defined near a point mα ∈ Γh by the reduced equation f = 0
with f = (f1, . . . , fn−1), assume F to be locally defined by the vector field v =

∑
iAi(∂/∂xn), with

respect to local coordinates (x1, . . . , xn) near mα.

Corollary 4.3. Assume that Γ is a LCI. With the notation above, the residues Eh(Γ) and
GSVh(F ,Γ) are given, for any index i such that ϕi(t) (or, equivalently, Ai ◦ ϕ) is not identically
zero along Γh, by the formulae

Eh(Γ) = νi(f) − pi + 1,
and

GSVh(F ,Γ) = ν(Ai ◦ ϕ) − νi(f),
� pi − νi(f),

536

https://doi.org/10.1112/S0010437X05001764 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001764
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where νi(f) denotes the order of (
det

D(f1, . . . , fn−1)
D(x1, . . . , x̂i, . . . , xn)

)
◦ ϕ.

Proof. In fact, in this case,

β1 =
D(f1, . . . , fn−1)
D(x1, . . . , xn)

with obvious local trivializations of the bundles, while β2 = β3 = 0.

Remark. While [E0−E1 +E2− π̂−1(TM)+TΓ′] and [E0−E1 +E2]− π̂−1[TM−L] do not depend in
K(Γ′) on the resolution (∗) (as the same is true for [E0 −E1 +E2] after [AH61]), we have not been
able to prove that it remains true for their lift −E(Γ) and GSV(F ,Γ) in K(Γ′,Γ′ \Σ′), unless Γ is a
LCI. Thus, all computations of residues in the non-LCI case are relative to a particular resolution.
However, the sum of these residues does not depend on the resolution, once mapped into H0(Γ′) by
the natural map H0(Σ′) → H0(Γ′).

5. Examples

5.1 Case n = 2
In the case of an algebraic foliation on P2, we get

c1([TM −NΓ − L) � [C] = (d+ 2 − δ)δC .

Proposition 5.1. If Γ has an irreducible component C such that all singularities of F which are
in C are non-dicritical, then d+ 2 − δ � 0.

Proof. In fact, the indices GSVmα(F ,Γ) at a non-dicritical singularity mα are all non-negatives
after [Bru97], and the same is true for GSVh(F ,Γ) after [CL01] if Γh is included into C, for C as
in the statement of the proposition.

In particular, we recover the result of [Bru97, Car94] when Γ has only non-dicritical singularities.

Case of smooth branches. Assume that Γh is a smooth branch of Γ through a singular pointmα.
Then, we can choose local coordinates (x, y) such that Γh has y = 0 for an equation and parametrize
Γh by the map ϕ : t �→ (x(t) = t, y(t) ≡ 0). There exists some holomorphic function g → U → C,
such that f(x, y) = yg(x, y) and g(x, 0) is not identically zero.

Lemma 5.2. The following formula holds: Eh(Γ) = ν(g ◦ ϕ).

Proof. Use Corollary 4.3 after observing that f ′y(x, 0) = g(x, 0).

In particular, call any singular point mα with exactly r local branches, all smooth, and having
distinct tangents an ‘elementary’ r-multiple point of Γ (r � 2). We then get the following.

Proposition 5.3. If mα is an elementary r-multiple point of Γ then, for any local branch through
mα and for any foliation F , the following formulae hold:

Eh(Γ) = r − 1 and GSVh(F ,Γ) � −(r − 2).
Emα(Γ) = r(r − 1) and GSVmα(F ,Γ) � −r(r − 2).

Proof. Under the given assumptions, the order of the function g above Γh is r− 1, hence the result,
using Lemma 5.2 and Corollary 4.3.
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Theorem 5.4. Let F be a foliation of degree d, leaving invariant an irreducible curve Γ of degree
δ in P2. Assume that Γ has only elementary singularities, and let nr be the number of r-multiple
points. Then, the following formulae hold:

(d− 1)δ + 2 − 2g �
∑
r�2

nrr, and (d+ 2 − δ)δ � −
∑
r�2

nrr(r − 2).

More generally, if Γ is reducible and has only elementary singularities, denote by nr(C) the total
number of local branches included into some irreducible component C through singular r-multiple
points of Γ. Then, the following formulae hold:

(d− 1)δC + 2 − 2gC �
∑
r�2

nr(C), and (d+ 2 − δ)δC � −
∑
r�2

nr(C)(r − 2).

Proof. Combine Proposition 5.3 above with Theorems 3.1 and 4.1.

Corollary 5.5. If a curve Γ has an irreducible component C such that all singularities of Γ which
are in C are nodal points of Γ, then the inequality d+ 2 − δ � 0 still holds.

In particular, we recover the result of [CL91, Soa01], when Γ has only nodal singularities.

Example 5.6 (Reducible case). Let Γ1 be a non-degenerate conic in P2, m0 be a point of Γ1, and
(∆i)i a family of s − 1 projective straight lines ∆i through m0 in the plane (s � 3), none of them
being tangent to Γ1. Taking for Γ the union of this conic and of these straight lines, all singularities
of Γ are nodal (double point), except m0 which is an s-uple point, and the degree of the curve is
s+ 1. After Theorem 4.1, we get

d+ 1 − s � −(s− 2) with respect to ∆i,
(d+ 1 − s)2 � −(s− 2) with respect to the conic.

The strongest of these inequalities is of course the second, hence d � s/2.

Other examples arise from [Lin02]. For instance, with homogeneous coordinates (X,Y,Z) in P2,
the set Γ of the equation (X3−Z3)(Y 3−Z3)(X3−Y 3) = 0 is the union of nine straight lines with 12
singularities (which are all elementary triple points): thus, we get d � 3; this proves that the family
F4

α which leaves Γ invariant does not have the minimal degree allowed by our formula. The image of
these foliations by the map S defined, for Z �= 0, by (x, y) �→ (x+ y, xy) (with x = X/Z, y = Y/Z)
is a family F3

α of foliations of degree 3. The image S(Γ), preserved by the foliations F3
α, is the union

of two conics C1 and C2 (which are bitangent) and of three straight lines (which are tangent to C1

and which intersect on C2). The corollary of Theorem 3.1 then gives d � 2 when applied to one
of the lines and d � 3 when applied to one of the conics; thus, F3

α here has the minimal degree
authorized by our inequality. On these two examples, the quantity d + 2 − δ takes, respectively,
the strictly negative values −3 and −2: this proves a priori that the foliations F4

α and F3
α do have

dicritical singularities.

5.2 Higher dimension
Theorem 5.7. Assume F to be an algebraic foliation of degree d on Pn, leaving invariant the com-
plete intersection Γ =

⋂n−1
λ=1 Sλ of n− 1 algebraic hypersurfaces Sλ. For any irreducible component

C of Γ, we get (
d+ n−

n−1∑
λ=1

δλ

)
δC � BC(Γ) − EC(Γ),

where δλ and δC denote the degree of Sλ and of C, respectively.
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Proof. Use Theorem 4.1, with NΓ =
⊕

λ O(δλ).

Corollary 5.8. Under the assumptions of Theorem 5.7, assume moreover that Γ has a smooth
irreducible component C. Then we have the inequality(

d+ n−
n−1∑
λ=1

δλ

)
δC � BC(Γ).

Proof. In fact, in this case, EC(Γ) = 0. As BC(Γ) � 1, we recover in particular the formula given in
[Soa00], when Γ is smooth.

Proposition 5.9. Assume that mα has four branches, all smooth, with distinct tangents, and such
that three of them are never coplanar. If Γ is a LCI, then we have

Eh(Γ) = 2, and GSVh(F ,Γ) � −1.

Proof. Under the assumption, there exist local coordinates (x, y, z) near mα, such that one branch is
given by the local equations (x = 0, y = 0), a second by (x = 0, z = 0) and a third by (y = 0, z = 0).
The fourth branch, which may always be parametrized by z, has local equations x− ϕ(z) = 0, y −
ψ(z) = 0, with ϕ(0) = ψ(0) = 0, ϕ′(0) �= 0, ψ′(0) �= 0. The curve Γ is then locally defined by the
equations f = 0, with f1(x, y, z) = x(y − ψ(z)) and f2(x, y, z) = y(x − ϕ(z)) = 0. The jacobian
matrix is

D(f1, f2)
D(x, y, z)

=
(
y − ψ(z) x −xψ′(z)

y x− ϕ(z) −yϕ′(z)

)
.

Using Theorem 4.2 along the branch y = z = 0, we get Eh(Γ) = 2. All branches in fact playing the
same role, the same formula is true for the three other branches.

Example 5.10 (Not a LCI). Let Γ be the rational quintic parametrized by the map

[u, v] �→ [X(u, v) = u3v2, Y (u, v) = u4v, Z(u, v) = u5, T (u, v) = v5]

from P1 (with homogeneous coordinates [u, v]) into P3 (with homogeneous coordinates [X,Y,Z, T ]).
It has only the origin for singular point with one local branch at this point, hence B(Γ) = 1.
According to [CLS04], c1(NΓ) � [Γ] = 21, hence E(Γ) = 3. We get d � 1 (we can also use
Theorem 3.1, with g = 0). In fact, Γ is invariant by the foliation of degree 1 defined by the vector
field 3x(∂/∂x) + 4y(∂/∂y) + 5z(∂/∂z) in C

3: thus, the lower bound for d is reached. Note that
this foliation has dicritical singularities. It can be shown that the minimal degree of the foliations
without dicritical singularities leaving this quintic invariant is 2.
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