Aims and scope

The aims and scope of The Aeronautical Journal are intended to reflect the objectives of the Royal Aeronautical Society as expressed in its Charter of Incorporation. Briefly, these are to encourage and foster the advancement of all aspects of aeronautical and space science. Thus the topics of The Aeronautical Journal include most of those covered by the various Specialist Groups of the Society, which include:

- Aircraft design, aerodynamics, air law, air power, air transport, air navigation, airworthiness and maintenance, aviation medicine, avionics and systems,
- Environmental issues, flight operations, flight simulation, fluid dynamics, fluid mechanics, general aviation, guided flight, human factors, human powered flight, light aviation, management studies, propulsion, rotorcraft, safety, space, structures and materials, structural mechanics, systems and test procedures and UAVs.

Papers are therefore solicited on all aspects of research, design and development, construction and operation of aircraft and space vehicles. Papers are also welcomed which review, comprehensively, the results of recent research developments in any of the above topics.

We recognise the inhibiting pressures of time and confidentiality and acknowledge that many of the design testing, manufacturing and operational problems that industry has to solve contain important information for the whole aerospace community. The Aeronautical Journal provides a platform for refereeing and presenting your work to an international audience.

Papers will be considered for publication in The Aeronautical Journal if they meet the terms and conditions listed in The Instructions for authors. If these are not met, the Editor reserves the right to withdraw the paper without redress, which may be at any time up to publication.

Papers should be sent to: Prof Peter Bearman, Royal Aeronautical Society, No. 4 Hamilton Place, London W1J 7BQ, United Kingdom.
C. Gologan
Extreme short take-off and landing regional jets – economic motivation and technological challenges 563

S.C. Liddle
Systems and certification issues for civil transport aircraft flow control systems 575

K. Jacobs, M. Harper, E. Meyer, B. Roth and P. Hutapea
Technical Note
Development of a proof-of-concept aircraft smart control system 587

H. Khaleghi, G. Doulgeris, M. Boroomand, P. Pilidis and A.M. Tousi
A method for calculating inlet distortion effects on stability of split-flow fans 591

C.A. Hall
Low noise engine design for the silent aircraft Initiative 599

M. Chiaramonti and G. Mengali
Control laws for a formation of autonomous flight vehicles 609