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Abstract

The discrete scan statistic in a binary (0–1) sequence of n trials is defined as the maximum
number of successes within any k consecutive trials (n and k, n ≥ k, being two positive
integers). It has been used in many areas of science (quality control, molecular biology,
psychology, etc.) to test the null hypothesis of uniformity against a clustering alternative.
In this article we provide a compound Poisson approximation and subsequently use it to
establish asymptotic results for the distribution of the discrete scan statistic as n, k → ∞
and the success probability of the trials is kept fixed. An extreme value theorem is also
provided for the celebrated Erdős–Rényi statistic.
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1. Introduction

Scientists dealing with experimental data modeled by independent Bernoulli trials frequently
seek reasonable criteria providing clustering evidence (lack of randomness) or indicating
changes in the underlying process. The length of the longest success run is definitely a very
powerful statistic for studying problems of this nature, a fact that explains the continuing
interest in its probabilistic characteristics since de Moivre’s era (the 17th century). A natural
and intuitively appealing generalization of the success run principle arises if instead of looking
at pure success runs we consider the maximum number of successes within any k contiguous
(consecutive) trials. The resulting RV is usually referred to in the literature as the binary discrete
scan statistic and has widespread applicability in a significant number of scientific areas such
as quality control, molecular biology, psychology, epidemiological studies, reliability theory,
etc.; see [1, pp. 377–387], [9], [12, Part I], and [8, pp. 140–151].

To fix our notation, let Xi, i ∈ Z, be a sequence of independent, identically distributed
(i.i.d.) binary random variables (RVs) with

P(Xi = 1) = p, P(Xi = 0) = q = 1 − p, i = 1, 2, . . . , n,

and denote by

Si =
i+k−1∑
j=i

Xj , i ∈ Z,
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the k-scan process (a moving window of length k ≥ 1) generated by the sequence Xi, i ∈ Z.
Then the discrete scan statistic is defined as

Sn,k = max
1≤i≤n−k+1

Si = max
1≤i≤n−k+1

i+k−1∑
j=i

Xj ,

where n ≥ k is a fixed, positive integer.
An instance where Sn,k arises in quite a natural way is in randomness tests when the null

hypothesis of uniformity and independence of Xi, i = 1, 2, . . . , n, is to be tested against the
alternative hypothesis of clustering of 1s due to local positive dependence between Xi, i =
1, 2, . . . , n, or due to the existence of subsequences of consecutive Xi with P(Xi = 1) > p.
As Glaz and Naus [10] indicated, the generalized likelihood ratio test for checking the hypothesis
of uniformity rejects the null hypothesis of uniformity whenever Sn,k ≥ c, with the value of c

being determined by the significance level of the test. Recently, Glaz and Zhang [11] introduced
an alternative, more sensitive, procedure exploiting a multiple scan statistic of variable size
instead of the single (fixed window length) scan statistic Sn,k .

Apparently, the evaluation of c such that a prespecified significance level is achieved calls for
the distribution of the test statistic Sn,k. Since randomness tests are frequently applied to large
data sets, theoretical developments related to the asymptotic distribution of Sn,k (as n, k → ∞)
will play a primary role in the analysis of the test.

Another instance where Sn,k could be used is offered by the following model, which
originates in molecular biology. In the study of amino acid sequences, various classification
schemes are in common use, including a chemical alphabet of eight letters, a functional alphabet
of four letters, a charge alphabet of three letters, etc. In order to introduce quantitative means for
assessing and interpreting genomic inhomogeneities between sequences of different species or
sequences subject to different chemical infections and/or several levels of corruption, molecular
biologists look for long aligned subsequences that match in most of their positions, and try to
specify what is an unusually long match. In order to construct an appropriate mathematical
model, let Zi1 and Zi2, i = 1, 2, . . . , n, be two amino acid sequences from a finite alphabet
A = {a1, a2, . . . , al}, with µj = P(Zi1 = aj ) = P(Zi2 = aj ), j = 1, 2, . . . , l. The two
sequences will be said to match in position i ∈ {1, 2, . . . , n} if Zi1 = Zi2, in which case we
let Xi be 1 (we let Xi be 0 otherwise). Then Xi, i = 1, 2, . . . , n, form a sequence of binary
i.i.d. RVs with success probabilities

p = P(Xi = 1) = P(Zi1 = Zi2) =
l∑

j=1

µ2
j ,

and the number of matches over a window of length k will be described by the corresponding
k-scan process Si, i = 1, 2, . . . , n. Moreover, a ‘near perfect’ match at position i can be
described by the event Si ≥ c, with c being an integer sufficiently close to k. It is clear that the
condition

Sn,k = max
1≤i≤n−k+1

Si < c

can then be used as evidence of the lack of a local match between the two sequences under
inspection. It should be stressed that, in this application, we are also interested in large values
of both n (long amino acid sequences) and k (long matching regions).
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As a final example we provide the following actuarial model. Let Zi, i = 1, 2, . . . , n, be
the daily claim sizes over an n-day period and u ≥ 0 a given threshold. Assume that the Zi are
i.i.d. RVs with cumulative distribution function F , and denote by

Xi = 1(u,∞)(Zi) =
{

1 if Zi > u,

0 if Zi ≤ u,
i = 1, 2, . . . , n,

the corresponding RVs, which indicate whether or not the ith claim exceeds the threshold u.
(Here 1A(·) denotes the indicator function of the (generic) set A.) Then

P(Xi = 1) = E(Xi) = P(Zi > u) = 1 − F(u) = p, i = 1, 2, . . . , n,

andSn,k will describe the maximum number of ‘large claims’(i.e. claims exceeding the threshold
u) in a period of k consecutive days. Since the primary interest in this situation is also focused
on extremely long periods (n → ∞, k → ∞), one should look at the asymptotic distribution
of Sn,k .

In all the aforementioned examples, it is clear that the study of the underlying model calls for
the investigation of the distribution of the RV Sn,k. Exact results for the distribution of the scan
statistic were discussed in [7], [1, pp. 291–301], and [8, pp. 88–96]. Since the evaluation of the
exact distribution is computationally intractable, especially for large values of the parameters,
several approximations and bounds have been developed during the last decade. The interested
reader may refer to the recent monographs by Glaz et al. [12] and Balakrishnan and Koutras [1]
for up-to-date reviews of this topic.

In a recent article by Boutsikas and Koutras [4], a compound Poisson approximation was
established for the distribution of the enumerating RV

Wn =
n−k+1∑

i=1

1[r,∞)(Si).

As a by-product, an approximation for

P(Sn,k < r) = P(Wn = 0) (1)

was established, along with an upper bound for the error incurred in its use. However, the
asymptotic result given there holds under the conditions n → ∞, p → 0 with k and r fixed,
which are of no interest in the examples mentioned above. One might suspect that, even in the
case of interest (p fixed and n, k → ∞) a compound Poisson law underlies the behavior, yet
the tests for this provided by the results of [4] are inconclusive. This is due to the fact that, for
r < k, the upper bound appearing there is of order O(p) and, therefore, does not converge to
0 as n, k → ∞ while p is fixed.

In the present article, motivated by the abovementioned remarks, we establish a new com-
pound Poisson approximation for Wn that offers an upper bound manageable under the condi-
tions of interest.

In Section 2 we introduce all necessary notation and preliminary material. In Section 3,
exploiting an appropriate declumping technique, we develop a compound Poisson approxima-
tion for the distribution of Wn, along with tight upper bounds for the Kolmogorov distance
between the distribution of Wn and the approximating distribution. In Section 4 an asymptotic
result for the distribution of the scan statistic Sn,k is established, while in Section 5 we present
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an extreme value theorem for the same statistic that is comparable to the well-known Erdős–
Rényi results (when applied to binary sequences). Finally, in Section 6 an extensive numerical
experimentation is carried out in order to investigate the quality of the approximations and
bounds.

2. Preliminaries

The Kolmogorov distance between the distributions of two RVs X and Y is defined as

d(X, Y ) = sup
w

|P(X ≤ w) − P(Y ≤ w)|

and offers a very efficient tool for establishing convergence in distribution; a sequence of RVs
converges weakly to Y if the corresponding sequence of distances converges to 0. By the term
‘compound Poisson distribution CP(λ, H) with parameter λ and compounding distribution H ’,
we shall refer to the distribution of a random sum of the form

∑N
i=1 Zi where N is a Poisson RV

with λ = E(N) and the Zi are i.i.d. RVs (also independent of N ) whose distribution function
is H .

The main result of the next section is an application of a general theorem on compound
Poisson approximation published by Boutsikas and Koutras [3]. For the purposes of the present
exposition, we shall retain a simplified version of their result, which is more than adequate to
meet our needs.

Consider first a sequence of nonnegative RVs Za, a = 1, 2, . . . . For each a = 2, 3, . . . ,
introduce a subset, Ba , of {1, 2, . . . , a − 1} (the left neighborhood of dependence of Za) such
that Za is independent of all Zb, b ∈ {1, 2, . . . , a − 1} \ Ba . The next theorem provides an
upper bound for the Kolmogorov distance between the distribution of the sum

∑ν
a=1 Za (with

ν a fixed, positive integer) and a compound Poisson distribution CP(λ, H) with suitably chosen
λ and H .

Theorem 1. (Boutsikas and Koutras [3].) If Za, a = 1, 2, . . . , ν, is a sequence of nonnegative
RVs, then

d

( ν∑
a=1

Za, CP(λ, H)

)
≤

ν∑
a=2

(
P

(
Za > 0,

∑
b∈Ba

Zb > 0

)
+ P(Za > 0) P

( ∑
b∈Ba

Zb > 0

))

+ 1

2

ν∑
i=1

P(Zi > 0)2, (2)

where λ = ∑ν
a=1 λa and

H(x) = 1

λ

ν∑
a=1

λa P(Za ≤ x | Za > 0), x ∈ R,

with λa = P(Za > 0), a = 1, 2, . . . , ν.

Theorem 1 states that if the RVs Za, a = 1, 2, . . . , are ‘locally’ dependent and the masses
of their distributions are concentrated on 0, then

∑ν
a=1 Za can be satisfactorily approximated

by an appropriate compound Poisson distribution.
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If X and Y are nonnegative RVs, it is evident that |P(X = 0) − P(Y = 0)| ≤ d(X, Y ) and,
therefore, that ∣∣∣∣P

( ν∑
a=1

Za = 0

)
− e−λ

∣∣∣∣
is also bounded from above by the right-hand side of (2). It is worth stressing that, should
one wish to establish bounds for P(

∑ν
a=1 Za = 0) only (and not for the whole distribution of∑ν

a=1 Za), there is no need to proceed to the calculation of the compounding distribution H .
Now let b(x; n, p) and B(x; n, p) respectively denote the probability mass function and

cumulative distribution function of a binomial RV X, i.e.

b(x; n, p) = P(X = x) =
(

n

x

)
pxqn−x, x = 0, 1, . . . , n,

B(x; n, p) = P(X ≤ x) =
x∑

r=0

b(r; n, p), x ∈ R.

In the following sections we shall make frequent use of the quantities

f (s; k, p) = P(S1 < s, S2 < s, . . . , Sk < s, Sk+1 ≥ s),

G(s; k, p) = P(S1 < s, S2 < s, . . . , Sk+1 < s), (3)

which can be expressed using b(x; n, p) and B(x; n, p) as follows (cf. [10]), for 1 ≤ s ≤ k

(if s > k or s < 0 then we set f (s, k; p) = 0):

f (s; k, p) = p

s
b(s − 1; k − 1, p)[sqb(s − 1; k − 1, p) + (s − kp)B(s − 2; k − 1, p)],

G(s; k, p) = B(s − 1; k, p)2 − b(s; k, p)[(s − 1)B(s − 2; k, p) − kpB(s − 3; k − 1, p)].
(4)

The standard symbols ‘∼’, o(·), and O(·) will assume their usual meanings, i.e.

f (t) ∼ g(t) as t → t0 if lim
t→t0

f (t)

g(t)
= 1,

f (t) = o(g(t)) as t → t0 if lim
t→t0

f (t)

g(t)
= 0,

f (t) = O(g(t)) if
f (t)

g(t)
is bounded.

In addition, summations of the form
∑b

i=a xi with a > b will be assumed to vanish. Finally,
we shall write �x	 for the integer part of x.

3. An approximation for the cumulative distribution function of Sn,k

As stated after Theorem 1, should we wish to exploit (2) to establish fine upper bounds
(i.e. bounds converging to 0) for d(Wn, CP(λ, H)) or simply for

|P(Sn,k < r) − e−λ| = |P(Wn = 0) − e−λ|
= |P(1[r,∞)(Sa) = 0 for all a = 1, . . . , n − k + 1) − e−λ|,
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care should be taken that Za, a = 1, 2, . . . , are locally dependent and have probability mass
functions concentrated on 0. Since scans exhibit a strong tendency to cluster (especially if
p does not converge to 0), a direct application of Theorem 1 with Za = 1[r,∞)(Sa), a =
1, 2, . . . , does not yield powerful estimates for the approximation error. One convenient way to
improve the performance of the upper bound is to first introduce a set of weakly dependent RVs
Za = Ca, a = 1, 2, . . . , so a small upper bound is gained for d(

∑
Za, CP(λ, H)) through

Theorem 1, and then make use of the triangle inequality

d(Wn, CP(λ, H)) ≤ d

(
Wn,

∑
Za

)
+ d

(∑
Za, CP(λ, H)

)
. (5)

It goes without saying that an efficient upper bound for the quantity d(Wn,
∑

Za) will also be
needed.

A set of RVs possessing the aforementioned properties is provided by

Ca =
[ a−1∏

j=a−k

(1 − 1[r,∞)(Sj ))

][
1[r,∞)(Sa)

a+k∑
m=a

1[r,∞)(Sm)

]
, a = 1, 2, . . . .

The second bracket enumerates the number of scanning windows of length k that begin at
positions a, a +1, . . . , a +k and contain at least r successes each (such a RV, which counts the
total number of clumps located in a specific area, is usually called a declumping variable). On the
other hand, the first bracket guarantees that at the previous k positions, a−k, a−k+1, . . . , a−1,
all scanning windows of length k contain fewer than r successes. As a matter of fact, it is the
inclusion of this extra term that makes the construction of sharp bounds feasible; were we to
represent the declumping procedure exclusively by the second bracket and the last term of the
first bracket, then the resulting bounds would exhibit a slow convergence rate (of order O(p))
for r < k, and only the case r = k could exhibit a better rate of order O(pk). For more details
on this approach we refer the reader to [4]. We are now ready to prove the next theorem.

Theorem 2. Let Wn = ∑n−k+1
i=1 1[r,∞)(Si) be the number of moving sums that contain at least

r 1s. Then

d(Wn, CP(λ, H))

≤ (2k − 1)λpqb(r − 1; k − 1, p) + 3λkf (r; k, p) + (λ + 2)(1 − G(r; k, p)),

where λ ≡ λr,k,n = (n − k + 1)f (r; k, p) and

H(x) = P(C1 ≤ x | C1 > 0)

= P

( 2k+1∑
m=k+1

1[r,∞)(Sm) ≤ x

∣∣∣∣ 1[r,∞)(Sj ) = 0, j = 1, 2, . . . , k, 1[r,∞)(Sk+1) = 1

)
.

Proof. By applying inequality (5) with Za = Ca, a = 1, 2, . . . , we may write

d(Wn, CP(λ, H)) ≤ d

(
Wn,

n−k+1∑
a=1

Ca

)
+ d

(n−k+1∑
a=1

Ca, CP(λ, H)

)
, (6)
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where (see also (3) and (4))

λ =
n−k+1∑
a=1

P(Ca > 0) = (n − k + 1)f (r; k, p).

The second term on the right-hand side of (6) can be bounded from above with the aid of
Theorem 1. More specifically, if we introduce

Ba = {max{1, a − 3k + 1}, . . . , a − 1}, a = 2, 3, . . . ,

the left neighborhoods of dependence, we deduce that

d

(n−k+1∑
a=1

Ca, CP(λ, H)

)

≤
n−k+1∑

i=2

i−1∑
b=max{1,i−3k+1}

(P(Cb > 0, Ci > 0) + P(Cb > 0) P(Ci > 0))

+ (n − k + 1) P(C1 > 0)2

≤
n−k+1∑

i=2

i−k−1∑
b=max{1,i−3k+1}

P(Cb > 0, Ci > 0) + 3k(n − k + 1) P(C1 > 0)2

≤ (n − k)

2k−1∑
b=1

P(Cb > 0, C3k > 0) + 3(n − k + 1)kf 2(r; k, p)

≤ (n − k)

2k−1∑
b=1

P(Sb−k < r, . . . , Sb−1 < r, Sb ≥ r) P(S3k−1 < r, S3k ≥ r)

+ 3(n − k + 1)kf 2(r; k, p)

≤ λ(2k − 1)

(
k − 1

r − 1

)
prqk−r+1 + 3λkf (r; k, p).

On the other hand, for the first term of (6) we have (using the well-known coupling inequality
for the total variation distance, dTV)

d

(
Wn,

n−k+1∑
a=1

Ca

)
≤ dTV

(
Wn,

n−k+1∑
a=1

Ca

)
≤ P

(
Wn �=

n−k+1∑
a=1

Ca

)
.

The RVs Wn and
∑n−k+1

i=1 Ci are unequal only in the following three cases.

(i) A loose clump that starts at trial i does not end until trial i +2k−1, i = 1, 2, . . . , n−2k.

(ii) One of the scanning windows starting at n − k + 2, . . . , n + 1 contains at least r 1s.

(iii) One of the scanning windows starting at −k + 1, . . . , 0 contains at least r 1s.
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Cases (ii) and (iii) occur because of so-called ‘edge effects’, while case (i) occurs because,
for computational convenience, we used truncated clumps. Hence, the following inequality
will hold:

d

(
Wn,

n−k+1∑
i=1

Ci

)
≤

n−2k∑
i=1

P(Ci > 0, Si+k+1 ≥ r or Si+k+2 ≥ r or · · · or Si+2k ≥ r)

+ 2(1 − P(S1 < r, . . . , Sk < r))

≤
n−2k∑
i=1

P(Si−k < r, . . . , Si−1 < r, Si ≥ r)

× (1 − P(Si+k+1 < r, . . . , Si+2k+1 < r))

+ 2(1 − P(S1 < r, . . . , Sk < r, Sk+1 < r))

= (n − 2k)f (r; k, p)(1 − G(r; k, p)) + 2(1 − G(r; k, p))

≤ (λ + 2)(1 − G(r; k, p)).

This concludes the proof of the theorem.

The following corollary is an immediate consequence of the above theorem and (1).

Corollary 1. Let Fn,k(r) = P(Sn,k < r), r = 1, 2, . . . , k, denote the cumulative distribution
function of the discrete scan statistic Sn,k . Then

|Fn,k(r) − e−λ| ≤ (2k − 1)λpqb(r − 1; k − 1, p) + 3λkf (r; k, p) + (λ + 2)(1 − G(r; k, p)),

where λ ≡ λr,k,n = (n − k + 1)f (r; k, p).

Roos [15] has developed several results that can be used to establish compound Poisson
approximations for sums of dependent RVs (see also [2] for additional references on this
topic). For the problem at hand, it is unclear whether these results can be profitably exploited
to produce as manageable an upper bound as the one given in Theorem 2. Moreover, even if
such a bound was established, it is not expected to improve on the order of convergence offered
by our result.

4. The asymptotic distribution of Sn,k

In the present section we are going to present a large deviation result for Sn,k . Let us first
introduce some additional notation that will be used in the sequel.

For 0 < p < θ < 1 we shall denote by H(θ, p) the relative entropy (of the Bernoulli
distribution with parameter θ with respect to the Bernoulli distribution with parameter p) or
Kullback–Leibler distance, which is given by

H(θ, p) = θ ln
θ

p
+ (1 − θ) ln

1 − θ

1 − p
= ln

θθ (1 − θ)1−θ

pθ (1 − p)1−θ
. (7)

The derivative of H(θ, p) with respect to θ ,

h(θ, p) = d

dθ
H(θ, p) = ln

(
θ/(1 − θ)

p/(1 − p)

)
> 0,
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measures the log-odds ratio between two biased coins. It is clear that H(θ, p) increases from
0 to ln(1/p) as θ increases from p to 1.

We shall now present a simple auxiliary lemma that will prove useful in the investigation
of the asymptotic distribution of Sn,k . Henceforth, we shall assume that r ≡ rn and k ≡ kn,
with both sequences, {rn} and {kn}, tending to ∞ as n → ∞. Where not stated explicitly, all
convergences and limits apply as n → ∞.

Lemma 1. If p is fixed, θ ∈ (p, 1), and rn and kn satisfy the condition

lim
rn − θkn√

kn

= 0,

then (
k

r

)
θr(1 − θ)k−r = 1 + O((ρ2 + 1)/k)√

2πθ(1 − θ)k
, (8)

k∑
i=r

(
k

i

)
pi(1 − p)k−i ∼ θ(1 − p)

θ − p

e−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

, (9)

where ρ ≡ ρn = rn − θkn = o(
√

kn).

Proof. Note first that, for any sequence {an} of real numbers with an = o(
√

kn), we have

(1 − an/kn)
kn

e−an
= 1 + O

(
a2
n

kn

)
→ 1. (10)

This is readily ascertainable if we apply the elementary inequality x ≤ − ln(1−x) ≤ x/(1−x)

with x = an/kn < 1 (note that limn→∞(an/kn) = 0 and assume that kn is large enough that
an/kn < 1), to obtain

exp

(
− 1

1 − an/kn

a2
n

kn

)
≤ (1 − an/kn)

kn

e−an
≤ 1.

In view of the last inequality we may write∣∣∣∣1 − (1 − an/kn)
kn

e−an

∣∣∣∣ ≤ 1 − exp

(
− 1

1 − an/kn

a2
n

kn

)
= O

(
a2
n

kn

)
,

which proves the asymptotic expression (10).
Next, a straightforward application of Stirling’s formula yields(

k

r

)
= kk

√
2πkeck/12k

ek

er

rr
√

2πrecr /12r

ek−r

(k − r)k−r
√

2π(k − r) exp (ck−r/[12(k − r)])
= 1√

2πr(1 − r/k)

kk

rr (k − r)k−r
exp

(
1

12k

(
ck − cr

r/k
− ck−r

1 − r/k

))
,

where ci ∈ (0, 1), i = 1, 2, . . . . By making use of the obvious equality

kk

rr (k − r)k−r
θ r (1 − θ)k−r =

(
θk

r

)r(
(1 − θ)k

k − r

)k−r

https://doi.org/10.1239/jap/1165505213 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505213


1146 M. V. BOUTSIKAS AND M. V. KOUTRAS

and taking into account the asymptotic expansions

(
θk

r

)r

=
(

1 + θk − r

r

)r

=
(

1 − ρ

r

)r

= e−ρ

(
1 + O

(
ρ2

k

))
,

(
(1 − θ)k

k − r

)k−r

=
(

1 + r − kθ

k − r

)k−r

=
(

1 + ρ

k − r

)k−r

= eρ

(
1 + O

(
ρ2

k

))

(resulting from (10) with an = ρnkn/rn and an = ρnkn/(kn − rn), respectively), we conclude
that(

k

r

)
θr(1 − θ)k−r

= 1√
2πr(1 − r/k)

(
θk

r

)r(
(1 − θ)k

k − r

)k−r

exp

(
1

12k

(
ck − cr

r/k
− ck−r

1 − r/k

))

= (1 + O(ρ2/k))√
2πr(1 − r/k)

exp

(
1

12k

(
ck − cr

r/k
− ck−r

1 − r/k

))
.

The proof of (8) is now easily completed by observing that

√
θ(1 − θ)

(r/k)(1 − r/k)
− 1 = O

(
ρ

k

)
,

exp

(
1

12k

(
ck − cr

r/k
− ck−r

1 − r/k

))
− 1 = O

(
1

k

)
.

To prove (9), first note that

∑k
i=r

(
k
i

)
piqk−i(

k
r

)
prqk−r

= 1 +
k−r∑
i=1

(k − r)(k − r − 1) · · · (k − r − i + 1)

(r + 1)(r + 2) · · · (r + i)

(
p

q

)i

≤
k−r∑
i=0

(
k − r

r

p

q

)i

(q = 1 − p). Since r/k → θ > p, we may choose r and k to be large enough that

k − r

r

p

q
= 1 − r/k

r/k

p

1 − p
< 1,

whence

∑k
i=r

(
k
i

)
piqk−i(

k
r

)
prqk−r

≤ 1 − ([(k − r)/r]p/q)k−r+1

1 − [(k − r)/r]p/q
→ 1

1 − [(1 − θ)/θ ]p/q
= θ − θp

θ − p
.

Observe next that, for k and r large enough that

k − r − �√k − r	
r + �√k − r	

p

1 − p
< 1,
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we may write

∑k
i=r

(
k
i

)
piqk−i(

k
r

)
prqk−r

≥ 1 +
�√k−r	∑

i=1

(k − r)(k − r − 1) · · · (k − r − i + 1)

(r + 1)(r + 2) · · · (r + i)

(
p

q

)i

≥
�√k−r	∑

i=0

(
k − r − �√k − r	

r + �√k − r	
)i(

p

q

)i

= 1 − ((k − r − �√k − r	)/(r + �√k − r	)(p/q))�
√

k−r	+1

1 − (k − r − �√k − r	)/(r + �√k − r	)(p/q)

→ 1

1 − [(1 − θ)/θ ]p/q
= θ − θp

θ − p
.

Hence, ∑k
i=r

(
k
i

)
piqk−i(

k
r

)
prqk−r

→ θ − θp

θ − p
,

and the proof is easily completed if we use (8) and take into account the fact that

e−kH(θ,p)−ρh(θ,p) = pr(1 − p)k−r

θ r (1 − θ)k−r
.

It is worth mentioning that (9) can be viewed as a special case of Petrov’s [14] well-known
large deviation theorem (see also [13] for an extension of Petrov’s result).

We are now ready to elucidate the asymptotic behavior of Sn,k .

Theorem 3. Let p be fixed, let θ ∈ (p, 1), and let {rn} and {kn} be two sequences satisfying
the condition

lim
n→∞

rn − θkn√
kn

= 0.

If the sequence

ln = n
(θ − p)e−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

, n = 1, 2, . . .

(ρ ≡ ρn = rn − θkn), is bounded from above, then

P(Sn,k < r) ∼ e−ln .

Moreover, the rate of convergence in the above approximation is of order O((ρ2 + 1)/k).

Proof. Recalling the notation used in Corollary 1, we may write

|P(Sn,k < r) − e−ln | ≤ |Fn,k(r) − e−λr,k,n | + |e−λr,k,n − e−ln |. (11)

By (8), we deduce that

f (r; k, p) = r

k

(
k

r

)
prqk−r

[
qr

pk

(
k

r

)
prqk−r +

(
1 − kp

r

)(
1 −

k∑
i=r

i

kp

(
k

i

)
piqk−i

)]

= (θ − p)e−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

(
1 + O

(
ρ2 + 1

k

))
,
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while (9) yields

1 − G(r; k, p) = 1 −
(

1 −
k∑

i=r

(
k

i

)
piqk−i

)2

+ kp

(
k

r

)
prqk−r

×
(

r − 1 − pk

pk
− r − 1

pk

k∑
i=r−1

(
k

i

)
piqk−i +

k−1∑
i=r−2

(
k − 1

i

)
piqk−1−i

)

∼ 2
θ(1 − p)

θ − p

e−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

+ kp
e−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

θ − p

p

∼ (θ − p)ke−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

.

It is not difficult to check that

λr,k,n = (n − k + 1)f (r; k, p) = ln

(
1 + O

(
ρ2 + 1

k

))
,

|e−λr,k,n − e−ln | = e−ln |1 − eln−λr,k,n | = O(ln − λr,k,n) = O

(
ρ2 + 1

k

)
.

On the other hand, the upper bound provided for |Fn,k(r) − e−λr,k,n | by Corollary 1 takes the
asymptotic form

ln(2k − 1)
qθe−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

+ 3lnk
(θ − p)e−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

+ (ln + 2)
(θ − p)ke−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

∼ ke−kH(θ,p)−ρh(θ,p)

√
2πθ(1 − θ)k

(ln(6θ − 2θp − 4p) + 2(θ − p))

= O(
√

ke−kH(θ,p)−ρh(θ,p)),

and the proof is easily completed by incorporating the above results into (11).

5. An extreme value theorem for the Erdős–Rényi statistic

A substantial literature on asymptotic results has been published under the heading of Erdős–
Rényi laws. A nice collection of results of this type may be found in [5] and the references
cited therein.

Let Y1, Y2, . . . be a sequence of i.i.d. RVs with E(Yi) = 0, i = 1, 2, . . . , and define the
statistic

Un = max
1≤i≤n−k+1

i+k−1∑
j=i

Yj ,

which measures the maximum of the moving sums
∑i+k−1

j=i Yj , i = 1, 2, . . . , n − k + 1.
The classical Erdős–Rényi theorem [6] states that if k ≡ kn = �c ln n	 for c > 0, then
Un/akn → 1 almost surely for a large class of distributions of Yi (here a > 0 is a number
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depending on the distribution of Yi and the constant c). Deheuvels and Devroye [5] derived an
extreme value result for the same statistic. More specifically, they proved that if the Yi obey
any nonlattice distribution and k ≡ kn = �c ln n	, c > 0, then

lim
n→∞ P

(
Un − bn

an

≤ x

)
= �(x), x ∈ R,

where �(x) = exp(−e−x) is the cumulative distribution function of the Gumbel distribution
and an > 0 and bn ∈ R are appropriate normalizing constants.

We shall now exploit Theorem 3 to establish a similar extreme value result when the sequence
of i.i.d. RVs are binary Bernoulli variables (lattice distribution with span 1).

Theorem 4. Let X1, X2, . . . be a sequence of i.i.d. binary RVs with constant success proba-
bilities p = P(X1 = 1) = 1 − P(X1 = 0), let θ ∈ (p, 1), and let k ≡ kn = �ln n/H(θ, p)	.
If �(x) = exp(−e−x) denotes the cumulative distribution function of the Gumbel distribution
and

bn = knθ + 1

h(θ, p)
ln

n(θ − p)e−knH(θ,p)

√
2πθ(1 − θ)kn

,

then, for the discrete scan statistic Sn,k = max1≤i≤n−k+1
∑i+k−1

j=i Xj , we have

lim
n→∞

[
P

(
Sn,k − bn

1/h(θ, p)
< y

)
− �(y − εn(y)h(θ, p))

]
= 0, (12)

where

εn(y) =
(

bn + y

h(θ, p)

)
−

⌊
bn + y

h(θ, p)

⌋
.

Moreover, the rate of convergence in (12) is of order O((ln k)2/k).

Proof. On introducing the notation

rn(y) = bn + y

h(θ, p)
,

we may express the probability appearing in (12) as

P(Sn,k < �rn(y)	) = P(Sn,k < rn), rn = �rn(y)	.
In order to make use of Theorem 3, observe that εn(y) = rn(y) − �rn(y)	 while

rn − θkn = rn(y) − εn(y) − knθ

= 1

h(θ, p)

[
y + ln

θ − p√
2πθ(1 − θ)

− 1

2
ln kn +

(
ln n

H(θ, p)
− kn

)
H(θ, p)

]
− εn(y)

= O(ln kn)

= o(
√

n).

Moreover, note that both rn and kn tend to ∞ as n → ∞, while the quantity ln used in Theorem 3
takes the form

ln = n
(θ − p)e−knH(θ,p)

√
2πθ(1 − θ)kn

exp

(
−y − ln

n(θ − p)e−knH(θ,p)

√
2πθ(1 − θ)kn

+ εn(y)h(θ, p)

)
= e−y+εn(y)h(θ,p).
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Since ln is bounded (note that εn(y) ∈ [0, 1)), a direct application of Theorem 3 yields the
limiting expression (12). The rate of convergence is given by

O

(
(rn − θkn)

2 + 1

k

)
= O

(
(ln k)2

k

)
.

It is worth mentioning that the above asymptotic result can be written in the equivalent form

P

(
(Un − kn(θ − p))h(θ, p) + 1

2
ln kn − ln

np(1 − θ)(θ − p)e−knH(θ,p)

(1 − p)θ
√

2πθ(1 − θ)
≤ y

)

= exp

(
−exp

(
−y + εn(y) ln

(1 − p)θ

p(1 − θ)

))
+ O

(
(ln k)2

k

)
, (13)

where Un = max1≤i≤n−k+1
∑i+k−1

j=i (Xj − p). The last expression is almost the same as that
of Theorem 6 of [5] (when applied to Bernoulli variables), the only difference being in the
additional oscillating term εn(y) ln((1−p)θ/p(1−θ)) appearing on the left-hand side of (13).
This is because the result of [5] holds only for nonlattice distributions, whereas (our) Theorem 4
refers to the Bernoulli distribution. Apparently, Un does not belong to the domain of attraction
of an extreme value distribution in the case of Bernoulli RVs, and the same will hold for all
lattice distributions. Nevertheless, if we can determine appropriate sequences {ni ∈ N}, such
that εni

(y) → ε(y) as i → ∞ for every y, we may obtain an extreme value distribution for the
(normalized) Uni

, i = 1, 2, . . . , of the form

exp

(
−exp

(
−y + ε(y) ln

(1 − p)θ

p(1 − θ)

))
.

6. Numerical results

In the previous sections, three different approximations were developed for the cumulative
distribution function, Fn,k(r) = P(Sn,k < r), of the discrete scan statistic Sn,k . It is worth
mentioning that the expected number of successes within a scanning window of length k is kp

and, therefore, that Fn,k(r) = P(Sn,k < r) ≈ 0 when r ≤ pk. For this reason, in the sequel
we shall assume that r > pk. According to Corollary 1, Fn,k(r) can be approximated by the
quantity

F1(n, k, r; p) = exp(−λ) = exp(−(n − k + 1)f (r; k, p)), r > kp,

with f (r; k, p) as given in (4).
Theorem 3 states that the asymptotic behavior of Fn,k(r) can be investigated with the use of

the expression exp(−ln). With θ = r/k, the quantity exp(−ln) reduces to

F2(n, k, r; p) = exp

(
−n

(r/k − p)e−kH(r/k,p)

√
2π(r/k)(1 − r/k)k

)
, r > kp,

with H(θ, p) as given in (7).
Finally, Theorem 4 offers a third asymptotic approximation for Fn,k(r) in terms of the

cumulative distribution function of the Gumbel distribution. This third approximation converges
quite slowly (especially when r is not very close to θk), a fact that holds for the majority
of Erdős–Rényi-type laws as well. Therefore, this result is primarily of theoretical interest.
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The other two expressions, F1(n, k, r; p) and F2(n, k, r; p), can be used to obtain quite
reasonable approximations for the cumulative distribution Fn,k(r).

Were we interested in the expected value of Sn,k , we could make use of the well-known
formula

E(Sn,k) =
∞∑

r=1

P(Sn,k ≥ r) =
∞∑

r=1

(1 − P(Sn,k < r)) =
∞∑

r=1

(1 − Fn,k(r)),

which, on taking into account the facts that Fn,k(r) ≈ 0 for r ≤ kp and Fn,k(r) = 1 for r > k,
yields

E(Sn,k) ≈ r0 +
k∑

r=r0+1

(1 − Fn,k(r)), r0 = �kp	.

Next, by replacing Fn,k(r) by F1(n, k, r; p) and then F2(n, k, r; p), we may write

E(Sn,k) ≈ r0 +
r1∑

r=r0+1

(1 − e−(n−k+1)f (r;k,p))

and, respectively,

E(Sn,k) ≈ r0 +
r1∑

r=r0+1

(
1 − exp

(
−n

(r/k − p)e−kH(r/k,p)

√
2π(r/k)(1 − r/k)k

))
,

with the summations terminating whenever the approximate value for Fn,k(r) is almost 1
(i.e. Fr,k(r1) ≈ 1). In the same fashion, we could also use the expression

E(Sm
n,k) =

k∑
r=1

(rm − (r − 1)m) P(Sn,k ≥ r), m = 1, 2, . . . ,

to obtain reasonable and computationally tractable approximations for the higher moments
of Sn,k .

In Tables 1–6 we provide Monte Carlo estimations (denoted Sim) of the exact values of
Fn,k(r) = P(Sn,k < r) and E(Sn,k) along with the respective approximations, for a variety

Table 1: n = 1000, k = 30, p = 0.5.

r Sim F1 UB F2 Q′
L

20 0.0030 0.010 481 5.814 920 0.009 012 0.003 081
21 0.0543 0.074 823 1.838 730 0.067 685 0.053 611
22 0.2703 0.290 652 0.445 214 0.276 236 0.270 714
23 0.6039 0.612 020 0.089 468 0.599 248 0.604 788
24 0.8507 0.851 214 0.017 160 0.845 072 0.849 814
25 0.9580 0.957 953 0.003 415 0.955 991 0.957 749
26 0.9904 0.990 954 0.000 646 0.990 486 0.990 927
27 0.9985 0.998 532 0.000 100 0.998 446 0.998 529

E(Sn,k) = 22.272 E(Sn,k) = 22.212 — E(Sn,k) = 22.256 —
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Table 2: n = 10 000, k = 100, p = 0.5.

r Sim F1 UB F2 Q′
L

61 0.0002 0.000 426 6.211 840 0.000 393 0.000 166
63 0.0259 0.030 981 1.196 450 0.029 690 0.026 104
65 0.2697 0.277 177 0.172 825 0.272 680 0.270 811
67 0.6742 0.676 179 0.021 687 0.672 762 0.674 519
69 0.9056 0.906 263 0.003 008 0.905 096 0.906 049
71 0.9795 0.979 849 0.000 487 0.979 585 0.979 825
73 0.9966 0.996 562 0.000 077 0.996 515 0.996 559
75 0.9995 0.999 527 0.000 010 0.999 520 0.999 526

E(Sn,k) = 65.80 E(Sn,k) = 65.766 — E(Sn,k) = 65.788 —

Table 3: n = 100 000, k = 1000, p = 0.5.

r Sim F1 UB F2 Q′
L

539 0.0062 0.009 528 4.078 320 0.009 118 0.006 942
543 0.0577 0.070 025 1.270 740 0.068 191 0.063 361
547 0.2288 0.243 519 0.353 627 0.240 034 0.236 715
551 0.4878 0.497 304 0.090 433 0.493 741 0.493 687
555 0.7169 0.724 794 0.022 406 0.722 389 0.723 520
559 0.8669 0.870 856 0.005 799 0.869 612 0.870 493
563 0.9444 0.946 087 0.001 658 0.945 544 0.945 989
567 0.9796 0.979 482 0.000 518 0.979 272 0.979 455
571 0.9928 0.992 786 0.000 166 0.992 711 0.992 778

E(Sn,k) = 551.55 E(Sn,k) = 551.17 — E(Sn,k) = 551.23 —

Table 4: n = 100 000, k = 100, p = 0.5.

r Sim F1 UB F2 Q′
L

66 0.0004 0.000 660 0.462 0750 0.000 642 0.000 617
67 0.0188 0.019 289 0.135 3200 0.018 994 0.018 919
68 0.1303 0.131 504 0.037 2180 0.130 446 0.130 825
69 0.3728 0.370 420 0.009 8961 0.368 931 0.369 945
70 0.6282 0.629 420 0.002 6684 0.628 218 0.629 231
71 0.8157 0.814 325 0.000 7715 0.813 621 0.814 269
72 0.9199 0.916 981 0.000 2460 0.916 640 0.916 966
73 0.9673 0.965 843 0.000 0847 0.965 696 0.965 839
74 0.9867 0.986 855 0.000 0300 0.986 797 0.986 854
75 0.9947 0.995 233 0.000 0105 0.995 211 0.995 233
76 0.9979 0.998 367 0.000 0035 0.998 359 0.998 367

E(Sn,k) = 69.21 E(Sn,k) = 69.172 — E(Sn,k) = 69.177 —
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Table 5: n = 100 000, k = 1000, p = 0.7.

r Sim F1 UB F2 Q′
L

735 0.0028 0.006 738 4.391 180 0.006 420 0.004 679
739 0.0566 0.067 919 1.206 990 0.066 100 0.061 369
743 0.2612 0.267 633 0.287 480 0.264 010 0.261 151
747 0.5516 0.554 803 0.061 936 0.551 410 0.551 898
751 0.7796 0.786 442 0.013 116 0.784 471 0.785 624
755 0.9093 0.914 489 0.003 028 0.913 635 0.914 301
759 0.9661 0.970 108 0.000 789 0.969 800 0.970 065
763 0.9877 0.990 646 0.000 218 0.990 548 0.990 636
767 0.9951 0.997 350 0.000 059 0.997 322 0.997 347

E(Sn,k) = 746.46 E(Sn,k) = 746.28 — E(Sn,k) = 746.33 —

Table 6: n = 10 000, k = 100, p = 0.7.

r Sim F1 UB F2 Q′
L

81 0.0062 0.008 590 2.104 690 0.008 042 0.006 245
82 0.0546 0.060 537 0.730 446 0.058 116 0.054 386
83 0.2081 0.215 001 0.228 520 0.210 098 0.208 207
84 0.4521 0.457 658 0.066 394 0.452 187 0.453 727
85 0.6895 0.692 245 0.018 849 0.688 244 0.690 780
86 0.8502 0.852 425 0.005 543 0.850 228 0.852 004
87 0.9371 0.938 287 0.001 731 0.937 294 0.938 179
88 0.9774 0.977 020 0.000 557 0.976 630 0.976 992
89 0.9920 0.992 309 0.000 174 0.992 173 0.992 302
90 0.9976 0.997 685 0.000 051 0.997 642 0.997 683

E(Sn,k) = 86.56 E(Sn,k) = 86.565 — E(Sn,k) = 86.573 —

of the parameters n, k, and r , and for p = 0.5, 0.7. The quantity UB is a bound for
the discrepancy between Fn,k(r) and F1 (see Corollary 1). It is clear that, as n, k, and r

increase, the quality of the approximation of Fn,k(r) improves substantially. For comparison
reasons we have also included in the table a third approximation (denoted Q′

L) for the same
quantity which was suggested by Glaz et al. [12, p. 45, Equation (4.3)]. Note that Q′

L also
provides very accurate approximations, especially for large values of n, k, and r . However, the
computational difficulty of evaluating Q′

L is much higher (as compared to F1(n, k, r; p) and
especially F2(n, k, r; p)); in addition, no estimate is available for the convergence rate of the
approximation established with the use of Q′

L.
It should be stressed that the arguments used to derive Q′

L do not offer any clue as to
how the approximation error can be bounded. Corollary 1, on the contrary, offers an explicit,
computationally tractable bound for the discrepancy between Fn,k(r) and F1(n, k, r; p),
namely

UB = (2k − 1)λpqb(r − 1; k − 1, p) + 3λkf (r; k, p) + (λ + 2)(1 − G(r; k, p)).

As r increases, the quantity UB becomes extremely small (less than 10−4) and, as a consequence,
a very tight interval estimate for Fn,k(r) may be developed. Note that the rate of convergence
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for the approximation provided by F2(n, k, r; p) is also available; however, this cannot be used
efficiently to establish interval estimates this good.

In closing, we mention that we could formally write down an exact formula for the distri-
bution of Sn,k by embedding the RV of interest in an appropriate Markov chain (see [7] and
[1, p. 297]). However, the dimension of the transition probability matrix of the chain becomes
extremely large even for moderate values of r and k (it is nearly one billion for the smallest
tabulated values, k = 30 and r = 20), a fact that makes the evaluation unfeasible. In cases
where the parameter values lead to intractable computations, the approach taken in this article
is of special interest.
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