Equilateral Sets and a Schütte Theorem for the 4 -norm

Konrad J. Swanepoel

Abstract

A well-known theorem of Schütte (1963) gives a sharp lower bound for the ratio of the maximum and minimum distances between $n+2$ points in n-dimensional Euclidean space. In this note we adapt Bárány's elegant proof (1994) of this theorem to the space ℓ_{4}^{n}. This gives a new proof that the largest cardinality of an equilateral set in ℓ_{4}^{n} is $n+1$ and gives a constructive bound for an interval $\left(4-\varepsilon_{n}, 4+\varepsilon_{n}\right)$ of values of p close to 4 for which it is known that the largest cardinality of an equilateral set in ℓ_{p}^{n} is $n+1$.

1 Introduction

A subset S of a normed space X with norm $\|\cdot\|$ is called equilateral if for some $\lambda>0$, $\|\boldsymbol{x}-\boldsymbol{y}\|=\lambda$ for all distinct $\boldsymbol{x}, \boldsymbol{y} \in S$. Denote the largest cardinality of an equilateral set in a finite-dimensional normed space X by $e(X)$.

For $p \geq 1$ define the p-norm of a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as

$$
\|\boldsymbol{x}\|_{p}=\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

When dealing with a sequence $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m} \in \mathbb{R}^{n}$ of vectors, we denote the coordinates of \boldsymbol{x}_{i} as $\left(x_{i, 1}, \ldots, x_{i, n}\right)$. Denote the normed space \mathbb{R}^{n} with norm $\|\cdot\|_{p}$ by ℓ_{p}^{n}. It is not difficult to find examples of equilateral sets showing that $e\left(\ell_{p}^{n}\right) \geq n+1$. It is a simple exercise in linear algebra to show that $e\left(\ell_{2}^{n}\right) \leq n+1$. Kusner [4] asks if the same is true for ℓ_{p}^{n}, where $p>1$. For the current best upper bounds on $e\left(\ell_{p}^{n}\right)$, see [1]. We next mention only the results that decide various cases of Kusner's question. A compactness argument gives for each $n \in \mathbb{N}$ the existence of $\varepsilon_{n}>0$ such that $p \in$ $\left(2-\varepsilon_{n}, 2+\varepsilon_{n}\right)$ implies $e\left(\ell_{p}^{n}\right)=n+1$. However, this argument gives no information on ε_{n}. As observed by C. Smyth (unpublished manuscript; see also [8]), the following theorem of Schütte [6] can be used to give an explicit lower bound to ε_{n} in terms of n.

Theorem 1.1 (Schütte [6]) Let S be a set of at least $n+2$ points in ℓ_{2}^{n}. Then

$$
\frac{\max _{\boldsymbol{x}, \boldsymbol{y} \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}}{\min _{\boldsymbol{x}, \boldsymbol{y} \in S, \boldsymbol{x} \neq \boldsymbol{y}}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}} \geq \begin{cases}\left(1+\frac{2}{n}\right)^{1 / 2} & \text { if } n \text { is even, } \\ \left(1+\frac{2}{n-(n+2)^{-1}}\right)^{1 / 2} & \text { if } n \text { is odd. }\end{cases}
$$

The lower bounds in this theorem are sharp.

[^0]Corollary 1.2 (Smyth) If

$$
|p-2|<\frac{2 \log (1+2 / n)}{\log (n+2)}=\frac{4(1+o(1))}{n \log n}
$$

then the largest cardinality of an equilateral set in ℓ_{p}^{n} is $e\left(\ell_{p}^{n}\right)=n+1$.
The dependence of $\varepsilon_{n}=\frac{4(1+o(1))}{n \log n}$ on n is necessary, since $e\left(\ell_{p}^{n}\right)>n+1$ if $1 \leq p<$ $2-\frac{1+o(1)}{(\ln 2) n}$ (see [9]). (These are the only known cases where the answer to Kusner's question is negative.)

There is also a linear algebra proof in [9] that $e\left(\ell_{4}^{n}\right)=n+1$. As in the case of $p=2$, compactness gives an ineffective $\varepsilon_{n}>0$ such that if $p \in\left(4-\varepsilon_{n}, 4+\varepsilon_{n}\right)$, then $e\left(\ell_{p}^{n}\right)=n+1$. The question arises whether Schütte's theorem can be adapted to ℓ_{4}^{n}, so that a conclusion similar to Corollary 1.2 can be made for p close to 4. Proofs of Schütte's theorem have been given by Schütte [6], Schoenberg [5], Seidel [7], and Bárány [2]. It is the purpose of this note to show that Bárány's simple and elegant proof of Schütte's theorem can indeed be adapted.

Theorem 1.3 Let S be a set of at least $n+2$ points in ℓ_{4}^{n}. Then

$$
\frac{\max _{\boldsymbol{x}, \boldsymbol{y} \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}}{\min _{\boldsymbol{x}, \boldsymbol{y} \in S, \boldsymbol{x} \neq \boldsymbol{y}}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}} \geq \begin{cases}\left(1+\frac{2}{n}\right)^{1 / 4} & \text { if } n \text { is even, } \\ \left(1+\frac{2}{n-(n+2)^{-1}}\right)^{1 / 4} & \text { if } n \text { is odd } .\end{cases}
$$

Corollary 1.4 If

$$
|p-4|<\frac{4 \log (1+2 / n)}{\log (n+2)}=\frac{8(1+o(1))}{n \log n}
$$

then the largest cardinality of an equilateral set in ℓ_{p}^{n} is $e\left(\ell_{p}^{n}\right)=n+1$.
We do not know whether the lower bounds in Theorem 1.3 are sharp. The following is the best upper bound that we can show.

Proposition 1.5 There exists a set S of $n+2$ points in ℓ_{4}^{n} such that

$$
\frac{\max _{\boldsymbol{x}, \boldsymbol{y} \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}}{\min _{\boldsymbol{x}, \boldsymbol{y} \in S, \boldsymbol{x} \neq \boldsymbol{y}}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}}=1+\sqrt{\frac{2}{n}}+O\left(n^{-3 / 4}\right) .
$$

Unfortunately, this bound is far from the lower bound of $1+\frac{1}{2 n}+O\left(n^{-2}\right)$ given by Theorem 1.3.

2 Proofs

Proof of Theorem 1.3 Consider any $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n+2} \in \mathbb{R}^{n}$ and let

$$
\mu=\min _{i \neq j}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{4} \quad \text { and } \quad M=\max _{i, j}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{4} .
$$

By Radon's theorem [3] there is a partition $A \cup B$ of $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n+2}\right\}$ such that the convex hulls of A and B intersect. Without loss of generality we may translate the points so that \boldsymbol{o} lies in both convex hulls. Write $A=\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{K}\right\}$ and $B=\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{L}\right\}$, where $K+L=n+2$ and $K, L \geq 1$. Then there exist $\alpha_{1}, \ldots, \alpha_{K}, \beta_{1}, \ldots, \beta_{L} \geq 0$ such that

$$
\begin{array}{ll}
\sum_{i=1}^{K} \alpha_{i}=1, & \sum_{i=1}^{K} \alpha_{i} \boldsymbol{a}_{i}=\boldsymbol{o} \\
\sum_{j=1}^{L} \beta_{j}=1, & \sum_{j=1}^{L} \beta_{j} \boldsymbol{b}_{j}=\boldsymbol{o} . \tag{2.1}
\end{array}
$$

Also, for all $i \in[K]$ and $j \in[L]$,

$$
\begin{align*}
\left\|\boldsymbol{a}_{i}-\boldsymbol{a}_{j}\right\|_{4}^{4} \leq M^{4} \quad \text { whenever } i \neq j \tag{2.2}\\
\left\|\boldsymbol{b}_{i}-\boldsymbol{b}_{j}\right\|_{4}^{4} \leq M^{4} \quad \text { whenever } i \neq j \tag{2.3}\\
\left\|\boldsymbol{a}_{i}-\boldsymbol{b}_{j}\right\|_{4}^{4} \geq \mu^{4} \tag{2.4}
\end{align*}
$$

Apply the operation $\sum_{i=1}^{K} \alpha_{i} \sum_{\substack{j=1 \\ j \neq i}}^{K} \alpha_{j}$ to both sides of inequality (2.2):

$$
\begin{aligned}
(1- & \left.\sum_{i=1}^{K} \alpha_{i}^{2}\right) M^{4} \\
= & \sum_{i=1}^{K} \alpha_{i}\left(1-\alpha_{i}\right) M^{4}=\sum_{i=1}^{K} \alpha_{i} \sum_{\substack{j=1 \\
j \neq i}}^{K} \alpha_{j} M^{4} \\
\geq & \sum_{i=1}^{K} \alpha_{i} \sum_{j=1}^{K} \alpha_{j} \sum_{m=1}^{n}\left(a_{i, m}-a_{j, m}\right)^{4} \\
= & \sum_{m=1}^{n} \sum_{i=1}^{K} \sum_{j=1}^{K} \alpha_{i} \alpha_{j}\left(a_{i, m}^{4}-4 a_{i, m}^{3} a_{j, m}+6 a_{i, m}^{2} a_{j, m}^{2}-4 a_{i, m} a_{j, m}^{3}+a_{j, m}^{4}\right) \\
= & \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i, m}^{4}-4 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{3}\right)\left(\sum_{j=1}^{K} \alpha_{j} a_{j, m}\right) \\
& +6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)\left(\sum_{j=1}^{K} \alpha_{j} a_{j, m}^{2}\right)-4 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}\right)\left(\sum_{j=1}^{K} \alpha_{j} a_{j, m}^{3}\right) \\
& +\sum_{m=1}^{n} \sum_{j=1}^{K} \alpha_{j} a_{j, m}^{4},
\end{aligned}
$$

which, by (2.1), simplifies to

$$
\begin{equation*}
\left(1-\sum_{i=1}^{K} \alpha_{i}^{2}\right) M^{4} \geq 2 \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i, m}^{4}+6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)^{2} . \tag{2.5}
\end{equation*}
$$

Similarly, if we apply $\sum_{j=1}^{L} \beta_{j} \sum_{\substack{i=1 \\ i \neq j}}^{L} \beta_{i}$ to (2.3), we obtain

$$
\begin{equation*}
\left(1-\sum_{j=1}^{L} \beta_{j}^{2}\right) M^{4} \geq 2 \sum_{m=1}^{n} \sum_{j=1}^{L} \beta_{j} b_{j, m}^{4}+6 \sum_{m=1}^{n}\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)^{2} \tag{2.6}
\end{equation*}
$$

Next apply $\sum_{i=1}^{K} \alpha_{i} \sum_{j=1}^{L} \beta_{j}$ to (2.4):

$$
\begin{aligned}
\mu^{4}= & \sum_{i=1}^{K} \alpha_{i} \sum_{j=1}^{L} \beta_{j} \mu^{4} \leq \sum_{i=1}^{K} \alpha_{i} \sum_{j=1}^{L} \beta_{j} \sum_{m=1}^{n}\left(a_{i, m}-b_{j, m}\right)^{4} \\
= & \sum_{m=1}^{n} \sum_{i=1}^{K} \sum_{j=1}^{L} \alpha_{i} \beta_{j}\left(a_{i, m}^{4}-4 a_{i, m}^{3} b_{j, m}+6 a_{i, m}^{2} b_{j, m}^{2}-4 a_{i, m} b_{j, m}^{3}+b_{j, m}^{4}\right) \\
= & \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{4}\right)\left(\sum_{j=1}^{L} \beta_{j}\right)-4 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{3}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}\right) \\
& +6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)-4 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{3}\right) \\
& +\sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{4}\right) \\
& \stackrel{(2.1)}{=} \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i, m}^{4}+6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)+\sum_{m=1}^{n} \sum_{j=1}^{L} \beta_{j} b_{j, m}^{4},
\end{aligned}
$$

that is,
(2.7) $\sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i, m}^{4}+\sum_{m=1}^{n} \sum_{j=1}^{L} \beta_{j} b_{j, m}^{4} \geq \mu^{4}-6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)$.

Add (2.5) and (2.6) together:

$$
\begin{aligned}
& \left(2-\sum_{i=1}^{K} \alpha_{i}^{2}-\sum_{j=1}^{L} \beta_{j}^{2}\right) M^{4} \\
& \quad \geq 2 \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i, m}^{4}+2 \sum_{m=1}^{n} \sum_{j=1}^{L} \beta_{j} b_{j, m}^{4}+6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)^{2}+6 \sum_{m=1}^{n}\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(2.7)}{\geq} 2 \mu^{4}-12 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right) \\
& \quad+6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)^{2}+6 \sum_{m=1}^{n}\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)^{2} \\
& =2 \mu^{4}+6 \sum_{m=1}^{n}\left(\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)^{2}-2\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}\right)\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)+\left(\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)^{2}\right) \\
& =2 \mu^{4}+6 \sum_{m=1}^{n}\left(\sum_{i=1}^{K} \alpha_{i} a_{i, m}^{2}-\sum_{j=1}^{L} \beta_{j} b_{j, m}^{2}\right)^{2} \\
& \geq 2 \mu^{4} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{M^{4}}{\mu^{4}} \geq \frac{2}{2-\sum_{i=1}^{K} \alpha_{i}^{2}-\sum_{j=1}^{L} \beta_{j}^{2}} \tag{2.8}
\end{equation*}
$$

By (2.1) and the Cauchy-Schwarz inequality, $\sum_{i=1}^{K} \alpha_{i}^{2} \geq 1 / K$ and $\sum_{j=1}^{L} \beta_{j}^{2} \geq 1 / L$. Therefore,

$$
\sum_{i=1}^{K} \alpha_{i}^{2}+\sum_{j=1}^{L} \beta_{j}^{2} \geq \frac{1}{K}+\frac{1}{L} \geq \begin{cases}\frac{2}{n+2}+\frac{2}{n+2} & \text { if } n \text { is even } \\ \frac{2}{n+1}+\frac{2}{n+3} & \text { if } n \text { is odd }\end{cases}
$$

Substitute this estimate into (2.8) to obtain

$$
\frac{M^{4}}{\mu^{4}} \geq \begin{cases}1+\frac{2}{n} & \text { if } n \text { is even } \\ 1+\frac{2}{n-(n+2)^{-1}} & \text { if } n \text { is odd }\end{cases}
$$

which finishes the proof.
Proof of Corollary 1.4 It is well known and easy to see that for any $\boldsymbol{x} \in \mathbb{R}^{n}$, if $1 \leq$ $p \leq 4$, then $\|\boldsymbol{x}\|_{4} \leq\|\boldsymbol{x}\|_{p} \leq n^{1 / p-1 / 4}\|\boldsymbol{x}\|_{4}$, and if $4 \leq p<\infty$, then $\|\boldsymbol{x}\|_{p} \leq\|\boldsymbol{x}\|_{4} \leq$ $n^{1 / 4-1 / p}\|\boldsymbol{x}\|_{p}$. Suppose that there exists an equilateral set S of $n+2$ points in ℓ_{p}^{n}. Then

$$
\frac{\max _{\boldsymbol{x}, \boldsymbol{y} \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}}{\min \boldsymbol{x}, \boldsymbol{y} \in S, \boldsymbol{x} \neq \boldsymbol{y}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}} \leq n^{|1 / 4-1 / p|}
$$

Combine this inequality with Theorem 1.3 to obtain $1+\frac{2}{n} \leq n^{|1-4 / p|}$. A calculation then shows that

$$
|p-4| \geq \frac{4 \log (1+2 / n)}{\log (n+2)}=\frac{8}{n \log n}\left(1+O\left(n^{-1}\right)\right)
$$

Proof of Proposition 1.5 Let $k \in \mathbb{N}, x, y \in \mathbb{R}$, and

$$
\boldsymbol{a}:=(1+x, x, x, \ldots, x) \in \ell_{4}^{k} \quad \text { and } \quad \boldsymbol{b}:=(y, y, \ldots, y) \in \ell_{4}^{k} .
$$

We would like to choose x and y such that $\|\boldsymbol{a}\|_{4}=\|\boldsymbol{b}\|_{4}$ and $\|\boldsymbol{a}-\boldsymbol{b}\|_{4}=2^{1 / 4}$. This is equivalent to the following two simultaneous equations:

$$
\begin{gather*}
(1+x)^{4}+(k-1) x^{4}=k y^{4} \tag{2.9}\\
(1+x-y)^{4}+(k-1)(x-y)^{4}=2
\end{gather*}
$$

We postpone the proof of the following lemma.
Lemma 2.1 For each $k \in \mathbb{N}$ the system (2.9) has a unique solution $\left(x_{k}, y_{k}\right)$ satisfying $y_{k}>0$. Asymptotically, as $k \rightarrow \infty$ we have

$$
x_{k}=-k^{-1 / 2}+k^{-3 / 4}+O\left(k^{-1}\right) \quad \text { and } \quad y_{k}=k^{-1 / 4}-k^{-3 / 4}+O\left(k^{-1}\right)
$$

Using the solution $(x, y)=\left(x_{k}, y_{k}\right)$ from the lemma, we obtain

$$
\|\boldsymbol{a}\|_{4}=\|\boldsymbol{b}\|_{4}=k^{1 / 4} y=1-k^{-1 / 2}+O\left(k^{-3 / 4}\right)
$$

Write $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k}$ for the k permutations of \boldsymbol{a} and set $\boldsymbol{a}_{k+1}=\boldsymbol{b}$. Then (2.9) gives that $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k+1}\right\}$ is equilateral in ℓ_{4}^{k}. Finally, let $n=2 k$. Then in the set

$$
S=\left\{\left(\boldsymbol{a}_{i}, \boldsymbol{o}\right) \mid i=1,2, \ldots, k+1\right\} \cup\left\{\left(\boldsymbol{o}, \boldsymbol{a}_{i}\right) \mid i=1,2, \ldots, k+1\right\}
$$

of $n+2$ points in ℓ_{4}^{n} the only nonzero distances are $2^{1 / 4}$ and $2^{1 / 4}\|\boldsymbol{a}\|_{4}$. Therefore,

$$
\frac{\max _{\boldsymbol{x}, \boldsymbol{y} \in S}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}}{\min _{\boldsymbol{x}, \boldsymbol{y} \in S, \boldsymbol{x} \neq \boldsymbol{y}}\|\boldsymbol{x}-\boldsymbol{y}\|_{4}}=\frac{1}{\|\boldsymbol{a}\|_{4}}=1+\sqrt{\frac{2}{n}}+O\left(n^{-3 / 4}\right)
$$

The case where $n=2 k+1$ is odd is handled by using the points $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{k+1} \in \ell_{4}^{k}$ as constructed above and the analogous construction of $k+2$ points $\boldsymbol{a}_{1}^{\prime}, \ldots, \boldsymbol{a}_{k+2}^{\prime} \in \ell_{4}^{k+1}$ satisfying $\left\|\boldsymbol{a}_{i}^{\prime}-\boldsymbol{a}_{j}^{\prime}\right\|_{4}=2^{1 / 4}$ and $\left\|\boldsymbol{a}_{i}^{\prime}\right\|_{4}=1-(k+1)^{-1 / 2}+O\left(k^{-1}\right)$. Then the nonzero distances between points in

$$
S=\left\{\left(\boldsymbol{a}_{i}, \boldsymbol{o}\right) \mid i=1,2, \ldots, k+1\right\} \cup\left\{\left(\boldsymbol{o}, \boldsymbol{a}_{i}^{\prime}\right) \mid i=1,2, \ldots, k+2\right\}
$$

are $2^{1 / 4}$ and $\left(\left\|a_{i}\right\|_{4}^{4}+\left\|a_{j}^{\prime}\right\|_{4}^{4}\right)^{1 / 4}$, giving the same asymptotics as before.
Sketch of proof for Lemma 2.1 For $t \in \mathbb{R}$ let

$$
f(t)=\left(\frac{(1+t)^{4}+(k-1) t^{4}}{k}\right)^{1 / 4}=k^{-1 / 4}\|(1,0, \ldots, 0)+t(1,1, \ldots, 1)\|_{4}
$$

Then (2.9) is equivalent to $f(x)=|y|$ and $f(x-y)=(2 / k)^{1 / 4}$. Since $\|\cdot\|_{4}$ is a strictly convex norm, f is strictly convex. Since $f(0)=k^{-1 / 4}$ and $\lim _{t \rightarrow \pm \infty} f(t)=\infty$, it
follows that there is a unique $\alpha_{k}<0$ and a unique $\beta_{k}>0$ such that $f\left(\alpha_{k}\right)=$ $f\left(\beta_{k}\right)=(2 / k)^{1 / 4}$. Thus, $x-y \in\left\{\alpha_{k}, \beta_{k}\right\}$. It also follows that f is strictly decreasing on $\left(-\infty, \alpha_{k}\right)$. It is immediate from the definition that f is strictly increasing on $(0, \infty)$. Since $f\left(-k^{-1 / 4}\right)<(2 / k)^{1 / 4}<f\left(k^{-1 / 4}\right)$, it follows that $\alpha_{k}<-k^{-1 / 4}$ and $\beta_{k}<k^{-1 / 4}$.

By strict convexity of $\|\cdot\|_{4}, f$ also satisfies the strict Lipschitz condition

$$
|f(t+h)-f(t)|<h \quad \text { for all } t, h \in \mathbb{R} \text { with } h>0
$$

It follows that $t \mapsto f(t)-t$ is strictly decreasing and $t \mapsto f(t)+t$ is strictly increasing. Since $\lim _{t \rightarrow \infty}(f(t)-t)=1 / k$ and $\lim _{t \rightarrow-\infty}(f(t)+t)=-1 / k$, it follows that $f(t)>t+1 / k$, and for each $r>1 / k$ there is a unique t such that $f(t)-t=r$; also $f(t)>-t-1 / k$, and for each $r>-1 / k$ there is a unique t such that $f(t)+t=r$.

We now consider the two cases $x-y=\alpha_{k}$ and $x-y=\beta_{k}$.
Case I. If $x-y=\alpha_{k}$, then $f(x)=|y|=\left|x-\alpha_{k}\right|$. Since $f(x)>-x-1 / k \geq$ $-x-k^{-1 / 4}>-x+\alpha_{k}$, necessarily $y=x-\alpha_{k}>0$ and $f(x)-x=-\alpha_{k}$. Since $-\alpha_{k}>k^{-1 / 4} \geq 1 / k$, there is a unique x_{k} such that $f\left(x_{k}\right)-x_{k}=-\alpha_{k}$, and since $f(0)-0=k^{-1 / 4}<-\alpha_{k}$, it satisfies $x_{k}<0$. Setting $y_{k}=x_{k}-\alpha_{k}$, we obtain that (2.9) has exactly one solution $\left(x_{k}, y_{k}\right)$ such that $x_{k}-y_{k}=\alpha_{k}$, and it satisfies $x_{k}<0<y_{k}$.

Case II. If $x-y=\beta_{k}$, then we similarly obtain a unique solution (x, y), this time satisfying $x<0$ and $y<0$.

Therefore, (2.9) has exactly two solutions, one with $y>0$ and one with $y<0$. Next we approximate the solution $\left(x_{k}, y_{k}\right)$ of Case I.

From $f\left(\alpha_{k}\right)=(2 / k)^{1 / 4}$, it follows that

$$
\begin{equation*}
\left(1+\alpha_{k}\right)^{4}+(k-1) \alpha_{k}^{4}=2 \tag{2.10}
\end{equation*}
$$

which shows first that $\alpha_{k}=O\left(k^{-1 / 4}\right)$ as $k \rightarrow \infty$, and then, since $\alpha_{k}<0$, that $\alpha_{k}=-k^{-1 / 4}+O\left(k^{-1 / 2}\right)$. We can rewrite (2.10) as

$$
\begin{align*}
\alpha_{k} & =-k^{-1 / 4}\left(1-4 \alpha_{k}-6 \alpha_{k}^{2}-4 \alpha_{k}^{3}\right)^{1 / 4} \tag{2.11}\\
& =-k^{-1 / 4}\left(1-\alpha_{k}-3 \alpha_{k}^{2}-9 \alpha_{k}^{3}+O\left(k^{-1}\right)\right),
\end{align*}
$$

where we have used the Taylor expansion $(1+x)^{1 / 4}=1+\frac{1}{4} x-\frac{3}{32} x^{2}+\frac{7}{128} x^{3}+O\left(x^{4}\right)$. Substitute the estimate $\alpha_{k}=-k^{-1 / 4}+O\left(k^{-1 / 2}\right)$ into the right-hand side of (2.11) to obtain the improved estimate $\alpha_{k}=-k^{-1 / 4}-k^{-1 / 2}+O\left(k^{-3 / 4}\right)$, and again, to obtain

$$
\alpha_{k}=-k^{-1 / 4}-k^{-1 / 2}+2 k^{-3 / 4}+O\left(k^{-1}\right) .
$$

Since

$$
f\left(-k^{-1 / 2}\right)+k^{-1 / 2}=k^{-1 / 4}+k^{-1 / 2}-k^{-3 / 4}+O\left(k^{-1}\right)>-\alpha_{k}
$$

for sufficiently large k, and $f\left(x_{k}\right)-x_{k}=-\alpha_{k}$, it follows that $x_{k}>-k^{-1 / 2}$ for large k, that is, $x_{k}=O\left(k^{-1 / 2}\right)$. It follows that

$$
f\left(x_{k}\right)-x_{k}=k^{-1 / 4}\left(1+x_{k}+O\left(k^{-1}\right)\right)-x_{k} .
$$

Set this equal to $-\alpha_{k}$ and solve for x_{k} to obtain $x_{k}=-k^{-1 / 2}+k^{-3 / 4}+O\left(k^{-1}\right)$ and $y_{k}=x_{k}-\alpha_{k}=k^{-1 / 4}-k^{-3 / 4}+O\left(k^{-1}\right)$.

Acknowledgment We thank the referee for helpful remarks that led to an improved paper.

References

[1] N. Alon and P. Pudlák, Equilateral sets in l_{p}^{n}. Geom. Funct. Anal. 13(2003), no. 3, 467-482. http://dx.doi.org/10.1007/s00039-003-0418-7
[2] I. Bárány, The densest $(n+2)$-set in R^{n}. In: Intuitive geometry (Szeged, 1991), Coll. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994, pp. 7-10.
[3] A. Barvinok, A course in convexity. Graduate Studies in Mathematics, 54, American Mathematical Society, Providence, RI, 2002.
[4] R. K. Guy, Unsolved problems: An olla-podrida of open problems, often oddly posed. Amer. Math. Monthly 90(1983), no. 3, 196-199. http://dx.doi.org/10.2307/2975549
[5] I. J. Schoenberg, Linkages and distance geometry. II. On sets of $n+2$ points in E_{n} that are most nearly equilateral. Indag. Math. 31(1969), 53-63.
[6] K. Schütte, Minimale Durchmesser endlicher Punktmengen mit vorgeschriebenem Mindestabstand. Math. Ann. 150(1963), 91-98. http://dx.doi.org/10.1007/BF01396584
[7] J. J. Seidel, Quasiregular two-distance sets. Indag. Math. 31(1969), 64-70.
[8] C. Smyth, Equilateral sets in ℓ_{p}^{d}. In: Thirty essays on geometric graph theory, Springer, New York, 2013. pp. 483-488.
[9] K. J. Swanepoel, A problem of Kusner on equilateral sets. Arch. Math. (Basel) 83(2004), no. 2, 164-170.

Department of Mathematics, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, United Kingdom
e-mail: k.swanepoel@lse.ac.uk

[^0]: Received by the editors April 26, 2013; revised August 2, 2013.
 Published electronically December 4, 2013.
 AMS subject classification: 46B20, 52A21, 52C17.

