Canad. Math. Bull. Vol. **57** (3), 2014 pp. 640–647 http://dx.doi.org/10.4153/CMB-2013-031-0 © Canadian Mathematical Society 2013

Equilateral Sets and a Schütte Theorem for the 4-norm

Konrad J. Swanepoel

Abstract. A well-known theorem of Schütte (1963) gives a sharp lower bound for the ratio of the maximum and minimum distances between n + 2 points in *n*-dimensional Euclidean space. In this note we adapt Bárány's elegant proof (1994) of this theorem to the space ℓ_4^n . This gives a new proof that the largest cardinality of an equilateral set in ℓ_4^n is n + 1 and gives a constructive bound for an interval $(4 - \varepsilon_n, 4 + \varepsilon_n)$ of values of *p* close to 4 for which it is known that the largest cardinality of an equilateral set in ℓ_p^n is n + 1.

1 Introduction

A subset *S* of a normed space *X* with norm $\|\cdot\|$ is called *equilateral* if for some $\lambda > 0$, $\|\mathbf{x} - \mathbf{y}\| = \lambda$ for all distinct $\mathbf{x}, \mathbf{y} \in S$. Denote the largest cardinality of an equilateral set in a finite-dimensional normed space *X* by e(X).

For $p \ge 1$ define the *p*-norm of a vector $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ as

$$\|\mathbf{x}\|_p = \|(x_1,\ldots,x_n)\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

When dealing with a sequence $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ of vectors, we denote the coordinates of \mathbf{x}_i as $(x_{i,1}, \ldots, x_{i,n})$. Denote the normed space \mathbb{R}^n with norm $\|\cdot\|_p$ by ℓ_p^n . It is not difficult to find examples of equilateral sets showing that $e(\ell_p^n) \ge n + 1$. It is a simple exercise in linear algebra to show that $e(\ell_2^n) \le n + 1$. Kusner [4] asks if the same is true for ℓ_p^n , where p > 1. For the current best upper bounds on $e(\ell_p^n)$, see [1]. We next mention only the results that decide various cases of Kusner's question. A compactness argument gives for each $n \in \mathbb{N}$ the existence of $\varepsilon_n > 0$ such that $p \in$ $(2 - \varepsilon_n, 2 + \varepsilon_n)$ implies $e(\ell_p^n) = n + 1$. However, this argument gives no information on ε_n . As observed by C. Smyth (unpublished manuscript; see also [8]), the following theorem of Schütte [6] can be used to give an explicit lower bound to ε_n in terms of n.

Theorem 1.1 (Schütte [6]) Let S be a set of at least n + 2 points in ℓ_2^n . Then

$$\frac{\max_{\mathbf{x}, \mathbf{y} \in S} \|\mathbf{x} - \mathbf{y}\|_2}{\min_{\mathbf{x}, \mathbf{y} \in S, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\|_2} \ge \begin{cases} \left(1 + \frac{2}{n}\right)^{1/2} & \text{if n is even,} \\ \left(1 + \frac{2}{n - (n+2)^{-1}}\right)^{1/2} & \text{if n is odd.} \end{cases}$$

The lower bounds in this theorem are sharp.

Received by the editors April 26, 2013; revised August 2, 2013. Published electronically December 4, 2013. AMS subject classification: **46B20**, 52A21, 52C17.

Corollary 1.2 (Smyth) If

$$|p-2| < \frac{2\log(1+2/n)}{\log(n+2)} = \frac{4(1+o(1))}{n\log n}$$

then the largest cardinality of an equilateral set in ℓ_p^n is $e(\ell_p^n) = n + 1$.

The dependence of $\varepsilon_n = \frac{4(1+o(1))}{n\log n}$ on *n* is necessary, since $e(\ell_p^n) > n+1$ if $1 \le p < 2 - \frac{1+o(1)}{(\ln 2)n}$ (see [9]). (These are the only known cases where the answer to Kusner's question is negative.)

There is also a linear algebra proof in [9] that $e(\ell_4^n) = n + 1$. As in the case of p = 2, compactness gives an ineffective $\varepsilon_n > 0$ such that if $p \in (4 - \varepsilon_n, 4 + \varepsilon_n)$, then $e(\ell_p^n) = n + 1$. The question arises whether Schütte's theorem can be adapted to ℓ_4^n , so that a conclusion similar to Corollary 1.2 can be made for p close to 4. Proofs of Schütte's theorem have been given by Schütte [6], Schoenberg [5], Seidel [7], and Bárány [2]. It is the purpose of this note to show that Bárány's simple and elegant proof of Schütte's theorem can indeed be adapted.

Theorem 1.3 Let S be a set of at least n + 2 points in ℓ_4^n . Then

$$\frac{\max_{\boldsymbol{x},\boldsymbol{y}\in S} \|\boldsymbol{x}-\boldsymbol{y}\|_{4}}{\min_{\boldsymbol{x},\boldsymbol{y}\in S, \boldsymbol{x}\neq\boldsymbol{y}} \|\boldsymbol{x}-\boldsymbol{y}\|_{4}} \ge \begin{cases} \left(1+\frac{2}{n}\right)^{1/4} & \text{if n is even,} \\ \left(1+\frac{2}{n-(n+2)^{-1}}\right)^{1/4} & \text{if n is odd.} \end{cases}$$

Corollary 1.4 If

$$|p-4| < \frac{4\log(1+2/n)}{\log(n+2)} = \frac{8(1+o(1))}{n\log n}$$

then the largest cardinality of an equilateral set in ℓ_p^n is $e(\ell_p^n) = n + 1$.

We do not know whether the lower bounds in Theorem 1.3 are sharp. The following is the best upper bound that we can show.

Proposition 1.5 There exists a set S of n + 2 points in ℓ_4^n such that

$$\frac{\max_{\boldsymbol{x},\boldsymbol{y}\in S} \|\boldsymbol{x}-\boldsymbol{y}\|_{4}}{\min_{\boldsymbol{x},\boldsymbol{y}\in S} x_{\neq \boldsymbol{y}} \|\boldsymbol{x}-\boldsymbol{y}\|_{4}} = 1 + \sqrt{\frac{2}{n}} + O(n^{-3/4}).$$

Unfortunately, this bound is far from the lower bound of $1 + \frac{1}{2n} + O(n^{-2})$ given by Theorem 1.3.

2 **Proofs**

Proof of Theorem 1.3 Consider any $x_1, \ldots, x_{n+2} \in \mathbb{R}^n$ and let

$$\mu = \min_{i \neq j} \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_4 \quad \text{and} \quad M = \max_{i,j} \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_4.$$

By Radon's theorem [3] there is a partition $A \cup B$ of $\{x_1, \ldots, x_{n+2}\}$ such that the convex hulls of A and B intersect. Without loss of generality we may translate the points so that o lies in both convex hulls. Write $A = \{a_1, \ldots, a_K\}$ and $B = \{b_1, \ldots, b_L\}$, where K + L = n + 2 and $K, L \ge 1$. Then there exist $\alpha_1, \ldots, \alpha_K, \beta_1, \ldots, \beta_L \ge 0$ such that

(2.1)
$$\sum_{i=1}^{K} \alpha_i = 1, \quad \sum_{i=1}^{K} \alpha_i \boldsymbol{a}_i = \boldsymbol{o},$$
$$\sum_{j=1}^{L} \beta_j = 1, \quad \sum_{j=1}^{L} \beta_j \boldsymbol{b}_j = \boldsymbol{o}.$$

Also, for all $i \in [K]$ and $j \in [L]$,

(2.2)
$$\|\boldsymbol{a}_i - \boldsymbol{a}_j\|_4^4 \le M^4 \quad \text{whenever } i \neq j,$$

(2.3)
$$\|\boldsymbol{b}_i - \boldsymbol{b}_j\|_4^4 \le M^4 \quad \text{whenever } i \neq j,$$

$$\|\boldsymbol{a}_i - \boldsymbol{b}_j\|_4^4 \ge \mu^4$$

Apply the operation $\sum_{i=1}^{K} \alpha_i \sum_{\substack{j=1 \ j \neq i}}^{K} \alpha_j$ to both sides of inequality (2.2):

$$\begin{split} &\left(1 - \sum_{i=1}^{K} \alpha_{i}^{2}\right) M^{4} \\ &= \sum_{i=1}^{K} \alpha_{i} (1 - \alpha_{i}) M^{4} = \sum_{i=1}^{K} \alpha_{i} \sum_{\substack{j=1\\j \neq i}}^{K} \alpha_{j} M^{4} \\ &\geq \sum_{i=1}^{K} \alpha_{i} \sum_{j=1}^{K} \alpha_{j} \sum_{m=1}^{n} (a_{i,m} - a_{j,m})^{4} \\ &= \sum_{m=1}^{n} \sum_{i=1}^{K} \sum_{j=1}^{K} \alpha_{i} \alpha_{j} (a_{i,m}^{4} - 4a_{i,m}^{3}a_{j,m} + 6a_{i,m}^{2}a_{j,m}^{2} - 4a_{i,m}a_{j,m}^{3} + a_{j,m}^{4}) \\ &= \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i,m}^{4} - 4 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{3}\right) \left(\sum_{j=1}^{K} \alpha_{j} a_{j,m}\right) \\ &+ 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2}\right) \left(\sum_{j=1}^{K} \alpha_{j} a_{j,m}^{2}\right) - 4 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}\right) \left(\sum_{j=1}^{K} \alpha_{j} a_{j,m}^{3}\right) \\ &+ \sum_{m=1}^{n} \sum_{j=1}^{K} \alpha_{j} a_{j,m}^{4}, \end{split}$$

which, by (2.1), simplifies to

(2.5)
$$\left(1 - \sum_{i=1}^{K} \alpha_i^2\right) M^4 \ge 2 \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_i a_{i,m}^4 + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_i a_{i,m}^2\right)^2.$$

Similarly, if we apply $\sum_{j=1}^{L} \beta_j \sum_{\substack{i=1 \ i \neq j}}^{L} \beta_i$ to (2.3), we obtain

(2.6)
$$\left(1 - \sum_{j=1}^{L} \beta_j^2\right) M^4 \ge 2 \sum_{m=1}^{n} \sum_{j=1}^{L} \beta_j b_{j,m}^4 + 6 \sum_{m=1}^{n} \left(\sum_{j=1}^{L} \beta_j b_{j,m}^2\right)^2.$$

Next apply $\sum_{i=1}^{K} \alpha_i \sum_{j=1}^{L} \beta_j$ to (2.4):

$$\begin{split} \mu^{4} &= \sum_{i=1}^{K} \alpha_{i} \sum_{j=1}^{L} \beta_{j} \mu^{4} \leq \sum_{i=1}^{K} \alpha_{i} \sum_{j=1}^{L} \beta_{j} \sum_{m=1}^{n} (a_{i,m} - b_{j,m})^{4} \\ &= \sum_{m=1}^{n} \sum_{i=1}^{K} \sum_{j=1}^{L} \alpha_{i} \beta_{j} (a_{i,m}^{4} - 4a_{i,m}^{3} b_{j,m} + 6a_{i,m}^{2} b_{j,m}^{2} - 4a_{i,m} b_{j,m}^{3} + b_{j,m}^{4}) \\ &= \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{4} \right) \left(\sum_{j=1}^{L} \beta_{j} \right) - 4 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{3} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{3} \right) \\ &+ 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) - 4 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{3} \right) \\ &+ \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{4} \right) \\ &\left(\sum_{m=1}^{L} \sum_{i=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{n} \sum_{i=1}^{N} \sum_{i=1}^{K} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{n} \sum_{i=1}^{N} \sum_{i=1}^{N} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{n} \sum_{i=1}^{N} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{n} \sum_{i=1}^{N} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{N} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{n} \sum_{i=1}^{N} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{N} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{N} \beta_{j} b_{j,m}^{2} \right) \\ &+ \sum_{m=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \alpha_{i} a_{i,m}^{4} + 6 \sum_{m=1}^{N} \left(\sum_{i=1}^{N} \alpha_{i} a_{i,m}^{2} \right) \right) \\ &+ \sum_{m=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \left(\sum_{i=1}^{N} \alpha_{i} a_{i,m}^{2} \right) \\ &+ \sum_{m=1}^{$$

that is,

(2.7)
$$\sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_{i} a_{i,m}^{4} + \sum_{m=1}^{n} \sum_{j=1}^{L} \beta_{j} b_{j,m}^{4} \ge \mu^{4} - 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right).$$

Add (2.5) and (2.6) together:

$$\left(2 - \sum_{i=1}^{K} \alpha_i^2 - \sum_{j=1}^{L} \beta_j^2\right) M^4$$

$$\geq 2 \sum_{m=1}^{n} \sum_{i=1}^{K} \alpha_i a_{i,m}^4 + 2 \sum_{m=1}^{n} \sum_{j=1}^{L} \beta_j b_{j,m}^4 + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_i a_{i,m}^2\right)^2 + 6 \sum_{m=1}^{n} \left(\sum_{j=1}^{L} \beta_j b_{j,m}^2\right)^2$$

K. J. Swanepoel

$$\stackrel{(2.7)}{\geq} 2\mu^{4} - 12 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right)$$

$$+ 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right)^{2} + 6 \sum_{m=1}^{n} \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right)^{2}$$

$$= 2\mu^{4} + 6 \sum_{m=1}^{n} \left(\left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right)^{2} - 2 \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} \right) \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right) + \left(\sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right)^{2} \right)$$

$$= 2\mu^{4} + 6 \sum_{m=1}^{n} \left(\sum_{i=1}^{K} \alpha_{i} a_{i,m}^{2} - \sum_{j=1}^{L} \beta_{j} b_{j,m}^{2} \right)^{2}$$

$$\ge 2\mu^{4}.$$

Therefore,

(2.8)
$$\frac{M^4}{\mu^4} \ge \frac{2}{2 - \sum_{i=1}^K \alpha_i^2 - \sum_{j=1}^L \beta_j^2}.$$

.

By (2.1) and the Cauchy–Schwarz inequality, $\sum_{i=1}^{K} \alpha_i^2 \ge 1/K$ and $\sum_{j=1}^{L} \beta_j^2 \ge 1/L$. Therefore,

$$\sum_{i=1}^{K} \alpha_i^2 + \sum_{j=1}^{L} \beta_j^2 \ge \frac{1}{K} + \frac{1}{L} \ge \begin{cases} \frac{2}{n+2} + \frac{2}{n+2} & \text{if } n \text{ is even,} \\ \frac{2}{n+1} + \frac{2}{n+3} & \text{if } n \text{ is odd.} \end{cases}$$

Substitute this estimate into (2.8) to obtain

$$\frac{M^4}{\mu^4} \ge \begin{cases} 1 + \frac{2}{n} & \text{if } n \text{ is even,} \\ 1 + \frac{2}{n - (n+2)^{-1}} & \text{if } n \text{ is odd,} \end{cases}$$

which finishes the proof.

Proof of Corollary 1.4 It is well known and easy to see that for any $\mathbf{x} \in \mathbb{R}^n$, if $1 \le p \le 4$, then $\|\mathbf{x}\|_4 \le \|\mathbf{x}\|_p \le n^{1/p-1/4} \|\mathbf{x}\|_4$, and if $4 \le p < \infty$, then $\|\mathbf{x}\|_p \le \|\mathbf{x}\|_4 \le n^{1/4-1/p} \|\mathbf{x}\|_p$. Suppose that there exists an equilateral set *S* of n+2 points in ℓ_p^n . Then

$$\frac{\max_{\boldsymbol{x},\boldsymbol{y}\in S} \|\boldsymbol{x}-\boldsymbol{y}\|_4}{\min_{\boldsymbol{x},\boldsymbol{y}\in S, \boldsymbol{x}\neq\boldsymbol{y}} \|\boldsymbol{x}-\boldsymbol{y}\|_4} \leq n^{|1/4-1/p|}.$$

Combine this inequality with Theorem 1.3 to obtain $1 + \frac{2}{n} \le n^{|1-4/p|}$. A calculation then shows that

$$|p-4| \ge \frac{4\log(1+2/n)}{\log(n+2)} = \frac{8}{n\log n} \left(1 + O(n^{-1})\right).$$

Proof of Proposition 1.5 Let $k \in \mathbb{N}$, $x, y \in \mathbb{R}$, and

 $a := (1 + x, x, x, \dots, x) \in \ell_4^k$ and $b := (y, y, \dots, y) \in \ell_4^k$.

We would like to choose *x* and *y* such that $||\boldsymbol{a}||_4 = ||\boldsymbol{b}||_4$ and $||\boldsymbol{a} - \boldsymbol{b}||_4 = 2^{1/4}$. This is equivalent to the following two simultaneous equations:

(2.9)
$$(1+x)^4 + (k-1)x^4 = ky^4$$
$$(1+x-y)^4 + (k-1)(x-y)^4 = 2$$

We postpone the proof of the following lemma.

Lemma 2.1 For each $k \in \mathbb{N}$ the system (2.9) has a unique solution (x_k, y_k) satisfying $y_k > 0$. Asymptotically, as $k \to \infty$ we have

$$x_k = -k^{-1/2} + k^{-3/4} + O(k^{-1})$$
 and $y_k = k^{-1/4} - k^{-3/4} + O(k^{-1})$.

Using the solution $(x, y) = (x_k, y_k)$ from the lemma, we obtain

$$\|\boldsymbol{a}\|_4 = \|\boldsymbol{b}\|_4 = k^{1/4}y = 1 - k^{-1/2} + O(k^{-3/4}).$$

Write a_1, \ldots, a_k for the *k* permutations of *a* and set $a_{k+1} = b$. Then (2.9) gives that $\{a_1, a_2, \ldots, a_{k+1}\}$ is equilateral in ℓ_4^k . Finally, let n = 2k. Then in the set

$$S = \{ (a_i, o) \mid i = 1, 2, \dots, k+1 \} \cup \{ (o, a_i) \mid i = 1, 2, \dots, k+1 \}$$

of n + 2 points in ℓ_4^n the only nonzero distances are $2^{1/4}$ and $2^{1/4} ||\boldsymbol{a}||_4$. Therefore,

$$\frac{\max_{\boldsymbol{x},\boldsymbol{y}\in S} \|\boldsymbol{x}-\boldsymbol{y}\|_{4}}{\min_{\boldsymbol{x},\boldsymbol{y}\in S, \boldsymbol{x}\neq\boldsymbol{y}} \|\boldsymbol{x}-\boldsymbol{y}\|_{4}} = \frac{1}{\|\boldsymbol{a}\|_{4}} = 1 + \sqrt{\frac{2}{n}} + O(n^{-3/4}).$$

The case where n = 2k + 1 is odd is handled by using the points $a_1, \ldots, a_{k+1} \in \ell_4^k$ as constructed above and the analogous construction of k+2 points $a'_1, \ldots, a'_{k+2} \in \ell_4^{k+1}$ satisfying $||a'_i - a'_j||_4 = 2^{1/4}$ and $||a'_i||_4 = 1 - (k+1)^{-1/2} + O(k^{-1})$. Then the nonzero distances between points in

$$S = \{ (a_i, o) \mid i = 1, 2, \dots, k+1 \} \cup \{ (o, a'_i) \mid i = 1, 2, \dots, k+2 \}$$

are $2^{1/4}$ and $(||a_i||_4^4 + ||a_i'||_4^4)^{1/4}$, giving the same asymptotics as before.

Sketch of proof for Lemma 2.1 For $t \in \mathbb{R}$ let

$$f(t) = \left(\frac{(1+t)^4 + (k-1)t^4}{k}\right)^{1/4} = k^{-1/4} ||(1,0,\ldots,0) + t(1,1,\ldots,1)||_4.$$

Then (2.9) is equivalent to f(x) = |y| and $f(x-y) = (2/k)^{1/4}$. Since $\|\cdot\|_4$ is a strictly convex norm, f is strictly convex. Since $f(0) = k^{-1/4}$ and $\lim_{t\to\pm\infty} f(t) = \infty$, it

follows that there is a unique $\alpha_k < 0$ and a unique $\beta_k > 0$ such that $f(\alpha_k) = f(\beta_k) = (2/k)^{1/4}$. Thus, $x - y \in \{\alpha_k, \beta_k\}$. It also follows that f is strictly decreasing on $(-\infty, \alpha_k)$. It is immediate from the definition that f is strictly increasing on $(0, \infty)$. Since $f(-k^{-1/4}) < (2/k)^{1/4} < f(k^{-1/4})$, it follows that $\alpha_k < -k^{-1/4}$ and $\beta_k < k^{-1/4}$.

By strict convexity of $\|\cdot\|_4$, f also satisfies the strict Lipschitz condition

$$|f(t+h) - f(t)| < h$$
 for all $t, h \in \mathbb{R}$ with $h > 0$.

It follows that $t \mapsto f(t) - t$ is strictly decreasing and $t \mapsto f(t) + t$ is strictly increasing. Since $\lim_{t\to\infty}(f(t) - t) = 1/k$ and $\lim_{t\to-\infty}(f(t) + t) = -1/k$, it follows that f(t) > t + 1/k, and for each r > 1/k there is a unique t such that f(t) - t = r; also f(t) > -t - 1/k, and for each r > -1/k there is a unique t such that f(t) + t = r. We now consider the two cases $x - y = \alpha_k$ and $x - y = \beta_k$.

Case I. If $x - y = \alpha_k$, then $f(x) = |y| = |x - \alpha_k|$. Since $f(x) > -x - 1/k \ge -x - k^{-1/4} > -x + \alpha_k$, necessarily $y = x - \alpha_k > 0$ and $f(x) - x = -\alpha_k$. Since $-\alpha_k > k^{-1/4} \ge 1/k$, there is a unique x_k such that $f(x_k) - x_k = -\alpha_k$, and since $f(0) - 0 = k^{-1/4} < -\alpha_k$, it satisfies $x_k < 0$. Setting $y_k = x_k - \alpha_k$, we obtain that (2.9) has exactly one solution (x_k, y_k) such that $x_k - y_k = \alpha_k$, and it satisfies $x_k < 0 < y_k$.

Case II. If $x - y = \beta_k$, then we similarly obtain a unique solution (x, y), this time satisfying x < 0 and y < 0.

Therefore, (2.9) has exactly two solutions, one with y > 0 and one with y < 0. Next we approximate the solution (x_k , y_k) of Case I.

From $f(\alpha_k) = (2/k)^{1/4}$, it follows that

(2.10)
$$(1 + \alpha_k)^4 + (k - 1)\alpha_k^4 = 2,$$

which shows first that $\alpha_k = O(k^{-1/4})$ as $k \to \infty$, and then, since $\alpha_k < 0$, that $\alpha_k = -k^{-1/4} + O(k^{-1/2})$. We can rewrite (2.10) as

(2.11)
$$\alpha_k = -k^{-1/4} (1 - 4\alpha_k - 6\alpha_k^2 - 4\alpha_k^3)^{1/4}$$
$$= -k^{-1/4} (1 - \alpha_k - 3\alpha_k^2 - 9\alpha_k^3 + O(k^{-1}))^{1/4}$$

where we have used the Taylor expansion $(1 + x)^{1/4} = 1 + \frac{1}{4}x - \frac{3}{32}x^2 + \frac{7}{128}x^3 + O(x^4)$. Substitute the estimate $\alpha_k = -k^{-1/4} + O(k^{-1/2})$ into the right-hand side of (2.11) to obtain the improved estimate $\alpha_k = -k^{-1/4} - k^{-1/2} + O(k^{-3/4})$, and again, to obtain

$$\alpha_k = -k^{-1/4} - k^{-1/2} + 2k^{-3/4} + O(k^{-1})$$

Since

$$f(-k^{-1/2}) + k^{-1/2} = k^{-1/4} + k^{-1/2} - k^{-3/4} + O(k^{-1}) > -\alpha_k$$

for sufficiently large k, and $f(x_k) - x_k = -\alpha_k$, it follows that $x_k > -k^{-1/2}$ for large k, that is, $x_k = O(k^{-1/2})$. It follows that

$$f(x_k) - x_k = k^{-1/4} (1 + x_k + O(k^{-1})) - x_k.$$

Set this equal to $-\alpha_k$ and solve for x_k to obtain $x_k = -k^{-1/2} + k^{-3/4} + O(k^{-1})$ and $y_k = x_k - \alpha_k = k^{-1/4} - k^{-3/4} + O(k^{-1})$.

Acknowledgment We thank the referee for helpful remarks that led to an improved paper.

References

- N. Alon and P. Pudlák, *Equilateral sets in lⁿ_p*. Geom. Funct. Anal. 13(2003), no. 3, 467–482. http://dx.doi.org/10.1007/s00039-003-0418-7
- [2] I. Bárány, *The densest (n + 2)-set in Rⁿ*. In: Intuitive geometry (Szeged, 1991), Coll. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994, pp. 7–10.
- [3] A. Barvinok, *A course in convexity*. Graduate Studies in Mathematics, 54, American Mathematical Society, Providence, RI, 2002.
- [4] R. K. Guy, Unsolved problems: An olla-podrida of open problems, often oddly posed. Amer. Math. Monthly 90(1983), no. 3, 196–199. http://dx.doi.org/10.2307/2975549
- [5] I. J. Schoenberg, *Linkages and distance geometry. II. On sets of n* + 2 *points in E_n that are most nearly equilateral.* Indag. Math. **31**(1969), 53–63.
- K. Schütte, Minimale Durchmesser endlicher Punktmengen mit vorgeschriebenem Mindestabstand. Math. Ann. 150(1963), 91–98. http://dx.doi.org/10.1007/BF01396584
- [7] J. J. Seidel, Quasiregular two-distance sets. Indag. Math. 31(1969), 64-70.
- [8] C. Smyth, *Equilateral sets in* ℓ_p^d . In: Thirty essays on geometric graph theory, Springer, New York, 2013. pp. 483–488.
- [9] K. J. Swanepoel, A problem of Kusner on equilateral sets. Arch. Math. (Basel) 83(2004), no. 2, 164–170.

Department of Mathematics, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, United Kingdom

e-mail: k.swanepoel@lse.ac.uk