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Equilateral Sets and a Schütte Theorem for
the 4-norm
Konrad J. Swanepoel

Abstract. A well-known theorem of Schütte (1963) gives a sharp lower bound for the ratio of the
maximum and minimum distances between n + 2 points in n-dimensional Euclidean space. In this
note we adapt Bárány’s elegant proof (1994) of this theorem to the space `n

4 . This gives a new proof
that the largest cardinality of an equilateral set in `n

4 is n + 1 and gives a constructive bound for an
interval (4 − εn, 4 + εn) of values of p close to 4 for which it is known that the largest cardinality of an
equilateral set in `n

p is n + 1.

1 Introduction

A subset S of a normed space X with norm ‖ · ‖ is called equilateral if for some λ > 0,
‖x − y‖ = λ for all distinct x, y ∈ S. Denote the largest cardinality of an equilateral
set in a finite-dimensional normed space X by e(X).

For p ≥ 1 define the p-norm of a vector x = (x1, . . . , xn) ∈ Rn as

‖x‖p = ‖(x1, . . . , xn)‖p =

( n∑
i=1

|xi |p
) 1/p

.

When dealing with a sequence x1, . . . , xm ∈ Rn of vectors, we denote the coordinates
of xi as (xi,1, . . . , xi,n). Denote the normed space Rn with norm ‖ · ‖p by `n

p. It is
not difficult to find examples of equilateral sets showing that e(`n

p) ≥ n + 1. It is a
simple exercise in linear algebra to show that e(`n

2) ≤ n + 1. Kusner [4] asks if the
same is true for `n

p, where p > 1. For the current best upper bounds on e(`n
p), see

[1]. We next mention only the results that decide various cases of Kusner’s question.
A compactness argument gives for each n ∈ N the existence of εn > 0 such that p ∈
(2− εn, 2 + εn) implies e(`n

p) = n + 1. However, this argument gives no information
on εn. As observed by C. Smyth (unpublished manuscript; see also [8]), the following
theorem of Schütte [6] can be used to give an explicit lower bound to εn in terms of
n.

Theorem 1.1 (Schütte [6]) Let S be a set of at least n + 2 points in `n
2 . Then

maxx,y∈S ‖x− y‖2

minx,y∈S,x 6=y ‖x− y‖2
≥

{(
1 + 2

n

) 1/2
if n is even,(

1 + 2
n−(n+2)−1

) 1/2
if n is odd.

The lower bounds in this theorem are sharp.
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Corollary 1.2 (Smyth) If

|p − 2| < 2 log(1 + 2/n)

log(n + 2)
=

4(1 + o(1))

n log n
,

then the largest cardinality of an equilateral set in `n
p is e(`n

p) = n + 1.

The dependence of εn = 4(1+o(1))
n log n on n is necessary, since e(`n

p) > n + 1 if 1 ≤ p <

2 − 1+o(1)
(ln 2)n (see [9]). (These are the only known cases where the answer to Kusner’s

question is negative.)
There is also a linear algebra proof in [9] that e(`n

4) = n + 1. As in the case of
p = 2, compactness gives an ineffective εn > 0 such that if p ∈ (4 − εn, 4 + εn),
then e(`n

p) = n + 1. The question arises whether Schütte’s theorem can be adapted to
`n

4 , so that a conclusion similar to Corollary 1.2 can be made for p close to 4. Proofs
of Schütte’s theorem have been given by Schütte [6], Schoenberg [5], Seidel [7], and
Bárány [2]. It is the purpose of this note to show that Bárány’s simple and elegant
proof of Schütte’s theorem can indeed be adapted.

Theorem 1.3 Let S be a set of at least n + 2 points in `n
4 . Then

maxx,y∈S ‖x− y‖4

minx,y∈S,x 6=y ‖x− y‖4
≥

{(
1 + 2

n

) 1/4
if n is even,(

1 + 2
n−(n+2)−1

) 1/4
if n is odd.

Corollary 1.4 If

|p − 4| < 4 log(1 + 2/n)

log(n + 2)
=

8(1 + o(1))

n log n
,

then the largest cardinality of an equilateral set in `n
p is e(`n

p) = n + 1.

We do not know whether the lower bounds in Theorem 1.3 are sharp. The follow-
ing is the best upper bound that we can show.

Proposition 1.5 There exists a set S of n + 2 points in `n
4 such that

maxx,y∈S ‖x− y‖4

minx,y∈S,x 6=y ‖x− y‖4
= 1 +

√
2

n
+ O(n−3/4).

Unfortunately, this bound is far from the lower bound of 1 + 1
2n + O(n−2) given

by Theorem 1.3.

2 Proofs

Proof of Theorem 1.3 Consider any x1, . . . , xn+2 ∈ Rn and let

µ = min
i 6= j
‖xi − x j‖4 and M = max

i, j
‖xi − x j‖4.
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By Radon’s theorem [3] there is a partition A∪B of {x1, . . . , xn+2} such that the con-
vex hulls of A and B intersect. Without loss of generality we may translate the points
so that o lies in both convex hulls. Write A = {a1, . . . , aK} and B = {b1, . . . , bL},
where K + L = n + 2 and K, L ≥ 1. Then there exist α1, . . . , αK , β1, . . . , βL ≥ 0 such
that

(2.1)

K∑
i=1

αi = 1,
K∑

i=1

αiai = o,

L∑
j=1

β j = 1,
L∑

j=1

β jb j = o.

Also, for all i ∈ [K] and j ∈ [L],

‖ai − a j‖4
4 ≤ M4 whenever i 6= j,(2.2)

‖bi − b j‖4
4 ≤ M4 whenever i 6= j,(2.3)

‖ai − b j‖4
4 ≥ µ4.(2.4)

Apply the operation
∑K

i=1 αi
∑K

j=1
j 6=i
α j to both sides of inequality (2.2):

(
1−

K∑
i=1

α2
i

)
M4

=

K∑
i=1

αi(1− αi)M4 =

K∑
i=1

αi

K∑
j=1
j 6=i

α jM
4

≥
K∑

i=1

αi

K∑
j=1

α j

n∑
m=1

(ai,m − a j,m)4

=

n∑
m=1

K∑
i=1

K∑
j=1

αiα j(a4
i,m − 4a3

i,ma j,m + 6a2
i,ma2

j,m − 4ai,ma3
j,m + a4

j,m)

=

n∑
m=1

K∑
i=1

αia
4
i,m − 4

n∑
m=1

( K∑
i=1

αia
3
i,m

)( K∑
j=1

α ja j,m

)

+ 6
n∑

m=1

( K∑
i=1

αia
2
i,m

)( K∑
j=1

α ja
2
j,m

)
− 4

n∑
m=1

( K∑
i=1

αiai,m

)( K∑
j=1

α ja
3
j,m

)

+
n∑

m=1

K∑
j=1

α ja
4
j,m,
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which, by (2.1), simplifies to

(2.5)

(
1−

K∑
i=1

α2
i

)
M4 ≥ 2

n∑
m=1

K∑
i=1

αia
4
i,m + 6

n∑
m=1

( K∑
i=1

αia
2
i,m

) 2

.

Similarly, if we apply
∑L

j=1 β j
∑L

i=1
i 6= j

βi to (2.3), we obtain

(2.6)

(
1−

L∑
j=1

β2
j

)
M4 ≥ 2

n∑
m=1

L∑
j=1

β jb
4
j,m + 6

n∑
m=1

( L∑
j=1

β jb
2
j,m

) 2

.

Next apply
∑K

i=1 αi
∑L

j=1 β j to (2.4):

µ4 =

K∑
i=1

αi

L∑
j=1

β jµ
4 ≤

K∑
i=1

αi

L∑
j=1

β j

n∑
m=1

(ai,m − b j,m)4

=

n∑
m=1

K∑
i=1

L∑
j=1

αiβ j(a4
i,m − 4a3

i,mb j,m + 6a2
i,mb2

j,m − 4ai,mb3
j,m + b4

j,m)

=

n∑
m=1

( K∑
i=1

αia
4
i,m

)( L∑
j=1

β j

)
−4

n∑
m=1

( K∑
i=1

αia
3
i,m

)( L∑
j=1

β jb j,m

)

+ 6
n∑

m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

β jb
2
j,m

)
− 4

n∑
m=1

( K∑
i=1

αiai,m

)( L∑
j=1

β jb
3
j,m

)

+
n∑

m=1

( K∑
i=1

αi

)( L∑
j=1

β jb
4
j,m

)

(2.1)
=

n∑
m=1

K∑
i=1

αia
4
i,m + 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

β jb
2
j,m

)
+

n∑
m=1

L∑
j=1

β jb
4
j,m,

that is,

(2.7)
n∑

m=1

K∑
i=1

αia
4
i,m +

n∑
m=1

L∑
j=1

β jb
4
j,m ≥ µ4 − 6

n∑
m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

β jb
2
j,m

)
.

Add (2.5) and (2.6) together:(
2 −

K∑
i=1

α2
i −

L∑
j=1

β2
j

)
M4

≥ 2
n∑

m=1

K∑
i=1

αia
4
i,m + 2

n∑
m=1

L∑
j=1

β jb
4
j,m + 6

n∑
m=1

( K∑
i=1

αia
2
i,m

) 2

+ 6
n∑

m=1

( L∑
j=1

β jb
2
j,m

) 2
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(2.7)
≥ 2µ4 − 12

n∑
m=1

( K∑
i=1

αia
2
i,m

)( L∑
j=1

β jb
2
j,m

)

+ 6
n∑

m=1

( K∑
i=1

αia
2
i,m

) 2

+ 6
n∑

m=1

( L∑
j=1

β jb
2
j,m

) 2

= 2µ4 + 6
n∑

m=1

(( K∑
i=1

αia
2
i,m

) 2

− 2

( K∑
i=1

αia
2
i,m

)( L∑
j=1

β jb
2
j,m

)
+

( L∑
j=1

β jb
2
j,m

) 2
)

= 2µ4 + 6
n∑

m=1

( K∑
i=1

αia
2
i,m −

L∑
j=1

β jb
2
j,m

) 2

≥ 2µ4.

Therefore,

(2.8)
M4

µ4
≥ 2

2−
∑K

i=1 α
2
i −

∑L
j=1 β

2
j

.

By (2.1) and the Cauchy–Schwarz inequality,
∑K

i=1 α
2
i ≥ 1/K and

∑L
j=1 β

2
j ≥ 1/L.

Therefore,

K∑
i=1

α2
i +

L∑
j=1

β2
j ≥

1

K
+

1

L
≥

{
2

n+2 + 2
n+2 if n is even,

2
n+1 + 2

n+3 if n is odd.

Substitute this estimate into (2.8) to obtain

M4

µ4
≥

{
1 + 2

n if n is even,

1 + 2
n−(n+2)−1 if n is odd,

which finishes the proof.

Proof of Corollary 1.4 It is well known and easy to see that for any x ∈ Rn, if 1 ≤
p ≤ 4, then ‖x‖4 ≤ ‖x‖p ≤ n1/p−1/4‖x‖4, and if 4 ≤ p < ∞, then ‖x‖p ≤ ‖x‖4 ≤
n1/4−1/p‖x‖p. Suppose that there exists an equilateral set S of n+2 points in `n

p. Then

maxx,y∈S ‖x− y‖4

minx,y∈S,x 6=y ‖x− y‖4
≤ n|1/4−1/p|.

Combine this inequality with Theorem 1.3 to obtain 1 + 2
n ≤ n|1−4/p|. A calculation

then shows that

|p − 4| ≥ 4 log(1 + 2/n)

log(n + 2)
=

8

n log n

(
1 + O(n−1)

)
.
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Proof of Proposition 1.5 Let k ∈ N, x, y ∈ R, and

a := (1 + x, x, x, . . . , x) ∈ `k
4 and b := (y, y, . . . , y) ∈ `k

4.

We would like to choose x and y such that ‖a‖4 = ‖b‖4 and ‖a− b‖4 = 21/4. This is
equivalent to the following two simultaneous equations:

(2.9)
(1 + x)4 + (k− 1)x4 = ky4

(1 + x − y)4 + (k− 1)(x − y)4 = 2.

We postpone the proof of the following lemma.

Lemma 2.1 For each k ∈ N the system (2.9) has a unique solution (xk, yk) satisfying
yk > 0. Asymptotically, as k→∞ we have

xk = −k−1/2 + k−3/4 + O(k−1) and yk = k−1/4 − k−3/4 + O(k−1).

Using the solution (x, y) = (xk, yk) from the lemma, we obtain

‖a‖4 = ‖b‖4 = k1/4 y = 1− k−1/2 + O(k−3/4).

Write a1, . . . , ak for the k permutations of a and set ak+1 = b. Then (2.9) gives that
{a1, a2, . . . , ak+1} is equilateral in `k

4. Finally, let n = 2k. Then in the set

S =
{

(ai , o) | i = 1, 2, . . . , k + 1
}
∪
{

(o, ai) | i = 1, 2, . . . , k + 1
}

of n + 2 points in `n
4 the only nonzero distances are 21/4 and 21/4‖a‖4. Therefore,

maxx,y∈S ‖x− y‖4

minx,y∈S,x 6=y ‖x− y‖4
=

1

‖a‖4
= 1 +

√
2

n
+ O(n−3/4).

The case where n = 2k + 1 is odd is handled by using the points a1, . . . , ak+1 ∈ `k
4 as

constructed above and the analogous construction of k + 2 points a ′1, . . . , a ′k+2 ∈ `k+1
4

satisfying ‖a ′i −a ′j‖4 = 21/4 and ‖a ′i ‖4 = 1− (k + 1)−1/2 + O(k−1). Then the nonzero
distances between points in

S =
{

(ai , o) | i = 1, 2, . . . , k + 1
}
∪
{

(o, a ′i ) | i = 1, 2, . . . , k + 2
}

are 21/4 and (‖ai‖4
4 + ‖a ′j‖4

4)1/4, giving the same asymptotics as before.

Sketch of proof for Lemma 2.1 For t ∈ R let

f (t) =
( (1 + t)4 + (k− 1)t4

k

) 1/4
= k−1/4‖(1, 0, . . . , 0) + t(1, 1, . . . , 1)‖4.

Then (2.9) is equivalent to f (x) = |y| and f (x−y) = (2/k)1/4. Since ‖ · ‖4 is a strictly
convex norm, f is strictly convex. Since f (0) = k−1/4 and limt→±∞ f (t) = ∞, it
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follows that there is a unique αk < 0 and a unique βk > 0 such that f (αk) =
f (βk) = (2/k)1/4. Thus, x− y ∈ {αk, βk}. It also follows that f is strictly decreasing
on (−∞, αk). It is immediate from the definition that f is strictly increasing on
(0,∞). Since f (−k−1/4) < (2/k)1/4 < f (k−1/4), it follows that αk < −k−1/4 and
βk < k−1/4.

By strict convexity of ‖ · ‖4, f also satisfies the strict Lipschitz condition

| f (t + h)− f (t)| < h for all t, h ∈ R with h > 0.

It follows that t 7→ f (t)−t is strictly decreasing and t 7→ f (t)+t is strictly increasing.
Since limt→∞( f (t) − t) = 1/k and limt→−∞( f (t) + t) = −1/k, it follows that
f (t) > t + 1/k, and for each r > 1/k there is a unique t such that f (t) − t = r; also
f (t) > −t − 1/k, and for each r > −1/k there is a unique t such that f (t) + t = r.

We now consider the two cases x − y = αk and x − y = βk.

Case I. If x − y = αk, then f (x) = |y| = |x − αk|. Since f (x) > −x − 1/k ≥
−x − k−1/4 > −x + αk, necessarily y = x − αk > 0 and f (x) − x = −αk. Since
−αk > k−1/4 ≥ 1/k, there is a unique xk such that f (xk) − xk = −αk, and since
f (0) − 0 = k−1/4 < −αk, it satisfies xk < 0. Setting yk = xk − αk, we obtain
that (2.9) has exactly one solution (xk, yk) such that xk − yk = αk, and it satisfies
xk < 0 < yk.

Case II. If x − y = βk, then we similarly obtain a unique solution (x, y), this time
satisfying x < 0 and y < 0.

Therefore, (2.9) has exactly two solutions, one with y > 0 and one with y < 0.
Next we approximate the solution (xk, yk) of Case I.

From f (αk) = (2/k)1/4, it follows that

(2.10) (1 + αk)4 + (k− 1)α4
k = 2,

which shows first that αk = O(k−1/4) as k → ∞, and then, since αk < 0, that
αk = −k−1/4 + O(k−1/2). We can rewrite (2.10) as

αk = −k−1/4(1− 4αk − 6α2
k − 4α3

k)1/4

= −k−1/4
(

1− αk − 3α2
k − 9α3

k + O(k−1)
)
,

(2.11)

where we have used the Taylor expansion (1 + x)1/4 = 1 + 1
4 x− 3

32 x2 + 7
128 x3 + O(x4).

Substitute the estimate αk = −k−1/4 + O(k−1/2) into the right-hand side of (2.11) to
obtain the improved estimate αk = −k−1/4 − k−1/2 + O(k−3/4), and again, to obtain

αk = −k−1/4 − k−1/2 + 2k−3/4 + O(k−1).

Since
f (−k−1/2) + k−1/2 = k−1/4 + k−1/2 − k−3/4 + O(k−1) > −αk

for sufficiently large k, and f (xk) − xk = −αk, it follows that xk > −k−1/2 for large
k, that is, xk = O(k−1/2). It follows that

f (xk)− xk = k−1/4
(

1 + xk + O(k−1)
)
− xk.
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Set this equal to −αk and solve for xk to obtain xk = −k−1/2 + k−3/4 + O(k−1) and
yk = xk − αk = k−1/4 − k−3/4 + O(k−1).
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