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Abstract. Let M, M* denote compact, connected manifolds of non-positive sec-
tional curvature whose fundamental groups are isomorphic and whose Euclidean
de Rham factors are trivial. We prove that: if M is a compact irreducible quotient
of a reducible symmetric space H, then M and M* are isometric up to a constant
multiple of the metric; and that the number and dimensions of the local de Rham
factors are the same for M and M*. Gromov has independently proved the first
result in the more general case that M is locally symmetric and globally irreducible
with rank at least two.

0. Introduction
A basic problem in Riemannian geometry is to determine the extent to which the
geometry of the Riemannian metric and the topology of the underlying manifold
influence each other. Restrictions on the curvature and topology are usually
necessary to obtain reasonable results, and we shall confine our attention to compact
connected manifolds of nonpositive sectional curvature. We define a geometric
property of such manifolds to be a rigid property if whenever it holds for a manifold
M it also holds for any manifold M* that is homotopically equivalent to M. Our
goal is to look for rigid properties.

In a previous paper [7] we showed that certain geometric properties of a free
homotopy class of closed curves are rigid properties. In this paper we have two
main results, the first of which is half of an independent result of Gromov. Before
stating them we define a Riemannian manifold X to be reducible if some finite
Riemannian cover X splits as a nontrivial Riemannian product X\ x X2. If X is
simply connected and reducible, then X itself is a nontrivial Riemannian product

THEOREM A. Let M, M* denote compact connected Riemannian manifolds of
nonpositive sectional curvature whose fundamental groups are isomorphic and whose
universal Riemannian covering manifolds H, H* possess no Euclidean de Rham
factor. Suppose that H* is a reducible symmetric space of noncompact type and M*
is an irreducible quotient of H*. Then M and M* are isometric, provided that one
multiplies the metric of M or M* by a suitable positive constant.
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48 P. Eberlein

In particular if (M*, g*) satisfies the hypotheses of theorem A, then the only metrics
g of nonpositive sectional curvature on the C°° manifold M* are the constant
multiples of g*.

Our second result says that the fundamental group, a topological object, deter-
ines the number and dimensions of the factors in the de Rham decomposition,
a geometric property. At present we must exclude consideration of manifolds that
have non-trivial Euclidean de Rham factors, but this restriction is probably unne-
cessary.

THEOREM B. Let M, M* denote compact, connected Riemannian manifolds of
non-positive sectional curvature whose fundamental groups are isomorphic and whose
universal Riemannian covering manifolds H, H* possess no Euclidean de Rham
factor. Let / / * = / / * x • • • xH*andH =HX x • • • x// , denote the de Rham decompo-
sitions of H* and H with the factors ordered so that

dim//* <dim//?+1 /orl</<it- l

and

dim//r<dim//r+i for 1 < / •</ -1 .

Then

j =Jc and dim H* = dim //, for all 1 < / < k.

(The case that] = 1 or k = 1 is allowed.)

Using Tits complexes Gromov [11] has proved independently the following result
that includes our Theorem A:

THEOREM. LetM, M* be connected compact Riemannian manifolds of non-positive
sectional curvature whose fundamental groups are isomorphic. Let M* be an irredu-
cible locally symmetric manifold of rank r>2. Then M and M* are isometric,
provided that one multiplies the metric of M or M* by a suitable positive constant.

Gromov considers separately the cases where M* is locally reducible or locally
irreducible. The first of these cases is our theorem A except that no exclusion of
Euclidean de Rham factors is required. Our proof of theorem A avoids the use of
Tits complexes although the 'maximally singular' geodesies that we consider are
essentially the 1-simplices of the Tits complex associated to a Riemannian symmetric
space of noncompact type.

The condition that the rank of M* in the theorem above be at least two is clearly
necessary. A rank 1 locally symmetric space (M*, g*) has strictly negative sectional
curvature and there are obviously many nearby metrics g of strictly negative
sectional curvature on M* that are not locally symmetric. At the same time the
theorem seems very plausible on intuitive grounds if the rank of M* is at least 2.
A locally symmetric space (A/*, g*) of rank r > 2 has through every point a large
collection of totally geodesic immersed Euclidean spaces of dimension r. With so
much zero sectional curvature present it is unlikely that one could perturb the
metric g* to obtain a nearby metric g of non-positive sectional curvature. If local
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rigidity of the metric g* is plausible, then global rigidity of g* as expressed in
theorem A or the result of Gromov is not surprising.

We now outline briefly the proofs of theorems A and B. Theorem B follows
fairly simply from theorem A, a Riemannian splitting theorem of [10] or [16] and
some results from [2], [6] on the structure of isometry groups. The full argument,
which is short, may be found in § 6. The proof is by induction on the dimension
of M and M*.

The proof of theorem A is much longer, though the basic idea, which we now
outline, is not difficult. Clearly we wish to apply the Mostow rigidity theorem by
showing that the manifold H, using the notation of theorem A, is a symmetric
space of noncompact type. Using [6, prop. 4.6] it will follow that H is a symmetric
space of noncompact type if we can show that H is reducible. The method of the
proof is first to construct a collection {Bp: p e H} of closed convex subsets of H
that are candidates for the leaves of a parallel foliation of H and second to prove
that these sets {Bp: p E H} actually are the leaves of a proper parallel foliation of
H. These arguments are described in § 5 and Appendix 2 and are very similar to
those used to prove theorem 2 of [10]. Once we have a proper parallel foliation
of H it follows by the de Rham decomposition theorem that H is reducible.

We now outline the proof of theorem A in somewhat greater detail. Let M, M*,
H and H* be as denned in the statement of theorem A. The first step in the proof
is to consider the 'maximally singular' geodesies of H*, a symmetric space of
noncompact type. A geodesic y* of H* is said to be maximally singular if y*(R)
is the intersection of all r-flats of H* that contain y*. Here r is the rank of H*
and an r-flat is an /--dimensional, flat, totally geodesic, closed, imbedded submani-
fold of H*. A point x*e/f*(oo) is said to be maximally singular if one (hence all)
of its representative geodesies is maximally singular.

Suppose now that H* is the Riemannian product H* xH* of two symmetric
spaces of noncompact type and positive dimension. The sets H* (oo) and H* (°o)
are naturally imbedded as subsets of H*(oo). Now let N*, N* denote the orthogonal
parallel foliations of H* induced by H*, H*. If 5* denotes the set of maximally
singular points in H* (oo) for i = 1, 2, then one can show that

N*(p) = span {y'px(0):xeS*},

where ypx denotes the geodesic starting at p that belongs to the asymptote class x.
Moreover the leaf of TV* through p is the smallest closed convex subset of H*
that contains all maximal geodesies ypx(U) as x ranges over Sf for / = 1, 2.

Now let T*, T be groups of isometries of H*, H such that M*=H*/Y* and
M = H/Y. By hypothesis there exists an isomorphism B: T* -* T. As in [17] we
construct a 6- equivariant pseudoisometry f:H*-*H, that is, a uniformly continuous
function / such that:

(1) f(<t>*p*) = d{<t>*)f(p*) forallp*e//*,<A*er*,
(2) there exist positive constants £*, r* such that

whenever d(p*, q*) > r*
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In §4 we show that / determines a #-equivariant map /:S*-»//(oo), where S*
denotes the set of maximally singular points in H*(oo). Specifically if y* represents
x*eS* we show that (f°y*)(t) converges to a point f{x*)eH(oo) as t-> +00. The
construction of the map / is valid in the general case that H* is an arbitrary
symmetric space of noncompact type, not necessarily reducible.

Returning to the situation of theorem A, we have represented H* as a non-trivial
Riemannian product H* xH*. For / = 1, 2 we define S; to be the closure in H(oo)
of the set f(Sf), where Sf is the set of all maximally singular points of H*(oo).
(Actually one may show that / is continuous and f(Sf) is already closed.) We
regard the sets Si, S2 as candidates for the sets of maximally singular points of
Hi(oo), H2(oo), where H\XH2 is a Riemannian splitting of H that is yet to be
determined.

Working backwards from the discussion above we use the sets Si, S2 to construct
a splitting H = Hi x H2. For each point p e H we define Bp to be the smallest closed
convex subset of H that contains all geodesies ypx(U) as x ranges over Si. In § 5
we show that the sets Bp are proper, complete, totally geodesic submanifolds of H
that are the leaves of a parallel foliation N\ of H. If Qp denotes the leaf through
p of the orthogonal parallel foliation N2 then H is isometric to the Riemannian
product of Bp and Qp, by the de Rham decomposition theorem. This completes
the outline of theorem A.

We conclude the introduction with a brief description of the organization of the
paper. The first section contains preliminary material. Using the notation of
theorems A and B we define and discuss the properties of a pseudoisometry
f:H*-*H that is induced by an isomorphism of the fundamental groups of M*
and Af. In § 2 we modify slightly a result of Mostow [17] to show that there exists
a constant R >0 such that for any r-flat F* in H* there exists an r-flat F in H
with Hd (f(F*), F)<R. Here r is the rank of H* and Hd (,) denotes Hausdorff
distance. In § 3 we define and discuss the maximally singular geodesies of a
symmetric space H* of noncompact type. We also provide a characterization of
these geodesies in terms of a Cartan decomposition of the Lie algebra of I0(H*).
In § 4 we use the results of §§ 2, 3 to show that a pseudoisometry / : H* -* H extends
to a map /:S*-»//(oo), where S* denotes the set of maximally singular points in
H*(oo). One can show that the map / is one-one and continuous, but we do not
need these properties and shall not prove them. In § 5 we use the map / : S* -» H(oo)
to a construct a family of closed, convex subsets {Bp : p e H}, and we show that
these sets are the leaves of a proper parallel foliation of H. In § 6 we complete the
proofs of theorems A and B. The proofs of results in §§ 4, 5 are quite long in
several places and to make the exposition clearer we have put these proofs in
Appendices 1 and 2.

1. Preliminaries
In this paper H will always denote a complete, connected, simply connected
Riemannian manifold of non-positive sectional curvature. H will also be called a
Hadamard manifold. For any two distinct points p, q of H there is a unique unit

https://doi.org/10.1017/S0143385700001814 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001814


Rigidity of lattices 51

speed geodesic ypq such that

ypq(0)=p andypq(a)=q, wherea =d(p,q).

All geodesies of H will be assumed to have unit speed. We let / ( / / ) denote the
group of isometries of H.

Points at infinity. (General reference [8].) If y, cr are any two geodesies of a
Hadamard manifold H we say that y and cr are asymptotes if d(yt, at) < c for some
positive constant c and all t > 0. The equivalence class of asymptotic geodesies to
which y belongs is denoted by y(oo). By y(-co) we denote the equivalence class
of the geodesic <r(t) = y(—t). We let //(oo) denote the set of all equivalence classes
of geodesies of H. If x and y are distinct points of //(oo) we say that a geodesic y
of H joins x and y if either y (co) = x and y (-co) = y or y (oo) = y and y (-oo) = x.

If H = H u //(oo) then / / admits a natural cone topology such that
(1) H is homeomorphic to the closed unit ball of dimension n = dim H
(2) H with its own topology is a dense open subset of H.

Every isometry 4> of H extends to a homeomorphism of H by denning <£[y(oo)] =
(4> ° ?)(»)•

If p e / / and x E//(OO) are given arbitrarily then there is a unique geodesic yp][

of H such that ypj[ (0) = p and ypx (oo) = x. We define a continuous unit vector
function

T,H by

If p, q, r are distinct points of H we let 4P(^, r) denote 4_ (V(p, q), V(p, r)), the
angle at p subtended by q and r. If p e H and x ,ye H(ao) are given arbitrarily we
define

*p(je,y) = 4(V(p,je), V(p,y)).
Angle measurement is continuous.

Limit sets. ([8]) If F £ / ( / / ) is a group of isometries of H we define L(F), the limit
set of F, to be the set r(p)n//(oo). Here F(p) denotes the orbit of a point p in
H under T, and F(p) denotes the closure of T(p) in H =HvH(<x>), relative to
the cone topology. L(P) is a closed subset of //(oo) that is invariant under F and
does not depend on the point p in H. The set L(F) is empty if and only if F has a
fixed point in H.

Busemann functions and horospheres. (General references [3, § 2] and [8, § 3].) If
y is a geodesic of H we define

f=fy:H^U by/(p)= lim d{p,yt)-t.

If y belongs to a point x e//(oo) we call / a Busemann function at x. Any two
Busemann functions at a given point x in //(oo) differ by a constant. A Busemann
function / at x in //(oo) is C2 and convex. Moreover (gradf)(p) = — V(p,x) for
every point p e//([3], [8], [12]). Given a point xe//(co), a point p e / / and a
Busemann function / at x we define

L(p, JC) =
and
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L(p,x) and B(p, x) are called respectively the horosphere and horoball determined
by p and x.

Convexity. (General reference [1, § l-§ 4].) A subset A £ H is convex if it contains
the unique geodesic segment joining any two of its points. A continuous function
/ : H -* R is convex if the function t-*(f° y)(t) is a convex function on R for every
geodesic y of H. If f:H-* R is C2 then / is convex if and only if the symmetric,
bilinear form V2/ given by

is positive semidefinite.
If A c / / is closed and convex then the function p-+d(p,A) is a continuous

convex function on H and is differentiate if A is a differentiable submanifold.
For every point p e / / there exists a unique point P(p) in A that is closest to p. The
point P(p) is called the foot of p on A, and the unique geodesic from p to P(p)
is called the perpendicular from p to A.

The (orthogonal) projection map P.H^A has the property that d(Pp,Pq)^
d(p, q) for all points p, q in H. Moreover if

d(Pp,Pq) = d(p,q)>0

for points p, q in H-A, then /?, <?, Pp and P<? are the vertices of a flat, totally
geodesic, isometrically imbedded rectangle R^H; that is, there exists a totally
geodesic, isometric imbedding F :D-*H, where D s R2 is a rectangle with the usual
Euclidean metric [1, remark 3.3, p. 8].

Lattices and reducibility. ([5]) A Riemannian manifold X is reducible if some finite
Riemannian cover X of X can be expressed as a nontrivial Riemannian product
X =XiXX2. If X is a simply connected reducible manifold, then X itself is a
nontrivial Riemannian product X\XX2. X is irreducible if it is not reducible.

If f £ / ( / / ) is a freely acting, properly discontinuous group of isometries of a
Hadamard manifold H, then T is a /att/ce if the quotient manifold H/T (hence also
its unit tangent bundle) has finite Riemannian volume. A lattice T is uniform
(respectively non uniform) if H/T is compact (respectively noncompact). A lattice
F is reducible (respectively irreducible) if the quotient manifold H/T is reducible
(respectively irreducible).

de Rham decompositions. (References [15] and [5].) It is evidently true that any
Hadamard manifold H can be written as a Riemannian product

H=HoxHlx-- -xHk,

where Ho is a Euclidean space, possibly of dimension zero, and /f, is an irreducible
Hadamard manifold for l< /<fc . A theorem of de Rham states that this
decomposition is unique modulo isometric equivalence and order of the factors. The
manifolds Ht, 0 < / < k, are the de Rham factors of H. More generally the de Rham
theorem applies to any Riemannian manifold X and the Riemannian splitting is valid
only locally if X is not simply connected.

If 4> is any isometry of H, then cf> leaves invariant the foliation of H corresponding
to Ho and permutes the foliations of H corresponding to the non Euclidean de
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Rham factors Ht, 1 < / < fc. We say that <f> preserves the de Rham factors of H if
<f> leaves invariant each of the foliations of H corresponding to H(, 0 < / < k. If <f>
preserves the de Rham factors of H, then 4> has a unique expression

<t> = <£o x 4>\ x • • • x (f>k, where 0, € I (Hi) for 0 < / < <t.

If F s /( / /) is any subgroup then there exists a subgroup f s f of finite index whose
elements preserve the de Rham factors of H. For the group f there are projection
homomorphisms

p,:f-*/(//,) forO</</fc
determined by

/?,(<£) = <£., where<f> =<£ox<£ix- •• x<£fc.
Symmetric spaces of noncompact type. (References [13], [14], [17].) A Hadamard
manifold H with no Euclidean de Rham factor Ho is called a symmetric space (of
noncompact type) if for every point p e H there exists an involutive isometry Sp of
H such that Sp fixes p and

for every geodesic y with y(0) =p. If / / is a symmetric space of noncompact type
and if G denotes Io(H), then G is a transitive, noncompact, semisimple Lie group
with trivial centre and no compact factors. The space H may be identified with a
coset space G/K together with a G-invariant metric, where K is the stability group
of G at some point p in H. K is a maximal compact subgroup of G, and all such
subgroups are stability groups, hence conjugate in G.

An r-flat in a Hadamard manifold H is a totally geodesic, isometrically imbedded,
closed submanifold of H of dimension r and sectional curvature zero. If H is a
symmetric space of noncompact type then its rank is the largest integer r for which
an r-flat exists in H. If r is the rank of a symmetric space H, then every geodesic
y of / / is contained in at least one r-flat. Moreover if F\, F2 are any two r-flats
of H, then there is an isometry </> of H such that <t>(F\)=F2.

Hausdorff distance. If A c. X is any subset of a complete Riemannian manifold X
and if r* is any positive number we define

If A, B are any subsets of X we define the Hausdorff distance between A and B,
denoted Hd(A, B) and possibly infinite, to be

inf {r*>0: AcJV,.(B) andBcJV,.(A)}.
Clearly

Hd(A,j5) = Hd(5,A)
and

Hd (A, C)<Hd (A, B) + Hd (S, C)

for any three subsets A, B, C of AT.

Pseudoisometries. (References [17] and [7].) If M, M* are any two homotopically
equivalent manifolds, then they have isomorphic fundamental groups. Conversely
if M, M* are both compact with non-positive sectional curvature, then any
isomorphism of the fundamental groups induces a homotopy equivalence between
M and M*. We explain briefly.
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Let F, F* denote uniform lattices in Hadamard manifolds H, H*. Suppose that
the quotient manifolds H/Y and H*/T* have isomorphic fundamental groups, and
let 6: F* -» F be an explicit isomorphism. Following [17] or the slightly modified
treatment in [7] one can construct a continuous map f:H*-*H with the following
properties:

(1) / i s uniformly continuous;
(2) there exist positive constants f *, r* such that

whenever p*, q* are points in H* with dip*, q*)>r*\
(3) if p* e H* and <f>* e Y* are given arbitrarily then

A map f:H*->H satisfying the properties listed above will be called a 6- equivariant
(£*, r*) pseudoisometry. Property (1) is given for emphasis only since it follows from
(3). By the 0-equivariance / induces a continuous map /between H*/T* and H/Y,
and it is not difficult to show that / is a homotopy equivalence.

We conclude this section with the following result that will be useful later:

PROPOSITION 1. Let Y, Y* denote uniform lattices in Hadamard manifolds H, H*,
and let 6:Y*-*Y be an isomorphism. Let f: H*-* H be a 6-equivariant {£*, r*)
pseudoisometry, and let g:H->H* be a 0"1-equivariant (/, f) pseudoisometry,
where /, £*, f and r* are appropriate positive constants. Then there exists a positive
constant A such that:

(1) d(p*,gfp*)^Aforallp*€H*
and (2) d(p,fgp)<AforallpeH.

Proof. Clearly it suffices to prove only (1). Suppose that (1) is false for every positive
integer n and choose a sequence {p*}sH* such that dipt, gfpt)^n for every n.
By the equivariance properties of g and / it follows that

<t>*(gfp*) = gf(</>*p*) f or every cf>*eY* and every p*eH*.

Since H*/Y* is compact we may choose a sequence {<£*}sF* such that {q*} =
{<£*(/>*)} is a bounded sequence in H. Hence

d{q$, gfqt) = d(pt, gfpt)^n for every positive integer n.

By passing to a subsequence we may assume that {q*} converges to a point q*eH*.
It follows that

diqt,gfqt)^diq*,gfq*) asn-»+oo,
contradicting the fact that {diqt, gfqt)} is unbounded by the choice of p* and qt-
Therefore assertion (1) is true, hence also (2). •

2. The association of r-flats
This section is a modification of [17, §§ 13, 14]. Our main result is the following
(compare [17, lemma 14.1]):

PROPOSITION 2. Let Y* be a uniform lattice in a symmetric space H* of noncompact
type. Let Y be a uniform lattice in an arbitrary Hadamard manifold H, and let
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0:F*-»F be an isomorphism. Let f:H*-*H be a 6-equivariant (£*, r*)
pseudoisometry for some positive constants g*, r*. Then there exists a positive constant
R with the following property:
// r is the rank of H* then for any r-flat F* in H* there exists an r-flat F in H such
that

Hd(/(F*) ,F)<£.

We first need the following

LEMMA 2a. Let g : / / - » / / * be a d'1-equivariant (£,r) pseudoisometry for some
positive constants £,, f. Let G £ F be a free abelian group of rank r, and let
G* = d~\G) S T*. Let F be an r-flat in H such that G leaves F invariant and F/G
is compact. Let F* be the unique r-flat in H* such that G* leaves F* invariant and
F*/G* is compact. Then

Hd(g(F),F*)</?*,

where R*>0 is a constant independent of the r-flats F and F*.

Remark. The existence of r-flats F, F* invariant under G, G* such that F/G and
F*/G* are compact is a consequence of [16, theorem 1]. The uniqueness of F*
is well known. See for example [17].

Proof. The proof of this result is contained in the proof of [17, lemma 13.2]. In
that result it is assumed that both H and H are symmetric spaces of noncompact
type, but the proof of lemma 13.2 is valid in our situation if only the target space
H* is a symmetric space. •

As a corollary we obtain

LEMMA 2b. There exists a positive constant R with the following property: let F* be
an r-flat in H* and G* a free abelian subgroup of F* of rank r such that G* leaves
F* invariant and F*/G* is compact. Let G = d(G*) s F and let F be any r-flat in
H such that G leaves F invariant and F/G is compact. Then

Hd(/(F*),F)<K.

Proof. We first construct the constant R. Let R * > 0 be the constant of lemma 2a.
Since g-.H^H* is a tf^-equivariant (i,r) pseudosiometry it follows from the
discussion of § 1 that for some positive constant k we have

d(p*,gfp*)<k forallp*e/f*
and

d(p,fgp)<k for all p e H.

Since / is a (£*, r*) pseudoisometry we have

(l/e)d(p*,q*)^d{fp*,fq*)^£*d(p*,q*) iid(p*,q*)>r*.

By the uniform continuity of / we can choose a constant TJ > 0 such that

d(fP*>fy*)^V wheneverd(p*,q*)<r*.
Let a = max {£*R *, 17} and let R = k + a.
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We assert that R has the desired properties. Let F*, F, G* and G be as in the
statement of lemma 2b. By lemma 2a we have Hd (g(F),F*)<R*. From the
definition of a it follows that

Hd(/g(F),/(F*)<a.

Since Hd (fg(F),F)<k it follows that Hd (/(F*),F)<k+a=R, •

We now prove proposition 2. We assert that the constant R of lemma 2b also
satisfies the condition of proposition 2. Let F* be an arbitrary /--flat of H*. By
[17, lemma 8.3] we can find a sequence {F*} of /--flats in H* and a sequence {G*}
of free abelian subgroups of F* of rank r such that F* converges to F*, G* leaves
FJGn is compact for every n. By lemma 2b, Hd (f(F*), Fn)<R for every n. Fix a
not mean that Hd (F*,F*)-»0, which is false, but rather that every point p*eF*
is a limit of a sequence {p*} with p* eF*, and conversely if {p*} converges to p*
with p * e F * for every « then p*eF*.

Let Gn = 8(G*)^ F and let Fn be an /--flat such that Gn leaves Fn invariant and
FJGn is compact for every n. By lemma 2b Hd (/(F*), Fn) <i? for every n. Fix a
point p*eF* and let {p*} be a sequence converging to p* such that pt EF% for
every n. Then /(/?*)-»/(p*) as n ->oo and it follows that for any number R'>R
the r-flat F , intersects the closed ball of radius R' and centre f(p*) for all sufficiently
large n. Hence some subsequence of the /--flats {Fn} converges in the sense defined
above to an /--flat F in H. By continuity it follows that Hd (/(F*), F)<R since

Fn^F and Hd (/(F*),Fn)<2? foreveryn.

This completes the proof of proposition 2. Q

3. Maximally singular geodesies and points at infinity
Let H* denote a Riemannian symmetric space of noncompact type, and let r denote
the rank of H*. As we noted in § 1 every unit speed geodesic y* of H* is contained
in at least one r-flat. We say that a geodesic y* of H* is singular if y*(R) is
contained in at least two distinct r-flats. A geodesic y* is maximally singular if
y*(R) is the intersection of all /--flats of H* that contain y*(R). If r = 1 then every
geodesic y* is maximally singular. The maximally singular geodesies of H* corres-
pond to the 1-dimensional simplices of the Tits complex associated to H* (cf. [17]),
but we shall not pursue this view point. Maximally singular geodesies play an
important part in the proof of theorem A. In this section we discuss some properties
of these geodesies including a proof of their existence and a characterization in
terms of the Lie algebra of I0(H*).

A point x in H*(<x>) is said to be maximally singular if there exists a maximally
singular geodesic y* such that y*(oo) = JC. The next result will be useful later.

PROPOSITION 3.1. Let y* be a maximally singular geodesic of a symmetric space
H* of noncompact type. If a is any geodesic asymptotic to y *, then a is also maximally
singular.
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Proof. Let x eH*(oo) denote the asymptote class of geodesies to which y* and cr
belong. Let G denote I0{H*) and let

Gx={geG:gx=x}.

To prove the proposition it suffices to prove that Gx is transitive on H*, for then
there exists an element gzGx that carries y* onto a. The transitivity of Gx is
proved, for example, in [14, theorem 3.5.1]. We present here a short proof that is
somewhat different. If p, q are distinct points of H* we construct an element <f> of
Gx such that <f>p = q. Choose geG arbitrarily so that gp = q. Let K be the subgroup
of G that fixes p. Then A" is a maximal compact subgroup of G and by [2, prop.
4.4] there exists ksK such that lex = g~*x. If we set <f> = gk, then <f>x = x and <f>p = 4.

Next we characterize maximally singular geodesies of H* in terms of the Lie
algebra of I0(H*). The characterization will also prove the existence of maximally
singular geodesies of H*.

We begin with a review of some basic facts about real semisimple Lie algebras.
For further details see for example [13, pp. 121-125; 156-159; 173-174; 205;
214-219], [14, pp. 58-68] and [19, pp. 232-247]. See also [6, § 1]. We let G, 9

denote the semisimple Lie group I0(H*) and its Lie algebra. Let B denote the
Killing form on#Xj given by

B(X, Y) = Trace (ad X ° ad Y) for X, Y e 9.

B is nondegenerate on 9 x 9 since % is semisimple. Let K be a maximal compact
subgroup of G, and let d denote the Lie algebra of K. Let 2P denote the orthogonal
complement in % of d relative to B. We obtain a Cartan decomposition

where [d,d]^d, [d,^]^^ and [&>,0>]^d. Moreover B is positive definite on
0> x @> and negative definite on d x d.

A Cartan subalgebra of g is a maximal abelian subalgebra A contained in 9> for
some Cartan decomposition g =d + &. Any two Cartan subalgebras of ^ are conju-
gate by an element of Ad (G) s GL (g). The rank of 9 is the dimension of a Cartan
subalgebra of f and is also equal to the rank of H* as we shall see.

Let p*eH* be fixed. We use the Cartan decomposition of g that corresponds
to p* to describe the geodesies of H* emanating from p* and the /--flats of H*
that contain p*, where r is the rank of H* and 9. If K denotes the subgroup of G
that fixes p*, then K is a maximal compact subgroup of G. If $ =d + @> is the
corresponding Cartan decomposition, then the geodesies of H* beginning at p*
are those curves of the form t -+ exp (tX)(p*), where X e 0>. The r-flats of H* that
contain p* are of the form exp (<C)(p), where A £0* is a Cartan subalgebra.

Now let 9 = d + ty be a fixed Cartan decomposition. We define an element X e ty
to be maximally singular if the 1-dimensional subspace of 9 that is generated by X
is the intersection of all Cartan subalgebras in 0> that contain X. In view of the
remarks of the preceding paragraph it is easy to see that X e 9* is maximally singular
if and only if y(t) = exp (tX)(p*) is a maximally singular geodesic of H*. Here p*
is the unique point of H fixed by a maximal compact subgroup K of G with Lie
algebra d.
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PROPOSITION 3.2. Let g=i + 9i be a fixed Cartan decomposition of y. Then
is maximally singular if and only if Z{X) is a maximal subalgebra among the
collection of subalgebras {Z(Y): Ye 0>}.

Here Z(X) = {W e 9: [X, W] = 0}, the centralizer of X in 9. Note that the existence
of maximally singular elements of 0> is an obvious consequence of the proposition.

To begin the proof of the proposition we note that if A £ 0> is a Cartan subalgebra,
then ad (A) is an abelian group of linear transformations of p. Moreover one can
show that the elements of ad (A) are all diagonalizable and hence we can write g
as a direct sum

—
9 ~9

a

where ?° = {W e0: ad (H)(W) = [H, W] = 0 for all HeA} and a:A^U is a non-
zero linear transformation such that

[H, Xa] = ad (H)(Xa) = a(H)Xa

for every He A and every X" eg". The linear transformations a that arise in this
manner are called the roots relative to A.

We need two preliminary results, the first of which is routine and not proved
here. See also [14, p. 64].

LEMMA 3.2a. Let A^P be a Cartan subalgebra, and let XeA. Then

LEMMA 3.2b. LetX e&bea given nonzero element, and let ̂ xdenote the intersection
of all Cartan subalgebras in 0> that contain X. If Yet? is arbitrary then Ye@>xif
and only if~Z(Y)=>Z(X).

Assuming for the moment that lemma 3.2b has been proved we shall complete the
proof of proposition 3.2. Suppose first that X e ^ is maximally singular. Then by
definition 0>x is the 1-dimensional subspace of 0> generated by X. Let Y e & be a
non-zero element such that Z(Y) 2Z(X). Then Y e @x by lemma 3.2b and hence
Y = tX for some t # 0. Therefore Z (Y) = Z (X), which proves that Z (X) is maximal
among the set of subalgebras {Z(Y): Ye0>}.

Next suppose that X e & has the property that Z(X) is maximal in {Z( Y): Y e 9>\.
Let Y e 0>x be given arbitrarily. We wish to show that Y = tX for some number t.
By lemma 3.2b we see that Z(Y)^Z(X), which implies that Z(Y) = Z(X) by the
maximality of Z(X). Now let A £ & be a Cartan subalgebra that contains X. Then
Y e 9>x s A. It follows from lemma 3.2a that for a root a of A we have a (X) = 0
if and only if a(Y) = 0.

The Killing form B is positive definite on @ x 0> and hence on A x A. For each
non zero root a of A we define H" &Aby requiring that

B(H",H) = a{H) for every He A.
For an element W e A we define

Aw = span {Ha:a(W) = 0}.
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By the discussion of the preceding paragraph we see that AY = AX- It suffices to
show that Ax = AY is a hyperplane in A, or equivalently that the orthogonal comple-
ment in A relative to B, Ax = Ay, is 1-dimensional. If we know this then X and
Y must be collinear since X e A x and Y e A y. This will show that AT is a maximally
singular element of 0>.

Suppose that Ax = AY is not a hyperplane in A. Since

^ = span {Ha: a is a non-zero root of ^ } ,

[17, p. 12], we can find a root 0 of <C so that /3(A") # 0 and <«* = span {/£X) i/"} is
a proper subspace of A. Let X* be a non-zero element of (A *)""" £ ̂ . Then /3 (X*) = 0
and o (X*) = 0 for every root a such that a (X) = 0. By lemma 3.2a Z(X*) is strictly
larger than Z(X), contradicting the maximality of Z{X). Therefore Ax is a hyper-
plane in A and X is maximally singular.

We complete the proof of proposition 3.2 by proving lemma 3.2b. First let X,
Y be elements of & such that Z(Y) ^Z(X), and let A s^> be a Cartan subalgebra
that contains X. Since A s Z ( X ) it follows that the vector subspace of $> spanned
by A and Y is an abelian subalgebra of 0>. Since A is a maximal abelian subalgebra
it follows that Y e A. Hence Y e &x since ^ was arbitrary.

Next let X e 0> be given, and let Y e &>x- Fix a Cartan subalgebra A £ 0> that
contains X Since 0>x s ^ it follows that Y e <£. To show that Z (y) =? Z (A~) it suffices
by lemma 3.2a to show that a (Y) = 0 whenever a is a root of A such that a (X) = 0.

Suppose that a (X) = 0 for some non-zero root a of A, and let Xa be a non-zero
element of ? °. We may write

where i f e <C and P" e 0>. By hypothesis

Since Xe§>, \®, £]^0> and [0\ 0>]£rf it follows that [AT, A-"] = 0 and [X,Pa~\ = 0.
Let ( C g ^ b e a maximal abelian subalgebra that contains the abelian subalgebra
generated by X and P". Then Y e ̂ x £ <C and hence [ Y, P" ] = 0. Finally

a(Y)Ka +a(Y)Pa =a(Y)Xa =[Y,Xa] = [Y,Ka] + [Y,Pa] = [Y,Kal

Since [0\ < |c 3» it follows that a(r)A"* = 0. If AT" * 0 then a ( r ) = 0 and we are
done. If K" = 0 then Pa = AT" * 0 and

0 = [y, Pa] = [Y, Xa] = aClO*"1 = a ( r ) F a .

We see again that a(Y) = 0. Hence a(Y) = 0 whenever a(X) = O, and it follows
that Z (Y) 2 Z (AT) whenever y e ^ x . This completes the proof of lemma 3.2b. •

4. Extension of a pseudoisometry f:H*-*H to the maximally singular points of
H*(oo)
We consider the following situation: let F* denote a uniform lattice in a symmetric
space H* of noncompact type and rank r; let F denote a uniform lattice in an
arbitrary Hadamard manifold H, and let 8 : F* -» F be an isomorphism ;letf:H*-*H
be a 0-equivariant (£*, r*) pseudoisometry for some positive constants £*, r*; let
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S*c//*(oo) denote the set of maximally singular points at infinity as defined in
the previous section.

Our goal in this section is to define a 0-equivariant map /:S*-»//(oo). In fact
we can show that the map / is one-one and continuous but we shall not need
these facts. Given a point x*eS* we let y* be a geodesic representing x*. It will
follow from the result below that x = lim,^+0O (/ ° y*)(0 exists in H(oa). We then
define fx* = x. The value x is independent of the geodesic y* by the uniform
continuity of /. Moreover it follows immediately from the 0-equivariance of / that

f(<f>*x*) = 0(<t>*)(fx*) for every jc*eS* and <£*er*.

PROPOSITION 4.1. Let T*, T, H*, H, 6 and f be as above. Let y* be a maximally
singular geodesic of H*, and let F* be an r-flat containing y*. Let F' be an r-flat
in H such that Hd (f(F*), F')«x>. Then

(1) the points x =lim,-,+co (/° y*)(t) and y =lim,_+00 if ° y*)(—t) exist and are
distinct in //(oo);

(2) for any point p in F' it follows that ArP{x,y) = TT and ypx(U)^F'.

Proof. Because of its length the proof of this result has been exiled to Appendix
1. We give here only a sketch that should convey the flavour of the argument.
Since y* is a maximally singular geodesic of H* we may choose r-flats F*,..., F*
so that

By proposition 2 we can choose a constant R > 0 and r-flats F\,..., Fk in H so that

Hd (f(F* ),Ft)<R for every /.

Because / is only a pseudoisometry and not an isometry we cannot conclude that
the r-flats F\,...,Fk have a nonempty intersection. However we can and do show
that for some constant R'>0 the tubular neighbourhoods NR'(Fi),... ,NR{Fk) of
radius R' have a non-empty intersection that contains (f°y*)(M). Because Pff=i F*
is a single geodesic y* which accumulates at H*{oo) only at the two points y*(oo),
y*(-oo) it is not surprising that F = Cti=\NR'(Ft) accumulates at //(oo) only at two
points x, y and that these points can be joined by some geodesic a- of H. (The
technical difficulties in the proof occur here.) If cr, is the orthogonal projection of
cr onto Fh then one can show that cr, is a geodesic of H that joins x to y for each
i. Finally 2tP(x> y) = TT for every / and every point p e Ft since each Ft is an Euclidean
space. This completes the outline of the proof. •

We now consider the situation of theorem A where H* = H* x / /* is a reducible
symmetric space of noncompact type. We regard H* (oo) and H* (oo) as subsets of
//*(oo). We let S*c//*(oo) denote the set of maximally singular points at infinity
for //*. For i = 1, 2 we define

5f = 5 * n / / f (oo).

The sets S*, S* are non-empty since any maximally singular point in / /* (oo)
(i = 1, 2) is easily seen to be a maximally singular point in //*(oo).
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We let /:S*->//(oo) be the 0-equivariant map defined at the beginning of this
section.

Definition 4.2. For i ~ 1, 2 let S, denote the closure in //(oo) of the set f(Sf).

One can actually show that f(Sf) is already closed in //(oo) for i = l, 2, but
we gain nothing by proving this.

PROPOSITION 4.3. Let T*, f, H* and H be as defined at the beginning of this section.
Then

(1) each of the sets Si, S2 is invariant under Y;
(2) ifpeHand x e S, for i = 1,2 are arbitrarily given points, then ypx(-oo)eS,. In

other words a point in S, can only be joined by a geodesic of H to another point in S,.

Proof. (1) This follows immediately from the definition of S, and the fact that

f(<f>*x*) = 6(<t>*)(fx*) for every x*eSf and every <£*er*.

The maximally singular points S* £//*(oo) are invariant under / ( / /*) .
(2) We consider only the case of Si. We show first that if p eH and x e/(S*)

are given arbitrarily then ypx(-oo)eSi. Let peH and x =f(x*) be given, where
x*eS*. Let y* be a geodesic of / /* with y*(oo) = x*. By definition

x=f{x*)= lim (f°y*){t).
t-»+OO

By proposition 4.1 y = lim,-,+co (/ ° y *)(-*) also exists in //(oo), and x can be joined
to y by a geodesic of H.

We assert that y eSi. Observe that y* can be identified with a geodesic of / /*
since y*(oo) G H* (OO) and hence

If cr(f) = y*(—t), then cr is also a maximally singular geodesic of H* since cr(R) =
y*(U). Therefore y*e5f and

y= lim (foy*)(-t)= lim (f ° tr)(t) e f(Sf )s5i.
r-*-t-oo

Since F satisfies the duality condition (cf. [2, p. 78]) it follows from [2, lemma 2.4a]
that every point z of //(oo) to which x can be joined by a geodesic of / / must lie
in F(y). We note that F(y) sS i since y eSi and Si is a closed set invariant under
F. Therefore if p e / / and x e /(S*) are given arbitrarily we conclude that

Y,«(-oo)eSi.
Now let peH and xeSi be given arbitrarily. Let {jcn}s/(S*) be a sequence

that converges to x. Then ypXn (-oo) converges to ypx (-oo). By the previous paragraph
ypXn (-oo) lies in Si for every n, and hence ypx (-oo) 6 Si since Si is closed. The proof
of proposition 4.3 is complete. •

5. Constructing candidates for the leaves of a parallel foliation of H
Let Si s//(oo) and S2£//(oo) be the subsets defined in the previous section. For
each point p e H we let Bp denote the smallest closed convex subset of H that
contains ypx(R) for every xeSi. We show in this section that each set Bp is a
complete proper totally geodesic submanifold of H (proposition 5.6). Moreover
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the manifolds Bp are the leaves of a parallel foliation of H that induces a non-trivial
Riemannian product decomposition of H (proposition 5.7). Proving that H is
reducible will then be sufficient to prove theorem A. The arguments in this section
are very similar to those used in the proof of theorem 2 of [10].

PROPOSITION 5.1. The set Bp is a proper subset of H for every point p in H.

For the proof see Appendix 2.

PROPOSITION 5.2. Let p be an arbitrary point of H, and let r be an arbitrary point
ofBp. ThenBr^Bp.

Proof. Let Ar denote the union of all geodesies y,x{U) as x ranges over Si. It suffices
to show that Ar s Bp since B, is the smallest closed convex subset of H that contains
Ar. Let xeSi be given, and let yn be the geodesic segment from r to ypx(n) for
every integer n. If t a 0 is fixed then yn (t) lies between r and ypx(n) for all sufficiently
large n, and hence yn(t) lies in Bp for large n. It follows that

yn(t)-*yrx{t) as«->+oo
since

7Px(n)-*x asn-*+oo.
Therefore yr*[0, oo]c/?p since Bp is closed. Since »x(-°°)sSi a similar argument
shows that yrx (-oo, 0] s Bp. Therefore ArzBp, since xeSi was arbitrary, and it
follows that Br c Bp. •

Definition 5.3. We say that a set Bp is minimally convex if B, = Bp for every r e Bp.

PROPOSITION 5.4. There exists a point p e Hsuch that Bp is minimally convex.

For the proof of the result above see Appendix 2. Our next step is to show that
Bp is minimally convex for every point peH. Let

H = {p e H: Bp is minimally convex}.

PROPOSITION 5.5. H = H.

Proof. Our method is to prove that H is nonempty, closed in H, convex and invariant
under the deckgroup F of M = H/T. It is then routine to show H = H since
L(F) = //(oo).

By proposition 5.4 the set H is non-empty. We show next that H is invariant
under Y. Let <f> e F and p eH be given. It is easy to see that <j>{Bp) = B4)p since <f>
leaves Si invariant (by the work of the previous section). If reB^,p then <J>~lreBp

and B^-if = Bp since peH. Therefore

This proves that 4>peH and hence H is invariant under F.
We show that H is closed in H. Let {pn}cff be a sequence converging to a

point p in H. Let q eBp be given arbitrarily. To show that Bq =BP it suffices by
proposition 5.2 to show that p eBq. By lemma 5.5a of Appendix 2 we know that

d(q, Bpjsd(p, BpJ<d(p, pH)-+0 as n-> +oo.

Hence for every integer n there exists qneBPn such that d(q,qn)->0 as n-»+oo.
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Since pn E H it follows that pn e Bqn for every n. Hence by lemma 5.5a of Appendix
2 we have

d(pn, Bq) ^d(qn, Bq) <d(qn, q)^0 as n -> +oo.

If we choose p* efl, sothatd(pn, Bq) = d(pn, p%)thenp% -*p since pn.-+p as n -»+oo
by hypothesis. Finally pef i , since p* eB , for every « and !?„ is closed.

The proof that H is convex is rather long and we postpone it to Appendix 2.
Finally we conclude that H = H since L(F) = //(oo) and H is nonempty, closed,
convex and invariant under F. •

PROPOSITION 5.6. For each point peH the set Bp is a complete, totally geodesic
submanifold of H. {Compare with [10, p. 551])

Proof. Let p s H be given. To show that Bp is a totally geodesic submanifold it
suffices to show that if qu q2 are two distinct points of Bp then Bp contains the
entire maximal geodesic through qi and q2. The completeness of Bp will then follow
immediately since Bp is closed in H.

Let peH be given and let qu q2 be any two distinct points of Bp. Let y be the
unit speed geodesic of H such that y(0) = qi and y(c) = q2, where c =d(qi,q2).
Suppose that y(to)^Bp for some tQ>c or some fo<0. We consider only the case
t0 > c, but the other case is similar. Let

t* = sup{t>c:y(t*)€Bp}.

Then t*<t0 and q* = y(t*)eBp since Bp is closed. Let q = y(t0) and let r be the
foot of q\ on Bq. By lemma 5.5b of Appendix 2 it follows that qt is the foot of r
on Bp.

Next we show that r does not lie on the geodesic y. If r = y(t) for some t >t0

then d(q1,q)<d(qi,r), contradicting the definition of r. If r = y(t) for t*<t<t0

then rf(r, q2) < ^(^, <?i), contradicting the fact that qi is the foot of r on Bp. If r = y(f)
for 0 < f < r* then r e Bp and Bq=Br = Bp by proposition 5.5, contradicting the fact
that qiBp. Finally if r — y(t) for some f<0 then q\ = y{G) lies between r and
4 = Y('O) and hence q\€.Bq. By proposition 5.5 it follows that Bp=Bqi=Bq,
contradicting the fact that q£Bp. Therefore r does not lie on y.

Now consider the geodesic triangle in H with vertices qu q and r. The angle
at r is at least TT/2, for if it were smaller than -rr/2 there would be points on the
geodesic segment yr(J closer to q\ than r. Similarly since q\ is the foot of r on Bp

it follows that the angle of the triangle at q\ is at least IT/2. Therefore the sum of
the interior angles of the geodesic triangle is greater than IT, which cannot happen
in a complete, simply connected Riemannian manifold of non-positive sectional
curvature [13, p. 73]. The contradiction shows that every point of y must lie in
Bp, which completes the proof of proposition 5.6. D

PROPOSITION 5.7. H is reducible.

Proof. Let p, q be any two points of H. By propositions 5.5 and 5.6 the sets Bp, Bq

are minimally convex and moreover are complete totally geodesic submanifolds.
By lemma 5.5b of Appendix 2 the functions $^*d{$,Bq) and rf-*d(r],Bp) are
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constant on Bp and Bq respectively. Hence Sp(oo) = Bq(oo) regarded as subsets of
H(oo). If X = Bp(oo) for some point peH then <f>(X)=X for every <f> eF since
<f> (Bp) — B,j,p. Now since L(T) = H(oo) it follows from [6, prop. 2.2] that H is isometric
to the Riemannian product of Bp with another manifold. Therefore H is reducible.

•
6. Proofs of theorems A and B
For the statements of theorems A and B see the introduction. To prpve theorem
A it suffices by [6, prop. 4.6] to show that H is reducible. By proposition 5.7 H
is reducible, which completes the proof. We remark that the proof of proposition
4.6 of [6] involves showing that the manifold H in that situation is a symmetric
space and then applying the irreducible case of the Mostow rigidity theorem.

We now prove theorem B. Since M and M* are homotopically equivalent they
have the same dimension. We prove the theorem by induction on the dimension
n. The result is obviously true for n =2. Suppose now that the theorem is true for
all dimensions <iV and let M, M* have dimension 7V + 1. Let /, k denote the
number of factors in the de Rham decomposition of H, H*.

We represent M and M* as quotient manifolds H/T and H*/T*, where F, F*
are uniform lattices in H, H*. We shall use the induction hypothesis in the case
that both F and F* are reducible and shall use theorem A in the other cases.

We consider first the case that H or H* is irreducible; that is, / = 1 or k = 1.
Let H* be irreducible. We begin by showing that both F* and F are irreducible
lattices. Since F* and F are isomorphic it suffices to show that F* contains no finite
index subgroup G* that is a non-trivial direct product A*xB*. Suppose that such
a subgroup G* does exist. We note that G* has a trivial centre; if the centre of
G* were non-trivial then by [5, theorem 5.1] F* would contain Clifford translations
and by [18, theorem 1] H* would admit a non-trivial Euclidean de Rham factor,
contrary to our hypothesis. It now follows by [10, theorem 2] (see also [16, theorem
2]) that H*/G* splits as a non-trivial Riemannian product. Therefore H* is
reducible, contrary to our hypothesis.

We have shown that both F and F* are irreducible if H or H* is irreducible.
Assuming that H* is irreducible we now show that H is irreducible, which will
prove theorem B in the case that / = 1 or k = 1. By the discussion in § 1 we may
choose a finite index subgroup f of F that preserves the de Rham factors of H.
Then f is irreducible since F is irreducible. If H were reducible then it would
follow from [6, prop. 4.7] that H is a symmetric space of noncompact type. By
theorem A, M and M* would be isometric up to a constant multiple of the metric,
which would imply that H* is reducible, contrary to our hypothesis. Therefore H
is irreducible.

We consider next the case that both H and H* are reducible. To begin we
consider the case that one of the lattices F or F* is irreducible. If F is irreducible
then by [6, prop. 4.7] H is a symmetric space of noncompact type. By theorem A
we see that M and M*, hence also H and H*, are isometric up to a constant
multiple of the metric. Theorem B is obviously true in this case.
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Finally we consider the case that both F and F* are reducible lattices. Choose
non-trivial subgroups A, B of F and A*, B* of F* such that A is isomorphic to
A*, B is isomorphic to B* and the direct products A*xB*, AxB both have finite
index in F*, F. As we showed earlier, the group AxB has trivial centre. Hence
by the splitting theorem of [10] or [16] we have a non-trivial Riemannian product
decomposition H = H^xH2 such that A c / ( H , ) , B c / ( i / 2 ) and H/(AxB) is
isometric to (Hi/A)x(H2/B). Similarly H* is a Riemannian product H* xf{*
such that H*/(A* xB*)is isometric to (H*/A*) x (H*/B*). Applying the induction
hypothesis to the manifolds Hi/A, H*/A* and H2/B, H*/B* we conclude that
the number and dimensions of the de Rham factors of Ht equal those of Hf for
/ = 1, 2. The proof of theorem B is now complete, since the set of de Rham factors
of H or H* is the union of the de Rham factors of Hx and H2 or H* and H*
respectively. •

Appendix 1
In this appendix we give a detailed proof of proposition 4.1. It will be convenient
to break the proof into several lemmas which we state first and prove later. We
use the notation found in the statement of proposition 4.1.

LEMMA 4.1a. LetH* be a symmetric space of noncompact type, and letF*,... ,F*
be flat, totally geodesic imbedded submanifolds of H* of dimensions ru ..., rn. Let
F* = P|?=iFf be non-empty. Then for any number R*>0 there exists a number
T = T(R*, F*,..., F*) > 0 with the following property: let {pu ..., /?„} be points
of H such that

Pi e F* for every i

and

d(ph Pj)^R* for all 1 < /, / < n.

Then

d(phF*)<T foralll^i^n.

LEMMA 4.1b. Let y* be a maximally singular geodesic of H*, and let F*,..., F*
be r-flats of H* such that y*(U) = HUi Ff, where r is the rank of H*. Let R > 0
be the constant of proposition 2, and for each i choose an r-flat F, in H so that

i) where NR(Fi) = {qeH:d(q,Fi)<R}. Then
(1) (/»y*)(R)sF;
(2) there exists a constant A>0 such that

If S is any noncompact subset of a Hadamard manifold H we define 5(oo) to be
S n H(oo), where S denotes the closure of S in H -H KJH(OO) relative to the cone
topology of H, [8, § 2]. Equivalently, a point x eH(oo) lies in S(oo) if and only if
there exists a sequence {pn} s S such that pn -» x as n -* +oo.
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LEMMA 4.1C. Let F, Fu...,Fn be as defined in lemma 4.1b. Then F(oo)c
n?-i-fi(°o)- Moreover let x, y be distinct points o/F(oo)c//(oo). Then 4p(x, y) = v
for every point p e (Fi u • • • u Fn). In particular F(oo) contains at most two points.

One can also show that F(oo) = O"=i F,(oo) but we shall not need this fact.

LEMMA 4.Id. Let y* be a maximally singular geodesic of H*. Then

x = linw+co (/ ° y*)(t) and y = lim^+oo (/ ° y*)(-t)
exist in //(oo) and are distinct.

Assuming for the moment that the lemmas above have been established we prove
proposition 4.1. We first reduce to the case that Hd (/(F*),F')</?, where R is
the positive constant of proposition 2. Let y* be a maximally singular geodesic of
//*, and let F* be an r-flat containing y*(U), where r is the rank of //*. By
proposition 2 there exists an r-flat F" in H such that Hd (f(F*),F")<R. Now let
F ' be an r-flat in H such that Hd (/(F*), F') < oo. Then Hd (F', F") < oo. From the
work of [6, § 2] it follows that the functions £->d(g, F') and 17 -> d(-q, F") are constant
on F" and F ' respectively. Moreover if P: H -*F' denotes the orthogonal projection
then P is an isometry of F" onto F' . In addition if a is any maximal geodesic of
H contained in F", then P ° cr is a maximal geodesic of H contained in F' and a,
P °a bound a flat strip in H if F ' and F" are distinct. Therefore it suffices to prove
proposition 4.1, in particular part (2), in the case that Hd (/(F*), F') sR.

Part (1) of proposition 4.1 clearly follows from lemma 4.Id so we proceed to
part (2). It is easy to see from the discussion in § 3 of maximally singular geodesies
that one can find finitely many r-flats Ff , . . . , F* in H* such that y*(U) = n."=i Ff.
Clearly we may assume that the given r-flat F* that contains y* is one of the r-flats
Ff by setting F* = F*+l if necessary. Hence F' is one of the flats Fu ... ,Fn as
defined in lemma 4.1b. By lemma 4.1c we see that 4-p(x, y) = 7r for every point
p € F' , where x = lim,^+0O (/ ° y*)(0 and y = lim,_+co (/ ° y*)(-?). In particular y =
ypx (-00) for every p € F' . By lemmas 4.1b and 4. lc the points x, y lie inF(oo) c F'(oo),
where F is defined in lemma 4.1b. It follows that ypx(R) ^ F ' , which completes the
proof of Proposition 4.1. •

We now prove the lemmas 4.1a-4.1d.

Proof of lemma 4.1a. We proceed by induction on the integer n. Suppose for the
moment that the case n = 2 has been proved. Now consider n > 2 and assume that
the lemma is true for all integers m < n -1. Let Ff , . . . , F* be flat, totally geodesic,
complete imbedded submanifolds of H* of dimensions rit..., rn. Suppose that
F* = n . = i F* is nonempty.

Let R * > 0 be given arbitrarily. We construct a number

having the properties asserted in the lemma. Let G =F* nF*. Applying the lemma
for the case n = 2 we may choose a positive number A=A(R*, F*, F*) such that
if pf, pt are points of Ff, Ft with d(pf,pf)<R* then d(pf, G)<A for i = 1,
2. Now apply the induction hypothesis to G, F*,..., F* and choose a positive
number B=B(R*+A, G, F*,. . . , F * ) such that if p *e G and pf eFf, 3 < / < n ,
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are arbitrarily chosen points whose pairwise distances are at most R*+A, then

d{p*, F*) <B and d(pf, F*) < £ for 3 < i <n.

Finally let T = A+B.
We assert that T has the properties stated in lemma 4.1a. Let pi,... ,pn be

points of H such that Pi^Ff for every i and rf(p,,/?,)</?* for every 1 < J , / < n .
We show that d{pt,F*)<T for every i. Since d(puP2)^R* it follows that
d(Pi,p't)^A for / = 1, 2 and suitable points p'i, p'2 in G = F* nF*. Now consider
the points pi, p 3 , . . . ,pn. Clearly F* = G n(~)1=3F*. Moreover

d(p'uPi)<d(p[,Pi) + d(puPi)<R*+A for all 3 < / < n .

By the choice of B we may conclude that

d(p[,F*) <B andd(phF*)<B for all 3 < / < n .

Hence

Applying the same argument to the points p'2, p3,...,pn we conclude that
d(p2, F*) < T. Since

fora l l3</<«

the proof of the lemma is complete.
It remains only to prove lemma 4.1a in the case n = 2. Let F*, F* be distinct

complete, flat, totally geodesic imbedded submanifolds of H* of dimensions ru r2.
Suppose that F* = F* r\F* is nonempty. For each point qeF* let

6(q) = inf fcdh, v2): vt e rq(Ff) and u, is orthogonal to Tq(F*) for i = 1, 2}.

We assert that 6 = 60>0 in F*. We observe that 6{q) > 0 for every q e F * since the
submanifolds F*, F* are distinct, totally geodesic and have F* as their intersection.
We let q, q* be distinct points of F*. Let

begivenfon = l,2andlett;f e 7\,* (//*) be obtained by parallel translation of vt^ along
the geodesic segment from q to q*, which is contained in F*. Then

v*£Tq*(Ff)nTq*(F*)± for/= 1,2

f F* are totally geodesic Hence 4(«i v2) = 4(^* v*)since Ff, F* are totally geodesic. Hence 4-(«i. v2) = 4-(^*, v*), and it follows that
0 = 6o>0\nF*.

Now let /? * > 0 be given and define

We show that T has the property asserted in the statement of lemma 4.1a when
n = 2.

Let pu p2 be points of H* such that p, eFf for / = 1, 2 and d(pu p2)<R*. We
show that d(pi, F*) < T for i = 1, 2. Let P:H*^F* denote the orthogonal projec-
tion, and let qt = P(p() for / = 1, 2. Let

F*) for/ = 1,2.
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We may assume that both t\ and t2 are positive for otherwise we are done
immediately. For / = 1, 2 let

be that unit vector such that p, = expfli (f,u.). Let v* be the vector obtained by parallel
translation in H* of v2 along the unique geodesic from q2 to q\. Note that

vUTqi(Ff)nTqi(F*)\
It follows that

by the definition of 60 above.
Let p* = exp<I1(f2D*) and consider the geodesic triangle A in H* with vertices

q\,P\,p* and vertex angle a at qlm By definition we see that

The Euclidean geometry of F* shows that

d(pi, Pi) = d(qu q2) = d{Ppu Pp2)

by [1, lemma 3.2]. If c = d(p\, p*), the length of the side of A opposite qi, then

c £d(pup2) + d(p2,P2)s2R*.
Since ti = d(p\, q{) we may apply the law of cosines, as stated in [8, p. 47] or [13,
p. 73], to A and conclude that

c2>t\+t\- 2txt2 cos a > t\ +12 - 2fi/2 cos 00

-cos 00).
From the inequalities above we see that

c2>8tit2, where«5 = 2(l-cos0o)>O
and

|f1-f2 |<c<2/?* since c2>{ti~t2f

From these inequalities we see that t2 > ti - 2R * and

Therefore

and hence

|f

We conclude that

tl

This shows that

Similarly

d(p2,F*) = d(p2, q2) = d(pt <7i) = ' 2 s r ,

which completes the proof of the lemma for the case n = 2. •
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Proof of lemma 4.1b. Assertion (1) is clear from the definition of F. We prove (2).
We suppose that F is not contained in NA(fy*W) for any positive number A and
derive a contradiction. Choose a sequence {pk}c,F such that

d{pk,fy*(U)) = rk^+ao ask-*+oo.

Now fix an integer k >0. By the definition of F we can find points p'k, 1 < I <n,
such that d{pk, p'k)<R and p'k ei*) for every i.

Let g:H->H* be a 0~x-equivariant pseudoisometry. By the discussion of § 1
there exists a constant Mi > 0 such that

(1) d(p*,gfp*)^M1 forallp*Eff*.

By the uniform continuity of g there also exists a positive constant M2 such that

(2) d(gp,gq)<M2 iid{p,q)<2R,

where p, q are points of H, and R is the constant of proposition 2. From (2) we obtain

(3) d{gpk, gp'k)^M2 for 1 < i <n.

Similarly since rf(pic,pi)^rf(p<c,Pic) + d(pk,p'k)<2/? for l s / , / < n the inequality
(2) also yields

(4) rf(gpL, gpi)<M2 for 1 < i , / < « .

Next, since Hd (f(Ff ),Fi)<R for l < i < n we can find points qkeF* such that
d{fq'k,p

(k)^R for all l < / < n . From (2) we obtain

(5) d(gfq'k, gp'k)^M2 for l s i < B .

For l < / , / < n we observe from (1), (4) and (5) that

d(qk, ql)^^(<7ic, gM) + d(gM, gpl) + rf(gp!, gpl) + rf(gpl, g/qi) + ̂ (g/^i, q'k)

< Mi+M2 + M2+M2+Mi = 2M1 + 3M2.

Hence we obtain

(6) d (q L, q'k) s 2Mt + 3M2 for all 1 < i, / < «.

By hypothesis y*(R) = (~]"=iFf and hence by lemma 4.1a we can find a number

T = T(2Mi + 3M2,Ft,... ,F*)>0

such that d(qfl, y*(R)) =£ T for all 1 < i <n. This inequality holds for any choice of
k since the inequalities (l)-(6) do not depend on k. Therefore we obtain

(7) d(q[, y*(R)) < T for all k and all l < / < n .

We conclude the proof of lemma 4.1b by obtaining a contradiction to (7). Since
d(Pk,fy*(R)) = rk-++co it follows from the fact that g:H-*H* is a (£ r)
pseudoisometry for some positive constants £, f that

for all teU and all integers fc so large that rk>r. Let ko>0 be chosen so that
the inequality above holds for all k >k0. Since d(gfy*t, y*t)<Mi for every t by
(1) we obtain

(8) d(gpk, y*(U)) > ( 1 / | K -Mx for all jfe > jfe0.
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For any 1 < / < n and any positive integer k we see from (1), (3) and (5) that

d(gPk, q'k)^d(q'k, gfq'k) + d{gfqk, gp'^ + digpi, gPk)

< Mi + M2+M2 = 2 M2+Mi.

Hence for any t e R and any integer fc > &0 we obtain

diql y*t)>d(gpk, y*t)-d(gPk,q'k)2(l/i)rk-(2Mi + 2M2)

by (8) and the previous line. Thus we have

(9) d(qk,y*W)>(l/£)rk-(2Mi + 2M2)

for all k > k0 and all 1 == / < n.
Since rfc -» +oo we find that (9) contradicts (7) for large k. This contradiction shows

that F s NA(fy*(R)) for some positive number A and completes the proof of lemma
4.1b. •
Proof of lemma 4. lc. Let an integer / with 1 < / < n and a point p e F be fixed. Let
R' = d(p,F). We show first that the geodesic ray ypz[0, oo) is contained in NR'(F) nFi
for any point z eF(oo) = FnH(oo), where F denotes the closure of F in H = H u
//(oo) relative to the cone topology [8, § 2]. It then follows immediately that
F(oo)sF;(oo).

Let 2 eF(oo) be given, and let {/?„}£ F be a sequence converging to z. By the
convexity of the function g->d(q,F) (see § 1) it follows that for every point q on
the geodesic segment yPPn we have

d(q,F)<max{d(p,F),d(Pn,F)} = R'.

Therefore for any point r>0we have

d(ypzt, F) = lim d(yppj, F) < R',
n-»oo

or equivalently, ypz[0, oo) cNR{F). We show that yp2[0, oo)cF,, which shows that
yPz[0,ao)cNR.(F)nFi and also that zeF((oo). Since {pn}sFsNR(Fi) we may
choose a sequence {<?„}s F so that d(pn,qn)sR for every n. The geodesic segments
yPQn are contained in F since F is convex, and hence ^ [ 0 , oo) c F since F is closed
and z = limn-,oo pn = limn̂ .oo qn. In particular z e F(°o).

Now let x, y be any two distinct points of F(oo), and let p be any point of Ff.
We shall assume that 0<4-P(*, y)<7r and obtain a contradiction. If R' = d{p,F)
then it follows from the discussion above that the geodesic rays ypx[0, oo) and
yPy[0, oo) are both contained in NR{F)nFi. The set A / R ( F ) O F is clearly closed
and is convex by the convexity of the function q-*d(q, F). Let A, denote the smallest
closed convex subset of H that contains both ypx[0, oo) and -ypv[0,oo). Clearly
A, s A r

R ( F ) n F . If we regard F as a Euclidean space of dimension r > 2 and let
R2 denote the subspace of F spanned by the unit vectors V(p, x) and V(p, y) (see
§ 1), then A, is an infinite triangular sector in R2 with vertex p, since R2 is a closed
convex subset of H.

From the previous paragraph and lemma 4.1b we obtain

(1) A,- c NR.(F) £ iV(R.+A)(/y*R)
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for a suitable positive number A that does not depend on /. Now let B >R'+A
be given. We show that there exists qeA, such that d(q,fy*M)*zB. This will
contradict condition (1) above and will allow us to conclude that 4P(*» y) = T f°r

all points p e F, and every 1 < i < n.
We assert that there exist positive constants Pi and p2 such that the Euclidean

area in R2 of R2 n [NB(fy*[-t, t])] is at most pit+p2 for all numbers t > 0. Assume
for the moment that this assertion has been proved. By hypothesis / : H* -* H is a
(£*, r*) pseudoisometry for some positive constants £*, r* and it follows that

(l/€*)\t-s\*zd(fy*t,fy*s)*€*\t-s\ whenever |r-s|==r*.

Now fix a positive number t so large that

Let Si and S2 be those positive constants such that

/3if* + /32 = Sif + <52

for every number t. Now choose t even larger if necessary so that

at2/2>S1t + S2,

where 0 < a =4-P(*, y)<'"'-
We assert that there exists qe A, such that d(p,q)<t and d(q,fy*U)^B. As we

explained above this will contradict condition (1). For each positive number s let

The set A,(s)sR2 is a circular sector of radius s and vertex p whose Euclidean
area in R2 equals as2/2. It follows that if t is chosen as in the paragraph above
then A,(f) is not contained in U2n[NB(fy*[-t*, t*])] since

area A,(0 = at2/2>8it + 82 = Pit*+p2

>areaR2n[iVB(/y*[-f*,f*])].
We may therefore choose a point

By the choice of q it follows that if

\s\*t* =
then

d(q,fy*s)s:d(q,fy*[-t*,t*J)>B.

On the other hand, if \s\ > t* then

d(q,fy*s)>d(fy*0,fy*s)-d(p,q)-d(p,fy*0)

*{l/€*)\s\-t-d(p,fy*0)

s:(l/€*)t*-t-d(p,fy*0) = B.

Hence d(q, fy*U)s:B >R'+A, which contradicts condition (1).
It only remains to show that there exist positive constants f}lt f}2 such that area

R2n[ATB(/y*[-r, f])] is at most Pit + /32 for all positive numbers t. By the uniform
continuity of /:H* -*Hwe can choose a positive constant Mi such that d(fp, fq) <
Mi whenever d(p, q) :£ 1. For every integer k we let pk denote fy*(k).
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Let a positive number t be given and let m be the largest integer <f. Let Dk

denote the closed ball in H with centre pk and radius Mi + S. We show that

NB(fy*[-t,t])<= U £>fc.
k = — m

First let s e [-m, m] be given, and choose an integer k e [-m, m] so that \k -s\ s 1.
It follows that

Similarly if m <s <f then d{fy*s,pm)<M1 and d(/y*(-s),p_m)<Mi. Hence
m

Afe(/y*[-',*])£ U £>*•

It follows that

R2n[NB(/y*[-u])]c U (DknR2).
k = -m

If £)k n R2 is non-empty we choose a point ake.Dkn R2 and define

£>£={<?€ R2: <*(<?, a,) <2(MX+£)}.

Clearly £>k n R2 s£)* and hence

area (Dk n R2) < area (D J) = AniMt +B)2.

We conclude that

areaR2n[JVB(/y*[-r, f])]< I area(£>fc nR2)<(2m + l)4-rr(Ml+B)2

< (2f + l)4ir(Afi +B)2 = ^i^ +/32,
where /3i = 8 T T ( M I + S ) 2 and /32 = 47r(Af1+S)2. The proof of lemma 4.1c is now
complete. •

Proof of lemma 4. Id. Let y* be a maximally singular geodesic of H*. Clearly the
geodesic cr*(t) = y*(-t) is also maximally singular. We show first that x =
lim,_n.oo (/ ° y*)(t) exists, and from this it follows that

y=lim(/°y*)(-f)= lim (f°**)(t)

also exists. Finally we show that x 7s y.
Clearly the curve t-*(f°y*){t) ultimately leaves any compact subset of H as

f-» +oo since / is a pseudoisometry. Hence if {fn}sR is any sequence such that
tn -» +oo as n -*• +oo then there is a subsequence {tnk} such that (/ ° y*)(tnk) converges
to some point of H(oo) as k -» +oo. Suppose now that lim,-,+co (/ ° y*)(t) does not
exist. Then we can find distinct sequences {sn}-+ +oo and {*„}->• +oo such that

(f'y*)(sn)-*z1eH(ao)

and

It suffices to construct a sequence {r,,}-> +oo such that
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a point distinct from zx and z2, for then F(oo) will contain the three points z\, z2

and z3, contradicting lemma 4.1c. We recall that ( /°y*)(R)sF by lemma 4.1b,
and hence z, 6 F(oo) for 1 < / < 3.

By passing to a subsequence if necessary we may assume that sn ^ tn for every
n. It follows that sn<tn for large n since z i ^z 2 . By continuity we may choose
rne(sn,tn) so that

Zp(fv*smfy*rn) = HP(fy*rn,fy*tn),
where p is a fixed point in H. Let an denote this common angle. Since zx # z2 there
exists e > 0 such that

HP(fy*smfy*tn)>e>0 forlargen.

Hence an s e/2 for large n since

By passing to a subsequence fy*rn -* z3 e F(oo) and

4-p(23, zi) = 4-pUs, 22) = Hm an > e/2.
n-»ao

Therefore Zi, z2, z3 are distinct points of F(oo), which contradicts lemma 4.1c. It
follows that x = lim,̂ +ao (/ ° y*)U) exists in H{<x>).

To complete the proof of lemma 4. Id it only remains to show that x, y are
distinct points of F(oo). Suppose that x=y. Let iV i f -^F i be the orthogonal
projection, and let a-\{t) = P\(fy*t). We show first that there exist positive constants
c\, c2 and rt such that

if \t - s| > /"i. By hypothesis f :H*-* H is a (£*, /•*) pseudoisometry which means that

(l/!*)|r-s|<d(/y*r,/y*s)<;f*|f-s| whenever | f - s |> r*.

Also by hypothesis we have Hd (f(F*), Fx) < /? which means that

• d(a-1t,fy*t) = d{fy*t,F1)<R for every t.

The existence of the constants c\, c2 and n that satisfy the inequalities above is
now clear.

Let q =CTI(0) and choose sequences {/„}-» +°o and {sn}-»+oo such that

d(q, cri(tn)) = d{q, o-i(-sB)) = n

for every positive integer n. Note that since d(cr\t,fy*t)<R for every f we have

x = lim(/°y*)(O=limo-1(fn)
n*oo n*oo

and

>^(x, y) = 0asn
then by the usual Euclidean law of cosines in F t we obtain d\ = 2n2(l -cos #„) or

y = lim (f°y*)(sn)= lim (n(-sn).
n-»oo n-»-oo
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On the other hand we know that for large n we obtain n = d{o-\{0), cri(-.sn ))<c2sn

and n =d(cri(0), ori(rn))<c2^. Hence for large n we obtain the inequality

3= ci[(n/c2) + («/c2)] = n (2ci/c2).

Therefore ^n/n s2c i / c 2 >0 for large n, which contradicts the conclusion of the
previous paragraph. This shows that x 5* y and completes the proof of lemma 4. Id.

•
Appendix 2
In this section we give the proofs of various results in § 5.

Proof of proposition 5.1. We begin with the following:

LEMMA 5.1. Let H be an arbitrary Hadamard manifold, and let x, y be arbitrary
distinct points of H(<x>). Let Cxy denote the set union of all geodesies of H that join
x to y. Then Cxy is a closed convex subset of H. If H admits no Euclidean de Rham
factor, then Cxy is always a proper subset of H. If p is any point of Cxy then

L(p,x)nL(p,y) = B(p,x)nB(p,y)

is a closed convex subset of Cxy, and Cxy may be naturally identified with the set
Ux{L(p,x)nL(p,y)}.

Proof. We recall from § 1 that L(p, x), B(p, x) denote respectively the horosphere,
horoball determined by p and x with similar meanings for L(p, y), B(p, y).

It is obvious that Cxy ={p eH: %-p(x, y) = IT}. Let fx, fy be arbitrary Busemann
functions at x, y and let /* =fx +fy. Then /* is a C2 convex function by [12, prop.
3.1] and

(gradf*)(p) = -V(p,x)-V(p,y) for every point p

by [8, prop. 3.5] or [4, prop. 2.6]. Recall from § 1 that V(p, z) = yp2(0) for any
points peH and z e//(oo). It follows that Cxy is the set of minimum critical points
of/*, which is a closed convex subset of H since /* is convex. If H has no Euclidean
de Rham factor then Cxy is always a proper subset of H by [2, theorem 2.1 and prop.
2.2].

Now let p be any point of Cxy. The set B (p, x) n B (p, y) is a closed convex subset
of H since both sets B(p,x) and B(p,y) are closed and convex. We show that

B(p,x)nB(p, y)=L(p,x)nL(p, y).

Clearly L(p,x)nL(p, y)sB(p,x)nB(p,y) by the definition of these sets and so
it suffices to prove the reverse inclusion. Let qeB(p,x)nB{p,y) be given, and
let /*, g* be Busemann functions at x, y. We may assume that q^p and let <r
denote the geodesic segment y^. Since /*(<?) ^/*(p) by the definition of q it follows
that the convex function /* ° a is non-increasing. Hence

0 > (/* o o-)'(O) = <o-'(0), grad f*(p)) = -<o-'(0), V(p, x)) = -cos *.p(q, x).
It follows that £p(q, x) < IT/2 with equality if and only if (/* ° o-)'(O) = 0. Similarly
4P(<7, y)<7r/2 since g*(q)^g*(p) with equality if and only if (g*°o-)'(0) = 0. Since
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p lies on a geodesic from x to y it follows that

Therefore
ttp(q,x) = XrP(q,y) = ir/2

and (/*°cr)'(0) = (g*°cr)'(0) = 0. Since f*°a, g*°a are non-increasing and
(/* ° cr)" 2 0, (g* ° a-)" > 0 it follows that /* ° cr and g* ° a are constant. In particular
f*(p)=f*(q) and g*(p) = g*(<7), which shows that qeL(p,x)nL(p, y). Therefore

B(p,x)nB(p,y)<=L(p,x)nL(p,y)

and equality follows immediately.
We show that B{p,x)nB(p,y)c.Cxy for every point peCxy. Let /* be a

Busemann function at x. By [2, lemma 3.2a] it suffices to show that /* is constant
on B(p, x) nB{p, y) = L(p, x) nL(p, y), but by definition /* is constant on all
horospheres at x.

We conclude the lemma by showing that Cxy can be identified with the set
Rx{L(p, x)nL(p, y)} for any point p e Cxy. Let p e Cxy be given, and let

P:H-*B(p,x)nB(p,y)
denote the orthogonal projection. Let /* be the Busemann function at x such that
f*(p) = O.We define

G:Cxy^Rx{B(p,x)nB(p,y)} by G(q) = (f*(q),P(q)).

We assert that G is a homeomorphism, which will complete the proof of lemma 5.1.
Clearly G is continuous. We assert that q =yq*x(-t) for every qeCxy, where

q* = P(q) and t =f*(q). This will prove that G is one-one. Moreover if we define

G*:Mx{B{p,x)nB{p,y)}-+Cxy by G*(t, q*) = yq*x(-t),

then it will follow immediately that G* is a continuous inverse of G. Now let g*
be the Busemann function at y such that g*(p) = 0. It follows that/* + g* = O on
Cxy since Cxy is the minimum locus of /* + g* by the first part of the proof of lemma
5.1.

Let qeCxy be given arbitarily, and let q* be the unique intersection point of
y,x(R) with L(p, x). Then f*(q*) = 0 since q*eL(p, x), and hence g*(q*) = 0 since
f* + g* = 0 on Cxy. Therefore

q*eL(p,x)nL(p, y) = B(p,x)nB(p, y).

If q is any point of L(p,x)nL(p,y)cL{p,x), then d(q*,q)-^d(q,q) since q* is
the unique point on L(p, x) that is closest to q, by [8, prop. 3.2]. Therefore q* = P(q),
the foot of q on B{p,x)nB(p, y) = L(p,x)nL(p, y). By [3, prop. 2.8] it follows
that q = yq*x(-t), where q*=P{q) and t=f*(q). The proof of lemma 5.1 is
complete. •

We begin the proof of proposition 5.1. Recall from § 4 that for / = 1, 2 the set Sf
is the set of maximally singular points in H* (oo), where H* = H* xH*- Fix points
y*eS* and p*eH*. Let y* be the geodesic of H* such that y*(0) = p* and
y*(oo) = y*. By proposition 3.1 y* is maximally singular and by proposition 4.1
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the points y = limt-,+0o (f°y*)(') and z =lim,^+0O (/» y*)(-f) exist in //(oo) and
are distinct. Moreover there exists a point q e H such that 4-<,(y, z) = TT. NOW let

Since / / has no Euclidean de Rham factor it follows from lemma 5.1 that C is a
nonempty, closed, convex, proper subset of H.

The function q->d(q, C) is a convex function in H by the discussion of § 1, and
hence for every positive number a the set

is a nonempty closed convex subset of H. The set Na{C) is also proper since
q-*d(q, C) cannot be bounded above in H without being constant in H. To prove
that Bp is a proper subset of H for any point p e H it suffices to show that
BP<=NR{C), where

and R >0 is the constant of proposition 2. By the definition of Bp it suffices to
show that ypx(U)zNR{C) for every x eS1zH(<x>), where Si is defined in §4. By
proposition 4.3 it suffices to show that yp*[0, oo) c NR.(C) for every JC 6 Si. It suffices
to consider points x in f(S*) since /(S*) is dense in Si.

Let xe / (Sf ) and p e / / be given. Let R'= R+d{p,fp*). We show that
yPx[0, oo) S N R - ( C ) . Choose x*€S* so that /(JC*) = ;C. Let y* be the geodesic of
/ /* such that y*(0)=p* and y*(°o) = ;t*. By propositions 3.1 and 4.1, y*
is maximally singular in H* and the points x =lim,.,+0O (f°y*)(t),
w = limr_,+co (/ ° y*)(—/) exist and can be joined by a geodesic of H.

The first step in proving that ypx[0, oo) QNR<(C) is to show that there exists in
H an r-flat F, where r is the rank of H*, such that FgC = Cyz and 4-,(JC, w) = IT

for every point qe f . Since H*=H* xH* we may write p* = (p*,p*) where
p* e / / f for / = 1, 2. The geodesic y* may be identified with a geodesic of H*
that starts at p* since y*(oo) = x*eH* (oo). Similarly the geodesic y* defined
earlier may be identified with a geodesic of H* that starts at p*- For / = 1, 2 let
r, denote the rank of Hf, and let F* be an rrflat that contains y*(R). Note that
r = ri + r2. If F*=F* x F* then F* is an r- flat in H* that contains both y* (R) and
yf (R). By proposition 2 we can find an r-flat F of H such that Hd (/(F*), F) </?.
By proposition 4.1 we have

for every point q € F, which shows that F c.C = Cyz.
We show next that

Let P:H-*F denote the orthogonal projection, and let q =P(fp*). Then

d(p,F)sd(p,q)

d(p,fp*) + R = R'.
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Finally we show that ypx[0, oo)cATR,(C). Let a(t) = yrx(t), where r = P(p)eF. Note
that cr(R) s F by proposition 4.1. Recall that the function t -+d(ypxt, cr(R)) is convex
and bounded above for t > 0. Hence this function is non-increasing in t. Since F c C
it follows that for every (>0we have

d(ypxt, C) <d(ypxt, F) < d(ypxt,

y p ( ) ) ( p , ( ) ) { p ) ( p , )

Therefore ypJ[[0, oo) ^NR'(C), which completes the proof of proposition 5.1. •

Proof of proposition 5.4. We first need the following:

LEMMA 5.4. For every point peH there exists a number A >0, possibly depending
on p, such that if r&Bp is given arbitrarily then d(p, Br)<A.

Assuming for the moment that the lemma has been proved we prove the proposition
5.4. Let p be any point of H and let A >0 be chosen as in the lemma above. Let
h :BP -» R be given by h(r) = d(p, Br). We shall show that h has a maximum value
at some point r*eBp. If r** is the foot of p on Br* we then show that Br*» is a
minimally convex set. We show first that h is continuous. It suffices to prove that

\h(r)-h(s)\^d(r,s)

for all points r, s in Bp. Let r, s be given in Bp. Let r* denote the foot of p on Bn

and let s* denote the foot of r* on Bs. Then

In the second to last inequality above we apply lemma 5.5a, which is proved later
in this appendix, to the points r and r*eBr. The inequalities above show that

d(p,Bs)-d(p,Br)<d(r,s).

Reversing the roles of r and s we obtain

d(p,Br)-d(p,Bs)<d{s,r),

which proves \d(p, Br)-d(p, Bs)\<d(r, s).
By the previous paragraph and lemma 5.4 it follows that h is continuous and

bounded above on Bp. We show that h has a maximum value on Bp. Let {rn}sBp

be a sequence such that

A(/•„)-»sup h <A asn-»+oo.

Let r* be the foot of p on Brn. By proposition 5.2 Br*cBrn and hence

d(p, Br*) ̂ d(p, BTn) for every n.

It follows that h (/•*)-» sup h as n -* +oo. Moreover

d{p,rt) = d(p,BrJ<A for every n,

where A >0 is the constant of lemma 5.4. Passing to a subsequence we may let
{r*} converge to a point r*eBp. By the continuity of h we see that h(r*) = sup A.

Finally let r** be the foot of p on Br». We assert that Br»* is minimally convex.
Let q be an arbitrary point of Br**, and let q*eBq be the foot of p on i?q, Since h
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has its maximum value at r* it follows that

d{p, q*) = dip, Bq) < dip, Br.) = dip, r**).

By proposition 5.2 we have BqcBr**zBr*. In particular q*sBr*. Since dip,q*)s
dip, r**) as we showed above and since r** is the unique point in Br* that is closest
to p (§ 1) it follows that r** = q*e Bq. Therefore 5 r« s Bq by proposition 5.2. We
also know from proposition 5.2 that Bq sBr«. since q is denned to be a point of
Br»*. Therefore Bq = Br**, which shows that Br** is minimally convex.

We now prove lemma 5.4.

SUBLEMMA 5.4a. Let H be an arbitrary Hadamard manifold, and let x be any point
of Hi<x>). Let Z denote the unit vector field in H given by

Let 7 : [0, c ] -» H be a unit speed geodesic such that

^.iy't, Ziyt)) = 6>0 for every 1e [0, c].

IfD = [0, oo) x [0, c] we define F.D^Hby

Fis,t) = expytisZiyt)).

Then F(D) is a closed, flat, totally geodesic imbedded surface with boundary in H.

SUBLEMMA 5.4b. Let H be a Hadamard manifold satisfying the hypotheses of theorem
A and let y be a maximal geodesic of Hsuch that y[0, oo) £i?p, where p = y(0). Let
z = -y(oo). Then there exists xeSi and teU such that 4-yr(jc, z) # IT 12.

Assuming for the moment that the sublemmas have been proved we begin the
proof of lemma 5.4. Since the proof is rather long we give an outline. Suppose that
lemma 5.4 is false for some point peH, and let {qn}QBp be a sequence such that

dip, BqJ = rn^+oo asM->+oo.

Let q* be the foot of p on BQn, and let {q*} converge to a point ze//(oo) by
passing to a subsequence. If yit) = ypzit) we show that $.ytix,z) = ir/2 for all t >0
and for all x eSi. Moreover if B, denotes Sy«) for f >0 then B, contains y[t, oo)
for every f>0. Now choose a sequence {<£„}£ F, the deckgroup of the compact
manifold M = H/T, so that, by passing to a subsequence if necessary, p* =
i<f>n °y)(n) converges to a point p*eH and <f>nz converges to a point z*e//(oo).
If j8=7p*z* then /3[0, oo)cSp. and ^.pt(x,z*) — ir/2 for every xeSi and every
teU. This will contradict sublemma 5.4b and will complete the proof of lemma 5.4.

We now fill in the details. Suppose that lemma 5.4 is false for some point p e / /
and let {<?„}£Bp, {q%}^H and ze/f(oo) be denned as above. By lemma 5.5a,
proved later in this section, the geodesies ypxiU) and vq;x(R) bound a flat strip Fn

in H for every n, x s Si (See [8, § 5] or [9, Cor. 4.2] for a definition and discussion
of flat strips.) Hence if yn denotes the unit speed geodesic yM; then by the Euclidean
geometry of Fn we have

), x) = ir/2 for all t e [0, tn],
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where tn = d(p, q*) -» +00 as n -* +00. By continuity it follows that 4Y,(z, x) = IT/2 for
alW > 0 and all x e Si where y(t) = ypz (f).

Next we prove that B, = ByU) contains y[t, 00) for every t > 0. We show first that
y[0, 00) c Bp. Since q*<=BqnzBp it follows that yn[0, / n ] s S p for every n by the
convexity of Bp. Then since y!,(0)-»y'(0), fn->+oo and SP is closed it follows that
y[0, oo)sBp. Now fix(>0 and let s >t be given arbitrarily. Let g(s) be the foot
of y(s) on B,. By lemma 5.5a below we have

a constant independent of s. Since this inequality holds for every j > ( w e obtain

lim £(s)= lim y(s) = z.
s-*+oo s-*+ao

For every s >f the geodesic segment from y(0 to £(s) is contained in B, by the
convexity of Bt. Letting 5 -» +00 it follows that y[t, 00) c S, by continuity and the
fact that B, is closed.

Since M = H/T is compact there exists a sequence { ^ } g r so that p* = (<£n ° y)(n)
is a bounded sequence in H. Define

Since £1 is invariant under T it follows from the work above that for every n we
have 4/3n,(x, <t>nz) = TT/2 for every x e Si and every t > -n. Moreover

/3n[0, 00) <= <£„(#,,(„,) = BP. for every n.

Passing to a subsequence let p* =/3n(0) converge to a point p*eH and let <£nz
converge to a point z*eH(oo). If /3=yp*z» then p'n(O)^fJ'(O) as n^+00. By
continuity it follows that 2^e,(x, z*) = -rr/2 for every x e Si and for every if e R.

To obtain a contradiction to sublemma 5.4b and complete the proof of lemma
5.4 it only remains to show that /?[0, 00) c B*. Let r s 0 be given and let an be the
foot of /3nf on Bp*. Since /3n[0, 00) c s p . it follows from lemma 5.5a below that

tHfint, an) = d{fint, Bp*)<d{pt, B*)<d{p$,p*)->0 as n ^ +00.
Therefore limbec an =limn .̂oo/3nf = /3f. Hence /8f eB* for every f>0 since Bp* is
closed.

We now prove the two sublemmas beginning with 5.4a. We adopt the notation
in the statement of sublemma 5.4a. We show first that F: D -» H is a Cl imbedding.
The vector field Z is C1 by [12, prop. 3.1], and hence F is C1. It is clear that F
is one-one and F(D) is a closed subset of H. It remains to show that F is nonsingular
on D. Let rj(s, f) and r,(s, t) denote respectively F*d/ds(s, t) and F^d/dtis, t). Note
that \\rs(s, 0|| = 1 in ^ since the s-parameter curves are geodesies of //. From [12,
prop. 3.2] it follows that r,(s, t) is never zero and never collinear with rs{s, t). Hence
F is nonsingular on D.

We show next that t -*Z(yt) is a parallel vector field on y[0, c] or equivalently
that (Vr/s)(0, 0 = 0 in [0, c]. Here V denotes covariant differentiation in H and
(Vr,rs)(0, t) is shorthand for the covariant derivative of t -*rs(0, t) along the curve
t-*F(0, t). The fact that t-*Z(yt) is a parallel vector field will show that it is C°°
and will imply that F: D •* H is actually a C°° imbedding.
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Let /* be a Busemann function at x. The function /* is C2 and convex by [12,
prop. 3.1] and grad/* = - Z by [8, prop. 3.5] or [4, prop. 2.6]. The bilinear form

(v, w)^(V2f*)(v, w) = <Vu grad/*, w)

is symmetric for any C2 function /* and the convexity of /* is equivalent to the
condition that this form be positive semidefinite. By hypothesis

cos 0 =cos (Uy't, Z(yt))) = (y't, Z{yt))

for every t e [0, c]. Hence

for every t € [0, c]. It follows that

Vy;Z = -Vy, grad /* = 0 on [0, c ]

since V2/* is positive semidefinite and symmetric.
Now let g :£> -» U. be given by g(s, ?) = ||r,(s, 0||2- Since the curves • -*F(s, t) are

unit speed geodesies it is routine to compute that

dg/ds = 2(Vr/,, r,)

and

d2g/ds2 = 2{||Vr/,||
2 - (R (rs, r,)rs, r,)} > 0,

where R denotes the curvature tensor of H. The fact that Vy-,Z = 0 in [0, c] means
that (dg/ds)(0, f) = 0 in [0, c]. Since d2g/ds2>0 it follows that dg/ds >0 for s > 0
and 5 -* g(s, t) is non-decreasing on [0, oo) for each 16 [0, c]. On the other hand it
follows from [12, prop. 3.2] that s -* g(s, t) is non-increasing on [0, oo) since s -> r,(s, t)
is a stable Jacobi vector field on the geodesic s->F(s, t). Hence g is constant in D
and d2g/ds2 is identically zero on D = [0, oo) x [0, c]. From the expression for 82g/ds2

it follows that

Vrr, = 0 and (/?.(/„ r,)/-s, r,) = 0 in D.

To show that F is totally geodesic it suffices to show that Vr,r, = 0 in D, since Vr/S s 0
in £> by the fact that the s -parameter curves of F are unit speed geodesies of H.
It will then follow that F(D) is flat by the curvature equality above, and this will
complete the proof of the sublemma.
Define h(s, t) = ||Vr,r,||

2(s, t). We compute

= 2(Vr,(Vr/(), Vr/,> + 2(R (/•„ r,)rh Vr/,).

The first term vanishes since Vr/, = 0. The second term vanishes since R(/•„ rs)r, = 0;
this follows since the linear transformation v-*R(r,, v)r, is symmetric and negative
semidefinite, and (R (r,, rs)r,, rs) = 0. Therefore Bh/ds = 0 in D. We recall that h (0, t) =
0 on [0, c] since t -»F(0, t) = y(t) is a geodesic of H. Therefore h = 0 on D, which
proves that F is totally geodesic and completes the proof of sublemma 5.4a.

We prove sublemma 5.4b. Suppose that the sublemma is false. Then we can find
a maximal geodesic y in H such that y[0, oo)cBp, where p = y(0), and 4.Y,(x, z) =
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TT/2 for every re R and every x eSi, where z = y(oo). If x e5i is fixed, then by
sublemma 5.4a the set F = F([0, oo) x R) is a closed, totally geodesic flat half-plane
whose boundary is y(R). Moreover yp*[0, oo)cf. Since yp:c meets y orthogonally
at p it follows from lemma 5.1 and the Euclidean geometry of F that
yPx[0, oo) is contained in the proper, closed, convex subset L(p,z)nL(p,w) =
B(p, z)nB{p, w), where w = y(-oo). By proposition 4.3 we know that ypi(-oo)e Si,
and hence

yP*(-°o, 0]cB(p,z)nB(p, w)

by the argument above. It follows that every geodesic ypx(R) is contained in
B(p, z)nB(p,w) = L(p, z)nL(p, w) as x ranges over Si. Since Bp is the closed
convex hull of these geodesies it follows that Bp^L(p, z)nL{p,w)c.L(p, z).
However, by hypothesis y[0, oo)cBp, which contradicts the fact that y(R) meets
L(p, z) exactly once at the point p [8, p. 57]. This contradiction proves sublemma
5.4b, and this completes the proof of proposition 5.4. •

Proof of the convexity of H in proposition 5.5. The idea of the proof is simple but
the technical details are annoying. Let r be an interior point of a geodesic segment
joining two points p, q of H. Let p' be the foot of r on Bp. Let r* be an arbitrary
point of Bn and let f be the foot of p' on Br*. We show that r = f by showing that
both points lie on the perpendicular from p' to Bq at equal distances from p'. It
then follows from proposition 5.2 that Br = Bf and hence reH. We need the
following two lemmas:

LEMMA 5.5a. Letp, r be any two points of H. Then d(q, Br) < d(p, Br) for every point
q e Bp. Moreover suppose thatp & Br, and letP: H -* Brdenote the orthogonal projection.
Letp* = P(p). Then for every x e Si we have

yP*x (t) = IP ° ypx)(t) for every t,
and yp'x{U), ypx{U) bound a flat strip in H.

LEMMA 5.5b. Let p, q be points of H such that Bp, Bq are distinct minimally convex
sets. Then £ -* d{$, Bq) and 17 -» d(-q, Bp) are constant functions on Bp and Bq respec-
tively. Moreover any perpendicular from Bp to Bq or from Bq to Bp is a mutual
perpendicular.

For the moment we defer the proofs of the two lemmas and begin the proof of the
convexity of H. Let p, q be distinct points of H, and let r be an interior point of the
geodesic segment from p to q. We may assume that pf£Bq and q£Bp for otherwise
Br=Bp= Bq by the minimality of the sets Bp, Bq and this implies that reH. The
first step is to show that r lies on a mutual perpendicular between Bp and Bq. Let
p* denote the foot of q on Bp, and let q* denote the foot of p on Bq. If P:H-*Bq

denotes the orthogonal projection, then P(p*) = q since the perpendicular from q
to Bp is also a perpendicular from p* to Bq by lemma 5.5b. Hence

by [1, lemma 3.2]. Reversing the roles of Bp and Bq we obtain d(p,p*)<d(q,q*).
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Hence
*) = d(Pp*,Pp)

and by [1, remark 3.3, p. 8] we see that p,p*,q,q* are the vertices of an imbedded,
flat, totally geodesic plane rectangle R* in H. Therefore r lies on a geodesic segment
a in R * of length

and the endpoints p', q' of a lie on the geodesic segments ypp*, yqq*. Hence p' eBp

and q' e Bq by the convexity of Bp, Bq. Finally

a=d(p',Bq)^d(p',q')=L(<T) = a,

with the first equality coming from lemma 5.5b. It follows that d{p', q') = d(p', Bq),
which means that q' is the foot of p' on Bq. Similarly one can show that p' is the
foot of q' on Bp. Therefore r lies on a mutual perpendicular <r between Bp and Bq.

For the remainder of the proof p' and q' will retain their meaning of the paragraph
above. The next step is to show that

(*) the functions £ -» d(f, 2?p) and £-*d{f;,Bq) are constant on Br.
Let r*eBr be given, and let p, q be the feet of r* on Bp, Bq respectively. Then

(1) d(r*, p) = d(r*, Bp) < d(r, Bp) = d(r, p') by lemma 5.5a.
Similarly we have

(2) d(r*,q) = d(r*,Bq)<d(r,Bq) = d(r,q')
Hence

a=d{p,Bq) by lemma 5.5b

<d(p',r) + d(r,q') by (1) and (2)

= d(p', q') = a since p', r, q' are collinear

Therefore all inequalities above are equalities. From the third inequality it follows
that d(p,r*) = d(r,p') and d(r*,q) = d(r,q'); that is, equality holds in (1) and (2)
above. Therefore d(r*, Bp) = d(r, Bp) and d(r*, Bq) = d(r, Bq), which proves (*).

We reach the last step in the proof that H is convex. Let r* be an arbitrary point
of Br, and let r be the foot of p' on Br*. We show that f = r, which will show that
Br* = Br and reH as we explained earlier. Let p" be the foot of f on Bp, and let
q" be the foot of r on Bq. Then

< d{p", Br*) + d(r, Bq) by (*) above, lemma 5.5a and since p'eBp

q') by (*) above

= dip', q') = dip', Bq) since p', r, q' are collinear.

Hence all inequalities above are equalities. From the first inequality we see that
q" = q', the foot of p' on Bq. From the second inequality we see that p', f and q" = q'
are collinear. Recall that p', r and q' are also collinear by work above. To prove
that r = r it suffices to prove that dip', r) = dip', r).
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From the inequalities above it follows that d(p',f) = d(p",r) and from the
condition (*) above we see that

Hence d(p', f) = d(p', r), which proves that f - r and completes the proof that H
is convex.

We now prove lemmas 5.5a and 5.5b, beginning with 5.5a. Let p, r be any two
points of H, and let q be any point of Bp. lfpeBr then Bq^Bpc. Br by proposition
5.2 and d(q, Br) = d(p, Br) = 0. We may therefore assume that p£BT. Let p*eBr be
the foot of p on Bn and let x e Si be given arbitrarily. Let P:H^*Br denote the
orthogonal projection.

We show first that {P ° ypx)(t) = yp*x(t) for every teU. By proposition 5.2 and
the definition of Bp* we see that yp-x{U)zBp»^Br. Similarly rPI(R)cflp. The
function t-*d2(ypxt, yp*x) is convex and bounded above for ( > 0 by [1, Theorem
4.1] and the fact that ypx and yp*x are asymptotes. Hence t^*d(ypxt, yp*x) is non-
increasing in t. For every (>0we obtain

d(ypxt, Br)<d(ypxt, yp*x)^d(ypx0, yp+x) = d(p, yp*x)

Now by proposition 4.3 it follows that y = ypx(-oo) € S\. Using the argument above
we obtain

d(ypx(-t), Br) = d(ypyt, Br) sd(p, Br) for all t > 0.
The work above shows that

h (t) = d(ypxt, Br) =£ d(p, Br) = h (0) for every t e R.

The convex function h{t) has a global maximum at t = 0, which implies that

h(t) = d(ypxt,Br) = c>0.

Therefore every inequality in the paragraph above becomes an equality. From the
first inequality it follows that for every t the foot of ypxt on Br actually lies on yp*x.
Hence

P(yPJ) = Q (y^t) for every t e R,

where Q:H -> yp*x (R) is the orthogonal projection. It now follows that

d(ypxt, Br) = d(ypxt, yp*x) = c > 0 for every t e U,

and hence -yp*x(-oo) = ypjt(-oo) = y. By [8, prop. 5.1] we conclude that ypx and yp*x

bound a flat strip in H. The inequalities of the previous paragraph also show that
d{p, yp*x) = d(p, p*) and hence

From this, and the previous fact that ypx, yp*x bound a flat strip in H it follows that

Q(ypxt) = yP*J for every f 6 K.

Hence P(ypxt) = yp*xt for every t, which proves the second assertion of lemma 5.5a.
Let q be any point of Bp. We wish to show that d(q, Br) ^d(p, Br). Let Ap denote

the set union of the geodesies ypx(U) as x ranges over Si. Let

X = {q e Bp: d(q, Br) ^ d(p, Br)}.
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The set X is a closed convex subset of Bp by the convexity of the function £;->d(g,Br).
By the work above we have shown that Ap £ X and hence BP^X since Bp is the
closed convex hull of Ap. Therefore Bp = X, which completes the proof of lemma
5.5a.

Proof of lemma 5.5b. Let p, q be arbitrary points in H such that Bp and Bq are
distinct minimally convex sets. UgeBp then dig, Bq) < d(p, Bq) by lemma 5.5a. On
the other hand peB{ since Bp is minimally convex and hence d(p, Bq) < d{£, Bq)
by lemma 5.5a. It follows that £->d(£,Bq) is constant on Bp and similarly -q -* d(TJ, BP)
is constant on Bq.

Let p*eBp be arbitrary, and let q*eBq be the foot of the perpendicular from
p* to Bq. Let p** e Bp be the foot of the perpendicular from q* to Bp. To complete
the proof of lemma 5.5b we must show that p* =p**. Observe that

The second equality comes from the conclusion of the preceding paragraph. Hence
all inequalities are equalities and in particular d(q*,p**) = d(q*,p*). Therefore
p* =p**, since there is a unique point in Bp closest to q*. The proof of lemma
5.5b is complete. •
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