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Abstract. An Axiom of Lift for classes of dynamical systems is formulated. It is
shown to imply the Closing Lemma. The Lift Axiom is then verified for dynamical
systems ranging from C1 diffeomorphisms to C1 Hamiltonian vector fields.

1. Introduction
If a dynamical system has a recurrent trajectory y, then one may ask: does there
exist a nearby system with a periodic trajectory near y? This is the Closing Problem
for y. For example,

x = 1, y = a, a irrational,

generates a flow on the 2-torus T2 = R2/Z2 each of whose trajectories is everywhere
recurrent. A slight change of the differential equation (take x = 1, y = /3, where
j8 is rational and nearly equal to a) makes all trajectories periodic, i.e. it closes up
all the recurrence. Depending on the type of perturbation permitted, the Closing
Problem is trivial, solved, or open. See §§ 5-9 for details and its solution. See [20]
for a conceptual outline of our proof.

Solving the Closing Problem is interesting in its own right, but more because it
implies generically that a dynamical system already has its periodic trajectories
dense in its set of recurrent trajectories. (This is Axiom Ab of Smale [21].) To be
more precise, let M be a smooth manifold, and consider the three spaces of
dynamical systems:

= the Cr tangent vector fields on M;

= the Cr flows on M;

3)'M = the C diffeomorphisms of M to itself.

Each space has a natural C topology, which we detail below, making it a Baire
space - one in which every Ga-subset is dense. (Recall that a G5-subset of a
topological space A" is a countable intersection of open-dense subsets of X.) A
property enjoyed by all elements of a G^-subset of a Baire space is a generic property
- 'most' elements possess the property.
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262 C. C. Pugh and C. Robinson

General density theorem (GDT) for C1 diffeomorphisms. If M is compact, then the
generic feSlM satisfies

Per (/) is dense in il(f),

where Per (/) is the set of periodic points of f and fl(/) is the set of non-wandering
points off.

Recall that p is periodic for / if fp =p for some n ^ 0; p is non-wandering for /
if, for each neighbourhood U of p, fn(U)n U ^ 0 for some n ^ 0 . (/" denotes
/ ° • • • °/, n times.) The set of non-wandering points of / is closed, /-invariant, and
contains all periodic points, all recurrent points, all a- and w-limit points.

The corresponding genericity result holds for 9^, Uf1. See § 11. See also § 11 for
the case of non-compact M.

If M has more structure, say a volume or a symplectic structure, then one may
examine the subspaces of $fr, ?Fr, 3)r whose elements preserve that structure. In
many such cases we prove again that generically - in the subspace - the periodic
trajectories are dense in the non-wandering set. Since the subspaces are closed,
nowhere dense, genericity results in the overlying space are no help in the subspace
(see § 8). More special yet is the space of Hamiltonian systems 36H on a symplectic
manifold. $£H is Baire. Our results verify a:

Conjecture of Poincare [14, p. 82]. C 1 generically in $£H, the periodic trajectories are
dense in the compact energy surfaces. See § 9 and (11.4).

When r > 2 very little is known about the Closing Problem. For instance, it is not
known on T2 whether every recurrent trajectory of a smooth differential equation
can be closed up by a C2 small change of the equation. The results of Peixoto [12],
however, do imply the GDT in St" (M2), 2F'{M2), where 1 < r < oo and M2 is compact,
orientable. For general non-orientable M2 and all higher dimensional manifolds it
remains unknown whether the generic C2 differential equation has its periodic
trajectories dense in its non-wandering set. Likewise, the C Conjecture of Poincare,
r>2 , remains open.

One negative result for r > 2 is that some kinds of 'double closing' are C2

impossible but Cx possible [18]. See [11, problems 21-23] for further open problems
and discussion.

We owe thanks to all our colleagues, but especially we are grateful to the Instituto
de Matematica Pura e Aplicada for the final push to publish this work.

The C topology
Let V, W be C°° finite dimensional manifolds and let C(V, W) be the set of C
maps / : V-*W.We topologize Cr( V, W) as follows.

Case 1. V is compact and 0</-<oo. Fix / e C ( V, W) and choose a pair of finite
C°° chart coverings such that for each a, va extends to a C°° chart defined on a
neighbourhood of Va and f(Va)<= Wp for some 0=0(a). For e >0, call <%„(/)
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The C1 Closing Lemma 263

va c—• v —> w*—3 w

= l,...,N 0 = 1 L

the set of allgeCr(V, W) such that, for all a = 1,...,N and/3=0(a),

-1 -wl3fv~1)x\\k<e,

as x ranges over va(Va) and 0</c <r. By Dk we denote the kXh Frechet derivative
of a map between linear spaces and by || ||& the norm on ^-linear maps arising from
the Euclidean norms on R", R". A second choice of coverings, say {V'a} and {W^},
produces neighbourhoods %e(/) comparable to the %e(/) in the sense that each
%c(/) contains a 'H's(f) and vice versa. A C neighbourhood of / is any subset of
C(V, W) containing some °Ue{f) and a set in C(V, W) is Cr-open if it is a
neighbourhood of each of its points. This is the natural C topology on C ( V, W).
See [7, chapter 2].

PROPOSITION. C( V, W) is completely metrizable and is hence a Baire space.

Proof. [7, p. 62].

Case 2. V is paracompact and 0 < r < oo. Then

V= V,uV2u-' •,

where each Vn is compact and smooth but no sequence pn e Vn converges in V. If
°Un is a C neighbourhood of f\ Vn in C(Vn, W), then

{geCr(V, W):g\Vne<Hn}

is a C Whitney neighbourhood of / in C{V, W). Again, different choices of {Vn),
{°Un} produce comparable families of neighbourhoods of /, so we again unam-
biguously topologize C'( V, W). ('Fine' or 'strong' are other names for this topology.)

PROPOSITION. C(V, W) is Baire.

Proof. [7, p. 62].

Remark. Topologically, C'{V, W) is horrible.

Case 3. r = oo. The C°° topology on C°°(V, W) is the smallest one making every
inclusion C°°(V, W) •-> C'{V, W) continuous, 0</-<oo.

PROPOSITION. C°°(V, W) is Baire.

Proof. [7, p. 62].
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264 C. C. Pugh and C. Robinson

The C topology on 2r

Think of 2r as a subset of Cr(M,M). As such it inherits its natural Cr topology.

PROPOSITION. / / M is compact and boundaryless, then 3)r is an open subset of
C(M, M), 1 < r < oo, and is hence Baire. Indeed, 3)' is a Baire space, no matter what.

Proof. [7, p. 37 and p. 62].

The C topology on %r

Think of %£' as a subset c. C(M, TM) where TM is the tangent bundle of M. As
such, it inherits its natural C" topology.

PROPOSITION. If M is compact and 0<r<oo, then %' is Banachable and hence
Baire; if r = oo then $£' is Frechetable and hence Baire. Even if M is not compact,
%' is Baire.
Proof. [7, p. 62] since %' is closed in C'{M, TM).

The topology on 3Fr

A Cr flow is a C map <p :RxM-»M such that

is a homomorphism. For any a < b we can take the restriction

9-
\[a,

The C topology on &' is the smallest one making p continuous. It is independent
of a, b. Note that we do not put the Cr Whitney topology on SF' as a subset of
C'(RxM, Af), because that would permit almost no perturbations.

PROPOSITION. 3*' is Baire.

Proof. [7, p. 62] since p{&^') is closed in C'([a, b]xM,M).

The relation between ^ and Sfr

Each C vector field X integrates to a C' flow <p

when 1 < r s oo. This / is continuous, but except for r = oo it is not surjective. Results
of Dorroh [4] and Hart [5] show / has a dense range. The differentiation operator
d: &' -* dE*'*, 1</ -<OO, produces a non-linear subspace of ^f"1, which has little
to do with SFT from our point of view.

The relation between 3F' and 3)r

The time-r-map of a Cr flow is a C diffeomorphism, but there are many C
diffeomorphisms which are not part of a flow, even if they are isotopic to the
identity. See the work of Palis [10]. On the other hand, a"ny C diffeomorphism /
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The Cx Closing Lemma 265

of M naturally 'suspends' to a C flow on a manifold of one higher dimension,
Mxl/f. See [21]. In § 7A, remark 3, we see how to suspend / in such a way that
its flow is generated by a C vector field.

2. Lift
Here we make precise the perturbation property of C1 dynamical systems indicated
in the local trajectory figures (figures 1 and 2).

FIGURE la. Diffeo before lift. FIGURE 16. Diffeo after lift.

FIGURE 2a. Flow before lift. FIGURE 2b. Flow after lift.

In § 5 we prove that Lift ^Closing and in §§6-8 we verify the Lift Axiom in
the most interesting cases.

To keep track of uniformities we assume M is compact, has a C°° Riemann structure,
and the associated exponential map exp embeds each unit ball into M,

By Mp(r) we denote the r-ball at p, expp (TpM(r)), 0 < r < 1.
Now suppose y is some subset of 2>\ For example, £P could be all of 3)1 or it

could be the symplectic diffeomorphisms of M if M has a symplectic structure.
Definition. Sf satisfies the Lift Axiom if, for each fe y and each C1 neighbourhood
M of / in 5", there exists e > 0 such that, whenever v 6 TPM{\), we have a perturba-
tion g of the identity satisfying g °feJf and

(LI)

(L2) supp(g)cMp(|i>|).

In addition, we require some 'flexibility' of

(L3) If g i , . . . , gn are several such perturbations having
disjoint supports then gi ° • • • ° gn ° /e ¥.
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266 C. C. Pugh and C. Robinson

(The support of a diffeomorphism is the closure of the set where it differs from the
identity.) If Sf is closed under composition (L3) is automatic. What the Lift Axiom
means is:

Inside y , one can lift points p in prescribed directions v with results proportional to
the support radius.
Next we formulate the Lift Axiom for subsets of !Fl and Sf1. To do so, we use

Poincare maps. Let < p e ^ , say (p=<p,{x). Call <p the continuous vector field
generating tp

•is d

<p(p)-~r <Pt(p>-
at ,=o

By van Kampen's Uniqueness Theorem [6, p. 35], the only trajectories of <j> are
the (p-curves themselves. Suppose (p(p) # 0. Let

ftp = (span <p(p))± = the hyperplane in TPM perpendicular to <p(p),

n p =exp( f l p ( l ) ) and np(5) = exp (ftp(5)),

where ftp(<5) is the 5-ball in ftp. Then IIP is a smooth (m - l)-disk in M, transverse
to <p at p. Call

p' ~ <PI(P)> n p =n p ' .
The flow <p uniquely defines the canonical Poincare map / : I I p (5 ) -»n p provided
that S is small enough. Due to singularities, S may tend to 0 as p varies. Indeed,

PROPOSITION. With <p, np , U'p as above, there is aS>0 such that:
(a) There is a unique continuous choice of t = t(y) with t(p) = 1 and (p,(y)(y) e U'p

for all y € UP(S). This map f(y) = <p«y)(y) is a C 1 embedding whose image is interior
ton;.

(b) If<p,p ^pfor 0 < f < 1 then {t, y)•-><?,y Cx-embeds

(c) If V is a sufficiently small neighbourhood of <p in 2FX then there is a unique
continuous t - t(y, ip) defined for y e UP(S) and tf/eV with t(y, <p) = t(y) as in (a)
and i/'r(y,lfr)(y)£np. This map f^(y) = ipt(y.^)(y) is a C1 embedding whose image is
interior to Yl'p.

(d) </"-»/./, is a continuous map T^Emb1 (UP(S), U'p).

Proof. Standard by transversality theory; see also figure 3; see § 7A for the
converse perturbation question.

FIGURE 3. The Poincare map and flowbox F.
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The C1 Closing Lemma 267

Definition. The image

p,y: y eUp(S) and
is the (unit time length) (p-flowbox and is denoted by F = FP(S).

Now suppose <p e 5" c ^ and 5 <= M is open.

Definition. S" satisfies the Li/r Axiom at (p on S if for each C1 neighbourhood ,/V
of <p in y, there exist e > 0 and a continuous function <5:S->(0,1) such that
whenever v e Tlp(S(p)) we have a perturbation tp of <p in Jf satisfying:

(L'l) The Poincare map f^ of i}> is defined via (c) above and
fv % ( p ) = exp(ei;).

(L'2) p

(L'3) If several such perturbations of <p are made in disjoint
flowboxes then their union-perturbation belongs to Sf.

Note that (L'l) says: in the flowbox coordinates we can push p in the u-direction.
The function S probably tends to 0 at dS. In § 6 we verify that y = 5Fx satisfies the
Lift Axiom at all <p € &1 on S = M - & where 0* = {p: <p,p = p for some f, 0 < r < 1}.

Finally, suppose X e ^ c f 1 and 5<= M is open.

Definition, y satisfies the Lift Axiom at X on S provided that ('(SO satisfies the &l

Lift Axiom at i(X) on 5 using the i{Xx) topology. That is, given a C1 neighbourhood
Jf of X in Sf, then there exist e > 0 and a continuous function 5: S -* (0,1) such
that, whenever v e np(5(p)), we have a perturbation Y of AT in Jf whose flow </r
satisfies (L'l), (L'2), (L'3), <p being the X-flow. If 5̂  is closed under addition, (L'3)
is automatic. In § 7 we verify that y = S£x satisfies the Lift Axiom at all X e d£x on
S=M-3>,3> as above.

In § 9, we give a modification of the Lift Axiom for Hamiltonian vector fields.
In this case it is possible to push only along the energy surface. We then verify the
axiom and show how it implies the Hamiltonian Closing Lemma.

3. Linear algebra
In this section we do the linear algebra necessary for our Closing Lemma proof.
The techniques used are irrelevant to the other sections of this paper, so the
impatient reader need only absorb the content of (3.1), (3.2), (3.3). A more general
version of this section occurs in [17].

As a standing hypothesis, let T :Um -* H be a monomorphism, H a Euclidean space
and V<=-Um a subspace. By T~x we mean the inverse of T with domain T(Um).

Definition. The bolicity of T is the ratio of the maximum stretch to the minimum
stretch

h i m l|711
boHT) =

where

111(7") = mini* |=i |TJC| = the minimum norm of T,

is also called the conorm. Clearly, m(T) = HT"1!!"1,
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268 C. C. Pugh and C. Robinson

and

bol (D = 1 iff T is conformal

(preserves \x • y|/|*||y|).

Definition. The V-altitude of T, A: V->H, is defined by commutativity of

H

where v.H-* (TV1)1 is the orthogonal projection (see figure 4).

T(VX)

(T(VL))1

FIGURE 4. The V-altitude A = ir°T/V.

Definition. The V-co-altitude ofT,AL:VL^>H, makes

- + H

p = orthogonal projection

- • (TV)1

commute. That is, Ax is the V±-altitude of T.

Definition. The hyperbolicity of T respecting V is

" ' \\A\\ •

For V = the jc-axis in U2, this is the ratio of the two altitudes of the parallelogram,
T{I2) (see figure 5). If T preserves the orthogonality, TV ± 7 V \ then the hyper-
bolicity is the minimum stretch on V"1" divided by the maximum stretch on V.
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FIGURE 5. hypx.ajlis(r) =

Definition. The V-orthogonalization of T is S: Rm -> H with

S = A©(r|Vx) resp. V^V±.

Thus, SVi.S( Vx). By $ we mean orthogonal direct sum.

(3.1) PROPOSITION. If S is the V-orthogonalization of T, then

hyp i

hyp(r)al=>m(S) =

)>(l-—^—
V hyp (7V

where hyp denotes hyp v and Id « r/ie identity on Rm.

(3.2) Selection Theorem. Let T, be a sequence of monomorphisms Um-*H. Then
there exists an orthogonal splitting Um = V1 $ • • • $ VL and a subsequence {T,k}
such that the V-altitudes

satisfy

bol (A'k) is bounded as k -> oo;

as k->oo ( l s

(1)

(2)

(3.3) ADDENDUM. Let h,M>0 be given perhaps depending on {T,k},$ V1. Then
there exist dilations A': V -* V and intervals I1 <I2<- • -<IL in {tk}, each having
length M, and

hypV' (T,k»A)> h (3)

for all tk€.V, where

A1 0 • • • 0 \
0 A2 • • • 0

A =

0 0 • • • AL

resp. V1 $ V2 § • • • $ VL.
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Remarks. (1) That one set of numbers is < another means that each number in
the first is < each in the second. (3) means that each subspace V gets its chance,
as the tk increase through / ' , to be a subspace of huge hyperbolicity.

(2) A'k ° A': V'->H is the V'-altitude of T,k ° A.
(3) Fo rxe V\ \(T,k ° A)"1 ° A\ ° A ' (x)-x |<l /hyp (T,k ° A). So when we push in

the A'kA(x) direction in the proof in § 5 this is approximately the T,k A(x) direction.
Next let 93 be a bound on the bolicities bol (A'k), i = 1 , . . . , L, k = 1, 2, 3, Then
for xeV with | JC |<1 ,

so this vector has a magnitude bounded by the minimum norm of T,kA. These are
the two properties of altitudes that are most important in § 5. Note the second
property does not hold for |T,k Ax|, i.e. it is not bounded by a quantity involving
m(r,tA). This is the reason we need to introduce altitudes.

Definition. Let F , F ' c R m be linear subspaces. Let ir:Um->F, 7r':Rm->F' be
orthogonal projections. The angle from F to F' is

') = sup U(f,n'f):feF}.

Here ^(x, 0) = TT/2. Let sin (F, F') = sin 4_(F, F'), etc.

(3.4) LEMMA. With v, TT' as above, assume TTF' = F, ir'F = F'. Then

Proof. 4.(7r'7r/',7r/')<4.(/', TT/')SO

4(F, F) = sup R (TT/\ n'nf): f e F'} < sup {̂  (/', irf): f e F'} = 4 (F\ F).

By symmetry

and so they are equal. Q.E.D.

Proof of Proposition 3.1. Denote the orthogonal projections by

(TV1)1 »TVJ- (TVf * TV
ker(Tr) = TVX ± kerfTi-1) ker(p) = 7 V 1 ker(px)

Thus

Tr + irx = p+p = IdH

and

A = 7rr|V, A± = pT\VL.
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The Cl Closing Lemma 271

To estimate ||T'~1S — Id|| we first note that T'^S-ld vanishes on Vx since S is T
on Vx. On the other hand, for x e V, we have

But ir^Tx, being in 7VX, is carried by T1 into Vx, so we can apply the conorm
estimate to Ax on Vx:

But PTTX = — pir on TV since p ° (TT + TTX) on TV is p on TV which is zero. Thus,
x being in V, the last term is

Dividing through by m(Ax) gives

\T 1 s * -*N m ( A x ) - h y p ( 7 T

demonstrating the first claim of the proposition.
Clearly,

m(S | Vx) = m{T| Vx) >m(Ax) = ||A|| hyp (T) >m(A) = m(51 V)

since hyp {T) s 1. Since 5 preserves the orthogonality V $ Vx, its minimum norm
is the smaller of the two minimum norms m(51 V), m(51 Vx), which we have just
seen to be m(S | V). This proves the second claim.

Call h = hyp (T). Then

implies

+ h~1)Um = T-lSUm => (1 -h~l)Um,

where Um is the unit ball in Rm, and

which implies

(1 + h~x)TUm => SUm =3 (1 - h~x)TUn

Q.E.D.

Proof of the Selection Theorem. It is notationally simpler and involves no loss of
generality to reverse the indices / and prove (1), (2') and (3) for 71 > / 2 > • • >IL,
where (2') is as follows:

l ^ f L . as fc^oo. (2')m(Ak )

(We have stated the theorem in the form most easily used, not proved.)
Each T, factors as T, = O,P,, where O, is orthogonal and P, is positive definite

symmetric [8, p. 102]. The orthogonal part does not affect the properties in the
theorem, so we can assume that T, = P, is a positive definite symmetric automorphism
ofRm.
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Let 0 < A ? :£ • • • s A ,m be the eigenvalues of 7*,. Take a subsequence ffc so that
ratios of eigenvalues converge:

lim —r = aii 0<a,7<oo.
fc-°°A!,fe

By an abuse of notation we shall write k for the subsequence tk, i.e. Tk for T,k, \'k
for A ',k, etc.

Two eigenvalues are said to be equivalent if a,, 5* 0, 00. Split Um into subspaces
of equivalent eigenvectors for each k

Rm = £ * $ • • • § £ ? .

The subspaces are orthogonal because the T, are symmetric, dim (E'k) is indepen-
dent of k. Since the Grassmannian is compact, there is a finer subsequence
(unrelabelled) such that E'k converges to a limit plane £" as k -»oo. Thus

E{ <£> • • • $ Ek - ^
k

Let

Vk=El

<pk ~

vx

In Lemma 3.5, below, we show (combine (i) and (ii)) that

II^H - \\Tk\Vk\\
f

which stays bounded as k ^00, since Vjt =Ek is a space of equivalent eigenvectors
for Tk and <pk -* 0. By the same lemma (combine (i) and (Hi))

1MlT I V I I ( ^ ( 1 f y ' (

cos ((Pk)||Tfc I Vltll
where /ifc = h y p v t ( r t ) . As &->oo, hk-*oo, <pk->0, cos(<pk)->l, tan(<pk)->0, and
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bol (Tk | Vk) is bounded; so

(6)

(6) will show V1 = V satisfies the theorem. Unfortunately, the other E' will not
work as Vk, but we can use induction. The difficulty is that the spaces E' are not
eigenspaces, but are only limits of eigenspaces as k -* oo. See [17] for an example
showing that the E2,..., EK do not work.

Vx has dimension lower than m, so apply the Selection Theorem to {At}. (Note
that here it is convenient to assume that T, is a monomorphism, not an isomorphism,
since At: VX->H is bound to be only a monomorphism.) Thus, there is a splitting

v1- = v2 vL

and a subsequence (unrelabelled) of {At} so that the altitudes C'k of At satisfy
(1), (2'). The Ci are related to the A\, respecting Vx $ V2 <§> • • • $ VL, via the
commutativity of

Pk

where pt, TTI, a>i are orthogonal projections, / 2 2. That there is an inclusion for
the rightmost map is true because AtV is just TkV made orthogonal to TkV

x

and so

Thus,

Ail $ V')<=Tk((VY)

and the reverse is true of their orthogonal complements. (The idea here is that if
a vector z lies outside two spaces X c Y of H and if one (orthogonally) projects
z to z' making z' ±Y then one obtains the same answer by first projecting z to z"
making z"±X, and then projecting z" to z'" making z"'± Y; z' = z'".)

https://doi.org/10.1017/S0143385700001978 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001978


274 C. C. Pugh and C. Robinson

Thus C'k =A'k, / > 2 , and so (1), (2') hold for / > 2 . For / = 1, Ax
k=Ai so (1)

holds. As for (2') when / = 1, we have

||Ai|| ||Ai|| m(Ax
k)

m(Ai) m(At) m{Ai)

The first factor tends to zero by (6). The second factor is <2 when hyp At s 2 by
Proposition 3.1 applied to T = Ai. Note that either K = 2 and Ai=A\ or else
hyp (Ax)-»oo. This proves that (2') holds for / = 1 also, and completes the proof
of the Selection Theorem, except for the inequalities (4), (5) which we now verify.

(3.5) LEMMA. Let H be a second subspace of Rm having the same dimension as V
and call (p=Xr(V,H). Suppose T :Rm -+Rm leaves H $ H ± invariant

Q

and is pseudohyperbolic in the sense that m(C?)
T respecting V, Vx obey

||. Then the altitudes A, Ax of

(0 HIM-
\\P\\

COS (ip)'

(ii) m(A)>m(P)cos((p),

(iii) \\P\\
T72>

where h = hypH (T).

Remark. In the Selection Theorem H = Vk, so the invariance hypothesis is satisfied
by Tk, as is the pseudohyperbolicity.

Proof, (i) Let o-:V->H be the projection parallel to Vx and let T: V±-»/ / x be
the projection parallel to V (see figure 6).

H1

\
H

FIGURE 6. Rm = H $ Hx = V $ V±, <p = 4( V, H).
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Observe that

A = -rrPa. (7)

For take veV. Then P®Q = T resp. H®H^ implies

nP(crv) — TrT{crv).

But cr(v) = v + w for some w e V± and TTTXW) = 0. Hence

Av = TTTV = irT(ov) = TTPCTV,

proving (7). From (7) we have

almost by the definition of cosine.
(ii) Using (7) again,

m(A) > m(v | H )m(P)m(cr) > m(7r | H)m(P).

Since m((?)>||P||, <p = 4(V, H)>%.(HX, TVX). Thus,

m(7r |//)m(P) = cos (H, 7'V/"L)"Lm(P) >cos (<p)m(P)

proving (ii).

(iii) As with A, we have AL = pQr and so

m(Ax) > m(pO) = dist (73, TV),

where 5 is the unit sphere in HL and 'dist' refers to the minimum distance. Let R
be the automorphism of Um given by

/m(P)P"1 0 \ ffi ±

\ 0 m(Q)Q~1)

Thus ||/?||=1 and /?P, /?C? are conformal automorphisms of / / , H± with norms
m(P), m«?). Let Q be the cone of angle ip around H:

Thus V c Q and

dist (73, TV) >dist (73, TCV) >dist

the latter, since ||/?|| < 1. This distance equals m(7?(?) cos (</0, where i/f is the angle
between HL and the lines from RT(S) perpendicular to d(RT(Cv)) (see figure 7).

Using the conformal nature of RP, RQ, this angle <A is independent of which
point in RT(S) we start at. Since m(RQ) = m(Q), this gives

Clearly, RT(Cv) = C4l. Thus 4i can be calculated by choosing any xeH, y e / / x

such that x+y e dCv. Then

fS^"'"^"""'
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RT(V)

Therefore

FIGURE 7. Cones mapped by RT.

m(A x) > m(Q) cos (tan (h bol (P) tan (<p)))

+ fc2boltP)2tan2(p]1/2

\\P\\

proving (iii). Q.E.D.

Proof of addendum 3.3. Since the assertion is vacuous for L = l, suppose L > 2
and we have proved it for L-l. Recall that the altitudes A'k, / > 2 are also the
altitudes of At :VX->H, where V = V1 and

x = v 2 vL.

By the induction assumption applied to {At} there exist dilations A' of V, i^2,
intervals IL < • • • <I2 in {tk} of length M, and

for all tk e / '. By Ax we mean diag (A2,. . . , AL). We introduce the notation

>V= V1®- • -©V"©- • -®VL, / (V±)= V2®- • •®Vr@- • -®VL,

'A = diag (A1,. . . , A',.. ., AL), '(Ax) = diag (A2,. . . , A' , . . . , AL),

*Ak = the'V-altitude of T,k,
 jCk = the'(V/±)-altitude of At,

where Av will be chosen soon. Recall that C'k is the V"-altitude of At and that it
equals the V-altitude of T,k, j^2. A similar situation holds here. Omitting the
subscripts k, we have a commutative diagram (see below), where V, p, '<o are
orthogonal projections. That there is an orthogonal projection for the rightmost
arrow is because, as we saw before,

TV1®AXV' = T(V1®V):
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and, since TV1 lA^V, when we take orthogonal complements we get

Thus, 'A restricts to 'C, just as A' = C and so, if we make A1 an enormous dilation,
we get

for all tk 612 u • • • u /L. Since the A' 's factor through all altitudes, this gives

IT Â  m( '^° '^) nfe-'CA^)hypvi (T,k . A) - | | A i o A / | | -

= hypV' (At

| |C /o A>| |

by (8), provided / > 2 and ^ 6 /'. For / > 2 this proves (3).
To find I1 we use (6) which states

x
m(At)

Note Ak = A\ and A^ = 'Afc. Thus

x--*0, ast)

for all fc>some k\.To complete the proof, let I1 be any interval in {4} beyond tkl

having length M. Q.E.D.

4. Boxes: the Fundamental Lemma
In this section we handle the problem of 'intermediate intersections'.

(4.1) Fundamental Lemma. Let p* be a non-wandering point for f e 21, {ek} an
orthonormal basis for TP*M, and let £ ' , . . . , £ m >0 be given. Then there exist
A \ . . . , A m > 0 and r e TP*Msuch that, for some p,q£ expp» (TP*M),

(') fp = <7> for some s > 0,_
(ii) p,q /l
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(iii) f'p£BIm, 0<t<s,
(iv) A'/A k < 2m 1/2f7f *, for all /, A:,

where B is the box expp* (r + A|/m), 7m w ffce unit cube in TP*Mrespecting {ek}, and
A = diag (A \ . . . , A m) respecting {ek}. Moreover, \r\ and ||A|| may fte made arbitrarily
small.

Remark, (iv) says that up to a dimensional constant we can specify the proportions
of the box B to be £* : £2: • •• : £m.

Proof. Define the partial order < on a neighbourhood of 0 in TP*M by

x < y iff x # y and / s expp* (JC ) = expp* (y) for some s > 0.

First we prove:
(v) For some arbitrarily small x, y e rp*M with x < y,

x <z<y implies z££,{x, y),

where

f (x, y) = {z e 7>M: d(x, z) ^ (|)1/2^(A:, y) or d(z, y) < (!)1/2^(A:, y)}

) ) =ZyV( . ( ^ ) ) , *=IxV, y=ZyV.

Since p* is non-wandering, there exist arbitrarily small x0, yo with x0 < yo- Between
Xo and y0 at most finitely many points z may intervene, *0 < z < y0. If one of these
lies in f (jt0, yo) let

z replace y0 if d(z, x0) ^ d(z, y0),

2 replace Xo if d(z, yo)^d(z,xo).

The pair so formed, (JCI, yi), has Xi < yi and either x\ = x0 or yi = y0. Proceed as
with (x0, yo), generating a sequence (*„, yn). All the xn, yn lie between x0 and y0,
so the process ends at some (xk, yk) with xk < yk and no intermediate points z in
£(xk, yk). Clearly,

and either

xn=xn^i or

Therefore

This proves that xk, yk are arbitrarily small, completing the proof of (v). The
particular form of d has been irrelevant, so far.

Let (x, y) be as in (v). Set

r = \{x+y), p = expp*(x), q=expp. (y),

https://doi.org/10.1017/S0143385700001978 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001978


The C1 Closing Lemma 279

and
A W ( k ( * , y)2+ <*(*, y)2/8m))1 / 2

Thus d2= £ d2 and (i) holds. We shall see that these A; make (ii), (iv) hold and

r + Mm^i(x, y).

This makes (iii) also true. Proof of (iv) is just the calculation

AV

Likewise to prove x e r +Afli /m we compute

(*' - r ' )2 = «(*' - y ')2 = l(fy )2SrfyU, y )2] < !(A 0 2 .
Similarly for y. This proves (ii). If u e A/"1 then

V k V «y+luy-y')\2

^ 2(f)(^y(x,y) + rfU,y)/8wi) , t g t / 2
^ I 777T2 + 2 I dj(x,y)

/=i (? ) y=i

= {i + \ + l2)d{x,y)2<2{l)d{x,y)2.

Hence either

d{r + u, x? <ld{x, yf

or

d{r + u,yf<ld{x,yf.

That is, r + A/m c ^(x, y), proving (iii), and completing the proof of the Fundamental
Lemma. Q.E.D.

Remark. For <p e ̂ \ the Fundamental Lemma is valid with the substitutions: m - 1
for m, ftp* = (span <p (p*))x. The proof is the same.

5. Lift Implies Closing
Let us divide our attention among Si1, !Fl, %x where our manifold M is compact.

(5.1) Closing Lemma for C 1 diffeomorphisms. Let y c g 1 obey the Lift Axiom. If
fz.y,J{ is a neighbourhood of f in Sf, p* is a non-wandering point of f, and U is a
neighbourhood ofp* in M, then there exists g/e^V having a periodic point in U.

(5.2) Closing Lemma for Cx flows. If p*efl(<p) for some ( p s ^ c f 1 and if S is
some neighbourhood of €+(p*), then the Lift Axiom for y at <p on S implies that
there exists il/e£f arbitrarily near <p in &1 with a periodic orbit passing arbitrarily
near p*.

(5.3) Closing Lemma for C 1 tangent vector fields. Substitute X, %\ Y for q>, &\ \\i
in (5.2).
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Remark. The C1 Closing Lemma for non-compact M is treated in § 11.

Proof of (5.1). We may replace / by a neighbourhood Jf' of / such that, if
gif,..., gj t /e^ 'andsuppgi, . . . ,suppgt are disjoint, then gi ° • • • ° gk °feJf'.FoT
instance, put a C1 metric on Si1 and let Jf' be a ball around / contained in Jf. Then
use (L3) from the Lift Axiom. Note that Jf is independent of k. Thus, we may
and do assume Jf = N'.

Our first step is to analyse the sequence of isomorphisms T, = Tp*f

where M is embedded in some Euclidean space H. We select a sequence {tuYk-i
and a splitting $f=i V = TP*M according to the Selection Theorem 3.2.

Let S3 be a uniform bound for the altitude bolicities of {T,k}™=1. Let e = e(f, Jf)
be given by the Lift Axiom. Choose and fix, once and for all, an integer

N>40@/e. (1)

The secret of our proof is that N will never be changed. Also $ V", @), and e are
fixed.

By Addendum 3.3, given any h, we can find intervals / ' < / 2 < • • • <IL in {tk}T
and an automorphism A of TP*M ±> such that

/ ' consists of N dim V integers from {tk}T; (2i)

A preserves V1 $ • • • $ VL and is conformal on each V"; (2ii)

hypV' (T,k»A)>A for tkel'. (2iii)

Once such a set 2. = {I1,..., IL} is chosen, we call
f =/•'<.(«>
In I >

where tk(n) is the n'th integer in 71 u • • • u / L . There are mN of these integers n
and it is these /„ we care most about. We shall use the Lift Axiom at some yn near
fn(p*), producing perturbations gn, n = 1 , . . . , mN, with gnfeJf. Good choice of
2., A, ym and the lift directions will imply

the supports of the gn are disjoint, 1 < n < mJV; (3i)

for some p, q near p*, /sp ~q,s>T (recall T was defined by fmN =fT);
the /-orbit from fTp to q is the same as the g/-orbit; and (gf)Tq =fTp. (3ii)

Here g = gi ° • • • ° gmN. From (3i), (L3) in the Lift Axiom, and the fact that gnfeJf,
it follows that gfe^f. By (3ii) it follows that q is g/-periodic because its orbit is

q, (gf)a,.... (gff^q, (gffq =fTp. fT+1p, ...,fsp=q.

Thus (3) gives the Closing Lemma for 5"<= 3)1.

Selecting SL, A, etc to make (3) hold is complicated; four preliminary constructions
are required. The idea is to calculate the effect on /, in the limit, of mN perturbations
whose supports tend to

{fi(p*),...,fmN(p*)}
while h(£, A)->oo.
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(a) Some standard boxes

Let {ek} be an orthonormal basis of TP*M subordinate to V1 f

{e\...,edimV1}

is a basis of V1, etc. Call

f VL. Thus,

and let

be evenly spaced:

Consider the closed unit cube

in TP'M respecting the basis {ek} and consider the boxes

(b) The index set ft
Let ft! be the set of &n = (<b, A) such that (2i, ii) hold. Let ft be the set of all (w,, w2)
such that oj\ = (2., A) e fti and co2 = (p, q, r, s, A) satisfies

A: TP*M fo preserves V1 $ • • • $ V1

bol(A"1A)<2m1/z;

p,qzB{aJm), f{p) = q\

f\p)£BIm forallf,0<f<5.

Here B is the box defined by the commutativity of

r + A

exp

(4)

We measure the smallness of w2 by

sm(o»2) = H + ||A||.

Given <o\ = (3, A) e fti, the Fundamental Lemma 4.1 applied to /, A, at p* gives

«>2 = (p, q, r, s, A)

satisfying (4) with sm (w2) arbitrarily small. That is, for any coi e fti,

inf {sm (co2): (a»i, w2) € ft} = 0.
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Similarly, by (3.3) there are <ui€fi, with /i(wi) = the largest value of h making
(2iii) true arbitrarily large. The pair h( ), sm ( ) bi-orders the index set fi =
{(<ui, o>2)}. A subset fl' c fi is called ascending if

and if, for each fixed wi 6 fli having some (a»i, «2) 6 fi',

inf {sm (w2): (wi, co2) e fi'} = 0.

Thus, fi itself is ascending and so is any tail of fi - a set of the form

{{coi, a)2)eCl: h(<oi)s:ho, sm (a>2)^s0}-

Such subsets occur naturally for iterated limits.

Definition. If fi'c fi is ascending, X is a metric space with metric d, and f:£l'-*X
then

means: given v >0 there exist
ho — ho(v)>0 and

such that

(a>u o)2) e il'

sm

This convergence is weaker than the iterated limit

lim lim /(w) = z
h-»oo sm-*0

since limsm^0/(«) need not exist for any fixed wi. But if limsm^0/(w) is interpreted
to be the Hausdorff lim sup (= the set of accumulation points) then the two notions
of convergence coincide - at least if X is locally compact. This convergence is
weaker than the joint limit

lim f(a>) =
sm-»0

because s0 can depend

(c) Trial perturbations
Fix (o = (SI, A, p, q, r, s, A) € fi. Henceforth n will run from 1 to mN. Let

/„ = 7>/n : 7>M•* TP*M, p* = fn(p*),

where, as above, /„ =/'*<»> and k(n) is the nth integer in I1 u• • • u / L . Let Sn = the
V-orthogonalization of /„ where tkM e V. As n increases from 1 to mN, Sn is at
first the v'-orthogonalization of /„ for a while, then . . . , and finally is the VL-
orthogonalization of /„ for a while. It stays the V-orthogonalization while n stays
in /''.

Arrange the TP*M basis in blocks:
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Each en is some ek; in fact, k -1 is the integer part of (n - 1)N. Call

Recall that a is a numerical constant and 38 bounds all altitude bolicities. This v*
is approximately our lift direction at the nth step.

Let pi,..., pmN be independent real parameters with - 1 <pn < 1. Call

p = (pi,..., pmN)

and inductively define

yo = <7, identify =/0, vo = 0, Fn=fn°fn-A

yn=Fnog(yn_i;pn_ii;n-i) > (5)

vn=parnvt J
where parn is parallel translation of TP*M to TynM along the minimal geodesic
and g( ;pv) is the perturbation supplied by the Lift Axiom with lift direction
pv e TyM. Since t>* is small, so is vn.

What (5) means is: start with q, jump to yx = Fi(q)=f\{q), consider the direction
PiV\ at yi, lift y\ in that direction to say yi, jump from yi to y2 by F2, lift yi in
the p2t?2-direction, jump ahead by F3, etc. If all the pn's are zero, these yp

n are just
the qn, so everything is happening near p*,..., p%N. Replacing fl by a tail, if
necessary, we can assume that (5) makes yn, vn well-defined and makes

B,fB,..., fTB disjoint,

since T is fixed and B is small when ||A|| is small. We call gn the perturbation
g( ; vn) and denote the dependence of yn, vn, gn on pu ..., pn-X by writing

yn=y"n, Vn=VP
n, gn=gP

n.

These gn's are the trial perturbations. The eventual lift direction making q g/-periodic
is

. . , pmNvmN

for the proper choice of p. Observe that yn depends continuously on p. Clearly, y ?
is independent of p. Assuming y"n depends continuously on p, it is clear that

depends continuously on p and therefore that

y"n + \ =Fn + l°gn(yn;pnVn)

= Fn+1expyn (epnv
p
n)

also does. This uses (LI) which is weaker than continuity of g respecting v, a
property we do not need.

Remark. If

supp gp^fnB [B = exp(r + A/m)] (6)
then (gf)T factors as

(gf)T = gmN ° FmN ° gmN-1 ° FmN-1 ° • • • ° F3 ° gl " F2 ° gl ° FX (7)

since the B,..., fTB are disjoint and contain the supports of g". What must be
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established is that

. ^ - l a rge enough so (gf)Tq=fTp,
Pi,..., pmN existcT (8)

^^small enough so (6) holds.

(d) Pseudo-orbits and limit configurations
Our strategy is to deal with the composed map in (7)

X" = gmN ° FmN ° • • • o g? ° Fl

even though, due to failure of (6), it may not equal (gf)T. As ft(wi)-»oo and
sm (0)2) -*0 we obtain certain limit estimates on xP which enable us to prove (8).

The pseudo-orbit of q by x" is

where

The purpose of (6) is to prove that this pseudo-orbit is part of a true orbit; i.e. that

Let co = (3, A; p, q, r, s, A) e fi be given. When (.2, A) is fixed and \r\ + ||A|| becomes
small we want to keep track of q" so we enlarge the picture near pt to a standard
size, using the box chart Bn

Replacing fl by a tail, if necessary, we can assume that q"n is well-defined. For even
when |r| + ||A|| is small, expp« ° (r + A) is defined on a huge ball in TP*M and/n sends
its image to a neighbourhood of p* having fixed size. Note that 2. being fixed
means that p*,..., p%N and fu . . . , fmN are fixed.

The quantity q"n -q"n-\ is called the proportional lift in the box Bn. As h(i»)^*<x>
and sm (o>2) -* 0 the points qo,..., q"mN assume a certain limit configuration depend-
ing on p. We proceed to prove the key equation

J^n, U«<mJV, (9)

which determines the limit configuration of qp,..., q"mN in terms of limn <7o-
Since

qPn-i=B-l(yp
n),

we can estimate the proportional lift in Bn by the C1 Mean Value Theorem. We
obtain

(•1

Jo

Substituting

vn=parny—SnA{en)j
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and using the Chain Rule, this integral becomes

\ 2.H6 I Jo

As |r| 4- ||A|| -* 0, A"1 blows up so some caution is required. However, the composition
D( ) o parn uniformly approaches /„"* as

while coi = {Si, A) stays fixed. Writing

/„= /„ -£ ) ( )°parn

gives the proportional lift in Bn as

Zi>3 Jo

Using (3.1), (2iii), and (4) we have

where h = h(toi). Thus

Now limn means we can fix wi with h enormous and then let |r| + ||A||-»0; the
former puts a uniform bound on bol (A) by (4) and S\,..., SmN are fixed for fixed
<o\. Thus, ||/B||-*0 dominates and the r.h.s. above is arbitrarily small, proving (9).

Since ql =B~xqe ajm which is compact, there is an ascending ft' <= n such that

Q = limn' 4o

exists, QeaJm.
By (9) this completely determines the limit position of the other q"n,\<n<mN.

In the same way, we find the limit position of supp gp
n - namely

lim supn' Bn
x (supp gp

n) <= limn' q"n-\ + alm. (10)

First we calculate that
|i;n|<am(/BA).

Parallel translation along geodesies is orthogonal so

vn\ = \v*n\, v*=aSnAen/2m.

By Proposition 3.1,

2m(/,,A)>ni(S,,A|V"), eneV\

if h>2. Thus
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By (L2), 

supp gp„ <=expy» U„, 

where Up

n = Ty°M(\pnvn\). Thus 

B'1 (supp g'n) <= S ; 1 (exp y S T y »M(am(/„ A))). 

But the map S ^ 1 ° expy» sends the origin of Ty-nM onto qp„~i and has derivative 

A _ 1 D u (expp* °fn

x ° expy»), u e Ty°M-

When \u\<am(JnA), Du tends uniformly to J „ l as sm (o>2)-*0, and using the C 1 

Mean Value Theorem as above, we see that the S ^ 1 -image of supp g"n is contained 
in the ball at q"n-\ of radius 

^ ||( A" 1 J " 1 )«m(J-„ A)|| + 1 | A" M l | | / « 1 1 1 1 1 ^ . I I I I A||, 
where ;'„ is as above. The second term tends to 0 as sm (w2) -* °°, since bol (A) stays 
bounded. The first term is a. Since the unit ball is contained in the unit cube, this 
proves (10). 

Let us calculate limn* qp

n explicitly. For convenience, equate the so far independent 
parameters pi,..., p m N by blocks of length N; i.e. for o-eIm put 

p = p(cr) = (cr , . . . , cr , a ,..., a , a , . . . , cr ) . 

N TV N 

From (9) we calculate 

=Q + 6no-
where 6n : Tp*M-> T„*M is a diagonal matrix with (/, /)th entry 

[ 0 , n < ( / - l ) A T ; 

6» = ] [ „ _ ( / _ l)N]ga/9B, (l-l)N <n<lN; 

[Nea/9S, n>lN. 

Thus 6n

mM = Nea/dS, for all /, 1 < / < m. Call ft this common value 
"ft. 0 . . . 0" 
0 ' . 0 

S-mN — 

_0 0 

B y ( l ) 
ft > f l ! + « 2 = 1 + 1 7 3 . 

The arithmetic involving \/f, 40, etc. is left to the reader. 
We call si the set of acceptable parameter values 

st = {(relm: Q + bo-ea2Tm}. 

Since ft > a i + a 2 and QeaiTm, the (affine) map cr^>Q + ba is a homeomorphism 
of si onto a 2 / m . Also we observe 

a e si 3> Q+ tno- = lima qn(o-)ea2Im, l < « < m i V ; (11) 
o - e ^ ^ l i m s u p n ' S ^ M s u p p g ^ ^ c a s / " 1 , l < n < w 7 V . (12) 
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For 6n, 6mN are diagonal matrices with

and so Q, Q + 6mNcr, Q + 6n<r are three points Q, Q', Q" of Um such that the fcth
coordinate of Q" lies between the kth coordinates of Q and of Q', 1 < k < m. Any
rectangular box containing Q, Q' must contain every such Q". This proves (11),
while (12) is a direct consequence of (10), (11). This completes our analysis of the
limit configurations.

Remark. It is absolutely necessary to deal with boxes (as opposed to 'ellipsoids' =
images of the unit Euclidean ball Um, exp° (r +A)£/m) in order to get (11).
Except for this, we could replace Im by Um throughout, and, in Lemma 4.1, make
A = A.

Finally, we are ready to say how SL, A, vn should be picked to verify (3).
We consider for each w e fl' the map

We know that Q™ converges uniformly to the affine map cr>-^*Q + 6n(T as
and sm (w2) •* 0. Thus

Q"mN{s4)^aJm (13)

for all (a is in some tail of fl'. For

cr >—» Q 4- 6mNcr = Q +bo-

is a homeomorphism of si onto a2l
m and any continuous map (QmN for instance)

near a homeomorphism of one m-cell to another has almost the same image. (We
know that Q"{(r) is a continuous function of o- because y"n depends continuously
on p and so does g"n (y"„) = qp

n.) In particular, a e si can be found so that

qmN —a p,

since p eB(a\Im). Let such a a- be called <T(CO)

qmN — tf (P).

This proves the first half of (8): for each co in some tail of fl' we have a cr(a))esi
such that the pseudo-orbit

q, q"u qp
2, • • •, q"mN, p=p(a-(o))),

starts at q and ends at fTp.
From (12) and convergence we see that

for all a) in some tail of fl', since a(co)esd. Multiplying through by Bn gives (6),
the second half of (8):

Let fl0 be the intersection of all tails of fl' so far discussed; choose and fix any w0 e fl0,

a)o = (2,A,p,q,r,s,A);
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set p = p(o-(wa)) and 
En grr 

Then ( 8 ) + ( 4 ) = > ( 3 ) . As we observed earlier, ( 3 ) gives the Closing Lemma for y e 9)1. 
Q.E.D. 

Proof of theorem 5 . 2 . We apply the diffeomorphism proof to the Poincaré maps 
of our flow (p along the <p-orbit through p* as follows. We may assume that p* is 
not in the closure of Per (cp) - otherwise we need make no perturbation of <p at 
all. At the points p*, <pip*, <p-ip*,... we examine the canonical Poincaré maps 

and select from the sequence of their tangent maps a subsequence and a splitting 

7>(n p . ) = V1 § • • • $ VL 

by ( 3 . 2 ) . We fix e and N as above. Using ( 3 . 1 ) , ( 3 . 2 ) , ( 3 . 3 ) we look at the bi-ordered 
set 

fl = {SI, A, p, q,r,s, A} 

as before. For (St, A) satisfying the flow version of ( 4 ) , we determine the (m - 1)N 
points p* as in the ®-case. Then we construct disjoint flowboxes F„ starting at 
p*, l < n < ( m - l ) N . The continuous function S from the Lift Axiom for <p is 
positive on Fn, since p* is not in the closure of Per (<p). Hence S \F„ s some S0>0. 
We choose a tail of fl with ||A|| so that 

ae 
k*| = — | S „ A e „ | < 5 0 , l s « s ( m - l ) J V . 

The rest of the construction is the same as in the 2)-case except that we lift points 
gradually as they travel across the flowbox instead of lifting them after they land 
on M. Q.E.D. 

Proof of theorem 5 . 3 . There is no formal difference from that of ( 5 . 2 ) , the flow case. 

The difference between fields and flows is in the verification of the Lift Axiom. 
For fields it is harder. 

6 . and^1 have lift 

( 6 . 1 ) T H E O R E M . 3>l satisfies the Lift Axiom. 

( 6 . 2 ) C O R O L L A R Y . The C 1 Closing Lemma holds for any f e 3)1. 

Proof. Apply ( 5 . 1 ) . 

Proof of ( 6 . 1 ) . This is easy: we glue standard lifts into M. Let a : R m - > [ 0 , 1 ] be a 
C°° bump-function which equals 1 near 0 , has support in Um = t h e unit ball of R m , 
and has C^-size < 2 . When 0 * v e TPM and e > 0 define 

§A ;v):TpM^TpM 

y>-+y+ea(y/\v\)v =gc(y,v). 
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If e <2 and v e TPM with 0<|u| < 1 then ge( ; v) is a diffeomorphism of TPM
onto itself. For the C1-distance from ge to the identity map is

I I . - Id le '^ e(Da)y/M( ) — <2e (1)

and any map of Rm whose C1 distance to the identity is <1 is a diffeomorphism.
Define g by the commutativity of

expp

M-

Set gj = identity off Mp(l). By construction

(LI) ge(p;u) = expp (eu),

(L2)supp(ge( ;e))cAfp(|«|)

and (L3) is automatic since @)1 is closed under composition.
It remains to show that given fe 9>l and Jf a neighbourhood of / in 31

there exists e > 0 such that gef e Jf.

The e is not allowed to depend on v, | y | ^ l . Since composition is C1 -continuous,
it suffices to show that ge converges C1-uniformly to the identity as e -»0; but in
questions of C1 convergence, the particular choice of exp never plays a significant
role, so this follows from (1). Q.E.D.

(6.3) THEOREM. &X satisfies the Lift Axiom.

(6.4) COROLLARY. The C1 Closing Lemma holds for any <p e 3^.

Proof. Apply (5.2).

Remark. The proof of (6.3) is quite similar to (6.1) if the given flow has no fixed
points, for instance if it is the suspension of a diffeomorphism. But, in the general
case, more care must be taken because we wish to work in flowbox coordinates
even though no finite number of them covers M and flowboxes may be badly
distorted near fixed points. We use the following topological result.

(6.5) LEMMA. Let U be the interior of a compact m-ball U in Um and let f:U->Um

be a continuous map which is locally injective on U. Then

f\dUisinjective^f embeds U.

Question. Does (6.5) remain true for all open, bounded, connected U<=-Rml

Proof. Invariance of domain implies f\ U is open so fU is an open subset of Rm.
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Its closure fU equals /(£/) since / is continuous, so fU is bounded. If qed(fU)
then q&fU since fU is open. Hence

d(fU)cf(dU). (i)

Since f\dU is injective f(6U) is a topological sphere and it separates Rm into two
components. fU has no points in the unbounded component; for such a point could
be connected to oo by an arc y missing f(dU), but y would leave the bounded set
fU somewhere, and that would only occur at a boundary point of d(fU), contradict-
ing (i). Hence

fUc=Rm-outside (f(d(U)). (ii)

No pe U can be sent to f(p)ef(dU) because some neighbourhood V of p would
thereby be sent onto a neighbourhood of f(p) in Rm and f{du) being a topological
sphere, there are points of its outside arbitrarily near/(p), contradicting (ii). Hence

fUnf(dU)=0. (iii)

On the other hand, if fp ef(dU) there are points of fU arbitrarily near it but points
outside f(dU) also near it. Hence f(dU)c d(fU) so with (i) this shows

f(dU) = d(fU). (iv)

In particular, fU is a topological open m-ball in Rm. But any locally injective map
of one open m-ball to another which extends continuously to a map carrying the
boundary of one to the boundary of the other is globally injective, for it is easily
seen to be a covering map and U is simply connected. Q.E.D.

Remark. There do exist locally injective maps of one open ball onto another which
are not globally injective, for example, figure 8. Of course, boundaries are not
preserved.

v
f

FIGURE 8. A locally injective map of one ball onto another.

Proof of (6.3). Let ipef 1 and Jf a neighbourhood of tp in !Fl be given. Call cp = X.
At each p e Mv consider the natural flowbox chart at p

TPM =>Ul= {tX(p) + y: 0 < t < 1 and y 6 np(l)}

M
T

(p,(expy)
As above, ftp(<5) is the 5-ball in the orthogonal complement to span X(p).
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We claim that there is a continuous function S :MV -»(0, 1) such that, if we call

F = F \JT

then each Fp is an embedding and, for u e Up,

m(TuFp) and HT̂ FpH are uniformly bounded away from 0 and oo. (2)

These thin flowboxes Fp will be used to construct lift for <p. When Mv = M, (2) is
easy because M is compact, but when <p has fixed points (2) is not immediate. First
take u varying only along the segments [0, X(p)] in TM. These segments are the
central axes of the flowboxes. Then

rHFp = (7>,W, ue[0,X(p)], (3)

where i: Tu(TpM)-> TPM is the canonical identification. (3) is clear because, for
u =tX(p), 0<f < 1 , we have

and both {TUF°P)° t"1, Tpip, have the same effect on X(p): they send it onto
X{(ptp). (Recall that any exponential map has the property that 7p(expp): TPM->
TPM is the identity.) From (3) we see that (2) holds when everything is restricted
to these segments [0, X(p)], for {Tpip,} is a family of isomorphisms continuously
indexed by the compact set [0,1] x M. Since TMV is locally compact, it is then easy
to find a function 8 on Mv which tends to zero so rapidly at BM^ that (2) holds for
the thin flowboxes Fp as claimed.

Again, the particular choice of exp is irrelevant to C1-convergence questions
and it entails no loss of generality to assume that M=Um, exp is the inclusion, and
Fp c Um. Interpreted in Rm, (2) says that the derivative matrices of the flowbox
charts Fp form a compact subset of the invertible matrices. The latter are open
among all matrices, so there is a v > 0 such that

\\A — (Dfp)u\\ < v for some ueUp => A is invertible. (4)

Note that v is independent of p e Um.
Let ge( ; v) be the standard lift constructed in the proof of (6.1), but restricted

to Ilp. Thus ge( , v) is a diffeomorphism of np onto itself and

ge(0;v) = v, supp(g£( ;«))cnp(|w|

We suspend ge as follows. Let j3 be a C°°bump-function on R which is 0 near 0
and 1 near 1. Set

Up ={tX(p) + y: 0 < f < l andy enp(<5(p))}

y=ge(y,v).
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Addition occurs in Rm = M. When e = 0, Fe
p

v becomes the standard flowbox chart
Fp. Call

* = sup{||(D^,)P||: 0 s t < l , p e W } .

We claim that for some continuous small po:Mv -»(0, 1)

||(DFp-t')u-(DFp)u||<2e<t) (6)

for all u e Up, all peMv, and all v e Hp(p0(p)). We calculate

= P'(t)(<pty-<pty)+X(<p,y) + 0(t)(X(<p,y)-

dF'p'V{tX{p) + y) = (l-p(t))(D<Pi)y+P(t){D<pt)y{Dg)y
dy

y = g E ( y ; u ) , g = ge( ;v)

so that, for all u = tX(p) + y e Up,

dt

+ P(t)\\(Dv,UDg)y-(Dv,)y\\

<\(3U{\<P,y -<P,y\ + \X(<p,y)-X(<pty)\ + \\(D<p,)y -(D<p,)9\\}

+ \\{PVt)y\\\\D(g)y-I\\.

Now | y - y | < 2 p 0 while (D(p,)y and X(x) are uniformly continuous for 0 < ( < l
and x, y e f/m. Thus

\\DFe-v-DF\\<2e$>

provided p < some constant p0. Choose

Po(p) = min(S{p),p0)

and (6) follows. Choose e 0 ^ f/2<&. By (6), (4) and the IFT, FpV is locally injective.
On dUp, Fp" agrees with Fp except on

{ t X ( p ) + y : t = l } .

Here, however, Fp
v sends

X(p) + y to <pi(y) = <pi(ge(y;u))

which is also injective; thus, Fp
v is injective on dUp. By (6.5), FP'V embeds Up

and, since

we see that Fp" and Fp have the same image flowbox: call it

t / P=Fp( t / p )=FP-u(Lg.

Since Fp'" is an embedding, it defines a C1 flow ip on Up whose trajectories are
those of <p outside Up and while on Up they are

(r,g)>-»(l-|3(r))<p,y+/3(f)<p«(y), y =ge(y;u),

for 0 s ; < l and y€n p . That is, ip in the flowbox is the Fp
u-conjugate of the

translation flow x on Up
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while <p is the Fp-conjugate of \- Now 4/ and <p are C^-conjugate to the same flow
by conjugacies which, according to (6), are arbitrarily enclose to each other, and
which, by (2), are C1 bounded. Hence ipeM", the given neighbourhood of <p.

The 4> trajectory through y strikes lip exactly where the (p-trajectory through
y=ge(y;i;) does. For 4>iiy) = <pi(y) and the bump function (i(t) is constantly
equal to 1 near t = 1. Thus

gt( ;v) = (Poincare map of (p)'1 ° (Poincare map of t/0

so 4> lifts p as it should to verify (L'l). The flows of <p and <A differ only in Up so
(L'2) is satisfied; and (L'3) is automatic for &x. Q.E.D.

7. %x has lift
This section corrects the proof of Closing Lemma appearing in [15]. First let us
point out what was wrong. Flowboxes are used as charts on M. If the given vector
field is C1 then these flowboxes are just C1 and so perturbing vector fields
constructed in them may fail to be C1 - let alone C1 small. (See [15, p. 668 lines
14-17], [16, p. 1013] where d2x'/dui duk may fail to exist in (4.5).) On the other
hand, when the original field is C2 then so are the flowboxes and the perturbations
constructed are C1 and C1 small. See (6.5), (6.6). Why should anyone spend time
making this theorem work also for C1 fields? Because in the proof of the General
Density Theorem (see § 11 and [16]) one must close up a non-wandering orbit of
a given C1 (non-C2) vector field.

(7.1) THEOREM. XX satisfies the Lift Axiom.

(7.2) COROLLARY. The C1 Closing Lemma holds for any X E Sf1.

Proof. Apply (5.3).

Proof of (7.1). Since the Lift Axiom is local it again entails no loss of generality to
replace M by Rm and to assume that all flowboxes are contained inside the unit
ball Um. Let Jf be the given neighbourhood of X in 3?1. There is a fx, >0 such
that, ifYe%\ supp (Y) <= Um and

\\(DY)x-(DX)x\\<n (1)
for all x e Um, then YzJf.

We use the same 'suspension' perturbations in %x as we did in &l (see § 6).
Thus, we have a flow <A which differs from the A"-flow <p only in a flowbox Up and
whose trajectories there are

y=ge(y;v).

In § 6 we showed that this standard lift on IIP, ge( ;v), suspends to the flow i/r,
and i/f verifies the Lift Axiom. This required 0 < e < e o and |t;|<po(p), where
po:Mv->(0,1) is continuous and small, while e o >0 is a constant independent of
p. It remains to show that Y = ip is C1 and satisfies (1) when £<£0, p^Po are
small enough.
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Fix a constant K,

K > sup \X(p)| + sup HtfMOpll + sup ||(D<pr)J.
peJVf p&M p&M

|(|sl

By (6.1) we can findpi <p0 and e i < e 0 small enough that

sup ||(.D<A,)y - (Dip,), || < M/20(A- +1)2.
P^MV

|i|sl
yenp(p,(p))

Recall from § 6 that ||£>g - J||<2e. Also recall that F P
r :UP-*UP is the i/f-flowbox

chart and that

makes r{x)X(p) and y{x) C1 functions of x having uniformly bounded first
derivatives: say bounded by B. The point y(jc) is where the (^-trajectory through
x strikes np, and T(X) is how much time it takes y(x) to reach x along it. Thus

where T = r(x), y =y(x), y = g(y(x)). Differentiating this with respect to t gives

where T, y, y are as above. Y{x) is C1 because all the functions in its expression
are C1. Moreover,

[DY)X-{DX)X = (I) + (II) + (III) + (IV) + (V),

where

(II) = (3'(T){X(<pTy)(DT) -X(<pTy )(Dr) + (DcpT)9(Dy) -

(lll)=D(X(<pTy)-X)x,

(V) = |

All these quantities depend on v and e. Note that

\\DT\\<B/\X(P)\

is unbounded if <p has fixed points, so some care is necessary. However, the bound
B/\X(p)\ is continuous on A/v. If pi(p) is a small enough continuous function on
Mv, then uniform continuity of <p gives

|I|<^t/10 whenever \v\<pi(p),

since |y - y | < 2pi(p). Similarly, pw(p) can be found small enough that

|IV|</i/10 whenever |t)|<piV(p).
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To estimate (II) note that Dy = (Dg)(Dy). Thus

|II| < \P'\{\X(Vry) -X(Vr)\ \\DT\\ + \\(D<pT)9\\\\Dy -Dy || + \\(D<pT)9

< |/3 '|{|X(<pTy) - X(<pTy )| \\DT\\ + K\\Dg - Id||B + \\(D<pT), -

which gives

by requiring |u | <pn(p).
Estimating (V) is similar:

) , J | \{X(<pTy)(Dr) -X(<pTy)(Dr) + (D<pT)9[(Dy) - (Dy)]

+ [(D<pr)9-(D<PT)y](Dy)}\

\\(DX)Vr9-(DX) vJ\{K\\Dr\\ + K(l + e)B}

which gives

| V| < /a/30 + M / 3 0 + 2K2Be + fi/30

provided |u |Sp v (p)-
To estimate (III) we derive

(Dy)x =

since X = Y on II. Thus

D(X(<pTy ))x = (DX)vAX(<Pry){Dr) + {D<pT)y(Dy)}

since (D<pT)yX(y) = X((pry). This gives

) ^ y - (DX)x\\KB+K2v/20(K +1)2

which gives

provided |u|<pm(p). Taking

p(p) = min (po(p), pi(p), • • •, Pv(p))

gives

\\(DY)X- (DX)X ||

whenever p&Mv, |u|<p(p), and e<e0- For e<p./4KB, (1) is verified and the
proof of (7.1) is complete. Q.E.D.
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7A. Smooth suspension
The preceding construction of lift grew out of an alternate proof of the C1 Closing
Lemma for 9£x via a smoothing process which we explain here.

(7.3) Smoothing Theorem. If XedE' has a non-compact orbit through p and if °U is
a neighbourhood of X in d£\ r > 1, while U is a neighbourhood of C(p) in M then
there is X e <% and a conjugacy h:M±3 of the X-flow to the X-flow such that

(a) X is C°° on some neighbourhood of h(&(p));
(b) h(p)=p and h = identity off U.

Moreover, h is C and C approximates the identity.

Remark 1. The point of (7.3) is: X can be smoothed semi-locally without losing
the non-wandering nature of p. Global smoothing of X can radically change the
X-flow, for instance the Denjoy flow.

Remark 2. The construction in (7.1) demonstrates the:

C"-Perturbation Principle. Every C-small perturbation of a Poincare map -as a
map - arises from a C small perturbation of the generating vector field, 1 < r < oo.

In fact, in (7.1) we estimate the C1 size of the vector field perturbation in terms
of the C1 size of the given Poincare map perturbation. Although we worked locally
(in Um <= Um), this suspension construction is also global. If 2 and 2' are hypersur-
faces in M and X e.3* defines a Poincare map / : 2 -* 2' satisfying

2 3y->/ (y)=e l ( y ) (y )e2 \ fty^SuI' for 0<s<r(y) ,

where <p is the A'-flow, and, if X ifi (2 u 2'), then any C small perturbation of / as
a map arises from a C small perturbation of X. To see this, embed M in some Uk

and let (j. :iV-»M be a C°° tubular neighbourhood retraction. Let /8 :RxE-»[0,1]
be a C°° bump function such that /3 = 0 near 0 x 2 and /3 = 1 near {(t(y), y): y e l } .
Set

V«(t, y) = /i((l -fi(t, y))<p,y +/3(f, y)<p,y), y =r'g(y).

Addition occurs in Rk and /x brings the answer back to M. It is easy to see that ^ g

defines a Cr flow ipg whose Poincare map is g, that iAg is CT, and that tj/g C-
approximates X. To check how well ij/g Cr-approximates X in terms of g is messy
as was seen in (7.1).

Remark 3. In Smale's exposition [21] the reader may be puzzled about the apparent
loss of differentiability in the suspension construction. If / : 2 -»2 is a C
diffeomorphism, Mf = 1.xT/f is naturally a C manifold and so its tangent vector
fields are naturally only C'x. By general theory, there is a C°° structure on Mf,
say Mf, and susp (/) = X is C on Mf. If g C '-approximates /, then Mg # Mf although
they are diffeomorphic. It is not clear from the general smoothing theory that the
field on Mf corresponding to susp(g)= Y C'-approximates X (although C'~x is
easy). In remark 2 this problem is solved: take M = Mf, 2 = 2'. Then C' small
perturbations of / give C small perturbations of susp (/) as Smale asserts.

Proof of (7.3). We use the C Perturbation Principle of Remark 2 and an e/2n-
argument to squeeze local perturbations down the entire trajectory of p. For
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simplicity, we work only with the positive semi-orbit C+(p). Since €+{p) is non-
compact, there is some w eoj(p)-6+(p). We choose a flowbox Fo for x of time
length > 1 which contains p in its interior, w & Fo. We divide Fo into two subflowboxes

Go u Ho = Fo,

n,,

G+(p)

Go

Go

Go

P

Ho

n;,

G+(p)

( »w

FIGURE 9. Fo divided into subflowboxes.

as shown in figure 9, and construct subflowboxes

as shown also. We make Go have time length > 1. Using C°° convolution approxima-
tion and C°° bump functions, we can find a field Yo on Go such that

y0 is C°° on a neighbourhood of G2, (a)

Yo = XonG0-G'0. (b)

The YVPoincare map from Ilo to So C approximates that of X. By the C
Perturbation Principle we can find a Cr field Zo which equals X off H'o and such
that the field

Xo = I Zo on Ho
[ XoffFo

satisfies
\X-X0\cr<e/2, (C)

the ATo-Poincare map n o -»n o equals that of X. (d)

(d) is the 'mirror image property' of Wilson [22]. Call the AVflow <p<0). From (c),
(d) it follows that there is a C conjugacy hQ:M±5 of <p to <p(0) and

dC'{h0,Id)<e/2, supp (/io)<=Fo. (e)

We can easily arrange that ho{p) = p.
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Now we replace p by <piO)(p) = pi and repeat the construction on an ATn-flowbox
Fi. We make sure that w and p do not belong to Ft and that Fx is long enough
so that its right end face n i misses Fo. Since w £ Fo this is possible. See figure 10.

FIGURE 10. F\ meeting Fo, with X0-flow curves shown.

We then smooth Xo in the left part of Fu G'(, and cancel the effect in the right
part, H[. Such smoothing affects Xo as little as we want on Go; in particular, the
field remains C°° on GQ. In this way we obtain a sequence of fields Xn, flowboxes
Fn, and conjugacies hn with

Xn is C°° on a neighbourhood of G"n; (an)

dcr(hn ° • • • °h0, hn~i o • • • °ho)<e/2n+ , supp {hn)<=Fn; (en)

\Xn-Xn-i\c°°<e/2 on Go u - • - u G n + i . (/)
hn conjugates Xn-\ to Xn. The flowboxes Fn never contain w and only Fo contains
p. Thus,

hn° • • • ° ho(p) = p-

The fields Xn and composed conjugacies hn ° • • • ° h0 converge to limits X and
h in 8?' and Diff (M), since these spaces are complete. Clearly,

\X-X\c-SLe and dC'(h~, Id) <e.

It is easy to check that h conjugates X to X. By (/), X is C00 on LJ?=o G" which
is a neighbourhood of h(cpy(p)), completing the proof of (7.3). Q.E.D.

Remark. Recently David Hart has shown that any C flow is C conjugate to a C
flow generated by a C tangent vector field [5]. He is also able to prove the C
Perturbation Principle somewhat differently. This provides an alternative way of
deducing (7.1) from (6.1).
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8. Symplectic diffeomorphisms, volume-preserving diffeomorphisms and volume-
preserving vector fields satisfy the Lift Axiom
First some notation is given and then the cases are treated one at a time. Let il'(M)
be all the C /-forms on M. The exterior derivative is denoted by

For a vector field X and differential form p e O,(M), the interior product of X with
p is denoted by X Jp, where

(XJp)(vu-- .,Vi-i) = p(X,vu---, Vi-i).

The Lie derivative of p by X is denoted by LxP- If <Pi is the flow of X, then

( t ) ( ) \

It follows easily that, if LxP = 0, then p =(pfp for all t. Also there is the following
formula to calculate the Lie derivative:

= d(XJp)+XJdp.
See [1, chapter 3], [8], and [19] for further discussion of definitions and concepts.

If w is a form on M, let

®r
w={fe2r:f*co=co},

and
&l = {<p e &': <pfco = co for all t}.

The cases we are interested in are when co is a volume element or a non-degenerate
two-form (symplectic).

Assume co is a C°° two form on M. A map co is induced from the tangent bundle
to the cotangent bundle, co : TM -* T*M, given by

cb(v) = v Jco.

The two-form is called non-degenerate if the induced map

wp;TpM^T*M

is an isomorphism for each p. The map co induces a map from vector fields to
one-forms,

which is an isomorphism if co is non-degenerate. If co is a closed (dco = 0) non-
degenerate two-form on M, then (M, co) is called a symplectic manifold. It follows
that the dimension of M is even, say 2m.

The diffeomorphisms on M which preserve co are called symplectic diffeomor-
phisms and are denoted by 2>L, as noted above. The vector fields which preserve
co are called locally Hamiltonian vector fields or symplectic vector fields and are
denoted by Stf^. Since

0 = Lxco = d(X Jco)+X Jdco = d(X Jco),
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locally Hamiltonian vector fields are ones for which u>(X) = X J&> is closed. If <o(X)
is exact, i.e. u>(X) = dH for some function H, then X is called a Hamiltonian vector
field. Let d£x

H be the set of Hamiltonian vector fields.
Similarly, if fi is an m-form on an m-dimensional manifold, there is induced a

map from vector fields to (m - l)-forms

fi:Sr-*nr
m-i,

defined by

If fj. is a volume element (non-degenerate at all points), then /Z is an isomorphism.
Since fx is an m-form, df* = 0. Therefore,

Lxn = djl(X)+X Jdix = dfi(X),

and X preserves fi if and only if (i(X) is closed. Such vector fields are called
volume preserving or divergence free and the set is denoted by #fM. The set of
volume-preserving diffeomorphisms is denoted by 2^.

8(a) Symplectic diffeomorphisms

Assume (M, w) is a C°° symplectic manifold, where w is a non-degenerate two-form
and <£ e 2>i is a symplectic diffeomorphism with Jf a neighbourhood of </> in 2>i,.
See § 8 for definitions and notation. Note that, if M is compact, all points are
non-wandering. Therefore for a generic C1 set the periodic points are dense (see
11.1).

The symplectic manifold can be covered by a finite number of C°° symplectic
coordinate charts, i.e. coordinate charts in terms of which the two-form <o is

m

I dx' A dxi+m

y=i

or the matrix of w in the coordinates is

/ = • °

where Im is the mxm identity matrix. Darboux's theorems show that such symplec-
tic coordinate charts exist. As in the earlier cases, all the estimates are made in
one of these coordinate charts, so we may assume that M = R2m, TPM = R2m, and
exp is the usual inclusion. By translation we can take p — 0. Let ju >0 be a constant
such that, if <f> ° g e 2>i, the support of g is in the coordinate chart, and \\g — Id||i < fi
in terms of the C1 topology induced by the coordinate chart, then <$> ° gsN. Let
y :R2m-»IR be a C°° bump function with support in the unit ball, supp y<= U2m,
and y(x) = 1 for x e \U2m. Let e > 0.

There are two standard ways to construct symplectic diffeomorphisms, as the
time-one map of a Hamiltonian vector field a>(dH) or from a generating function.
We use the former. To define the one-form dH, start by defining

Kv = <o(ev) = ev'J.
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This one-form Â  is independent of x, so d\v = 0. The vector field ^"'(Au) = ev is
Hamiltonian and points in the right direction but it does not have the correct
support. To cut down the support and keep the one-form exact, it suffices to multiply
the function giving A,, by a bump function. Let

f(x;v)= f \v(x)dt
Jo

= ev'Jx

be the function associated to Xv by the Poincare lemma, so

Ao = <*(/( ;«))

because d\v = 0. Define

H(x;v)=f(x;v)y(x\v\-1)

and let X( ; v) be the Hamiltonian vector field associated to H by &>. Thus

X(x;v)'J=DH( ;v).

Let g (x ; v, t) be the flow of X( ;v) through x evaluated at t ime t and

g:MxTpM(8)->M,

g(x;v) = g(x;v, 1),

where S is taken small enough so that SU2m is contained in the coordinate chart.
It follows that g( ; u): M-»M is a C°° symplectic diffeomorphism with

suppg( ;v)<=\v\U2m.

To show the C1 size of g( ; v)-ld is less than fx., it suffices to show that the
C2 size of H( ; v) is less than fi. Fix u and write

H(x;v) = H(x) and f(x;v)=f(x) = ev'Jx.

Because supp/c|t; |[/2m, we can assume that |x|s|u|. Then

\f(x)\se\v\\x\^e\v\2

and Dfx = ev'J so

||D/X||se|i;| and £>2/*=0.

Thus, letting y = x/\v\,

for e sufficiently small. Next,

M''e\v\ + Q

for e sufficiently small.
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To show g(0; v) = ev, notice that the bound

\X{x)\ = \\DHx\\<2e\v\\\y\\^\v\l2

for e sufficiently small implies that, for 0 < t < 1,

g(0;v,t)s\v\2^U2m and y(\v\-1g(0;v,t)) = \.

—g{0;v,t)=X°g(0,v,t) = a l\v=at

Then

so

8(b) Volume-preserving diffeomorphisms
Let /u. be a non-degenerate m-form on M, i.e. a volume element. Again, if M is
compact, all points are non-wandering for <f> e S ^ . Therefore for a generic C1 set
of </> the periodic points are dense in M. (See § 8 for more definitions and notation.)

Let / b e a neighbourhood of </> in &\. The manifold can be covered by a finite
number of C°° coordinate charts in which ju, is given by dx1 A • • • A dxm (see [9]).
Let y.Um ->U be a bump function as in §8(a), and e > 0 , 5 >0. By taking a
coordinate chart we can take p = 0. Define A : TPM(8) -* flm-i by

A,, =/Z(eu).

Let /( ; v) be the (m - 2)-form associated to Au by the Poincare operator such that

df( ;o) = Ao.

Let

H(x;v) = y(\v\-lx)f(x,v),

and

X( ;v) = ji-\

as before. The estimates are exactly as for symplectic diffeomorphisms.

Remark. The above discussion assumes m > 2. For m = 1, i.e. A/ = S1, the Closing
Lemma is trivial even though the Lift Axiom is false. Also, the General Density
Theorem (11.1) is false for 3)^(S1), since irrational rotations are generic.

8(c) Volume-preserving vector fields
Let (M, fi) be a C°° manifold with C°° volume element /J.. Assume m = dim M > 3.
See § 8 for definitions and notations. Remember, in particular, that X is volume
preserving if and only if /Z (X) is closed.

Let (p e 96„. and / b e a neighbourhood of <p in $£\. Cover M by finitely many
coordinate charts x such that for each p € Mv
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(p(p) is transverse to the plane x1 = constant

in some charts x, say x = x( ; p). If q is in the chart x( ; p) let &p
q be the plane

JC1 = constant through q. Since <p,(p) is a uniformly C2 function of t, there is T>0
independent of p e M such that the curve t>-^ip,{p), -T <t< T is transverse to the
foliation of planes 3F".

Let /3 :R-»[0, 1] be a C°° bump function which is =0 near 0 and =1 near T. The
curve

is also transverse to the foliation ZF" if e < 1 and if | u | < S (p), where S: Mv -»(0,1) is a
small continuous function. Addition is carried out in the x-chart.

In this case and the Hamiltonian vector field case we only show that we can
prescribe this one trajectory and not all 'volume preserving perturbations' of the
Poincare map as is done for the set of all vector fields. Because we want to apply
the Whitney extension operator along t/f,(p), we introduce the z-coordinates as
follows. Let tr :£Fq-*Um"' be the linear projection in the x( ; p) chart. On a
neighbourhood of p in this chart, put

z\q) = signed arc length of ip,p from p to 3Fp
q if \t| < T

(z2(q),...,zm(q)) = 7T(q-tlf,(p)) if il>,p £ &p
q and |;| < T.

Thus the z-chart carries the curve iA,(p) isometrically to the z'-axis. The z-charts
are C2 and uniformly C2 bounded when e <1 and |u|s<5(p). Besides, as e->0,
z( ; p, e, v) uniformly C2 converges to z( ; p, 0, 0). For ip, uniformly C2-converges
to <p, as e -* 0, arc length is universally C°°, and so is linear projection.

Because we want tAt(p) as a trajectory of a volume-preserving vector field, we
want a C closed (m - l)-form A such that

To ensure A is closed, we represent it as dri, where TJ is a C2(m — 2)-form. Care
must be taken to ensure that TJ is C2, so we use the Whitney Extension Theorem
to extend 77 (not A) and then let A = dr\.

At points (zi, 0),

where the A,(zi, 0) are C1 functions of z\. If

then

dr,=l('L~j(-Vs)dz1A- • -Ad?
i \ j az I
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where TJ,, = 0, TJ,7 = 17,,, and s = / - 1 if / < i and s = j - 2 if / > i. We can specify that

^ ( 2 ! , 0 ) = 0 for all/,/and 2;
dz

^ ( 2 1 ) 0 ) A,(21>0) i f / 3 ;
92

^ r ( z i , 0 ) = A,(zi,0);
dz

^ ( z i , 0 ) = 0 i f / # 2 , / > 3 .
02

For the second derivatives,

r r T T i / i ^ i . 0 ) and —fe—TTj,,(21,0) are determined;
02 aZ oZ aZ

d d
TT T-kVn(zi,0) = 0, «>landA:>l.
oZ aZ

By the Whitney Extension Theorem [2, Appendix A] there are C2 extensions of
the 17;, with these derivatives on {(21, 0)}.

To localize the support of TJ, let y :Rm~1^-[0,1] and a: R-»[0, 1] be C°° bump
functions with suppy = | [ / m " 1 , y (x)=l for Jteit/"1"1, supp a <= interior [0, T],
and a{x) = 1 for x e supp /3'. For u fixed, let

a(z) = a(z1)y(z2\v\~\ . . ., zm\v\-1).

As used below in the estimates

k (2 ) | s l ;

Let

Then A agrees with its values specified along <Mp)> because 7(2) = 1 near ip,(p)
and drj =0 whenever a (21) # 1 so

= da A TJ + a A dr]
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Therefore

and tp,(p) is a trajectory of the volume-preserving vector field <£+/Z~1(A). The
support of A is as needed by the use of the bump function a.

To get C 1 bounds on A, we need C2 bounds on the extended 17. First, we get
bounds of 17 along {(21, 0)}. By the definition of <Mp), it follows directly that

Also the operator \i is bounded so, for z = (zi, 0),

= O(e\v\).

Clearly,

|T7,/(ZI, 0)| = 0.

Lastly, for z = (zi, 0),

| |Z?2TJjyz| |= ••

II dz

dz

Since the chart z( ;p,e,v) converges uniformly in the C2 sense to z( ; p, 0, 0),
we see that the z( ;p, e, u)-representation of the vector field X = <p converges
C'-uniformly to the z( ; p, 0, 0)-representation of <p. But iji{z\, 0) = (p(zi, 0) if
e = 0. Thus

dz dz

Since ||d/I/dz|| and \\ji\\ are uniformly bounded, while

we see that

\\D2
Vii\\ = o(e°)

Because the Whitney extension operator is a continuous function of the deriva-
tives prescribed on {(zi, 0)}, the extended functions 17,, satisfy

By the estimates of ||DTJZ|| on z = (zi, 0) and the mean value theorem, for z e supp a

\\Dr,liz\\ = \v \o(e°)

and

\Vii(z)\ = \v\2o(e0).
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Then

v\o(e°).

Similarly,

2\\D2<rz\\\rUi(z)\

Therefore, for e sufficiently small (uniform in p), <p +fi.

S(d) Symplectic and volume-preserving flows
We were unable to prove the closing lemma for C1 flows which preserve either a
symplectic two-form or a volume element. The problem is that &\, is not a linear
space so it is not clear how to perturb the Poincare map and keep a C1 flow which
preserves the form. See [5]. Even in dimension two we were unable to close up
area-preserving C1 flows, although it seems likely that there is special proof for
this special case.

9. Closing Lemma for Hamiltonian vector fields

9{a) Lift Axiom for Hamiltonian vector fields
Let (M, (o) be a symplectic manifold. First, we remark that the flow of a Hamiltonian
vector field preserves the level sets of the function that induces it,

tpfi Jw = dH.

Thus, when we push q to p, we never have to push in the direction of increasing
energy. In fact, local perturbations do not change the level sets of H at the ends
of the flow box so we can only push along the level sets. More precisely, we have
the following Lift Axiom for Hamiltonian vector fields, %l

H. See §8(a) for
definitions.

Lift Axiom for %l
H. Let 4>e%x

H with energy function H and N be a neighbourhood
of <f>. Then there exist a constant
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and a continuous function

such that, whenever p e Mv,

where h = H(p), we have a perturbation t// ofcp in JV satisfying (L'l), (L'2), and (L'3).

Note we do not push in the 8/dH direction and that (L'3) is automatic because %X
H

is a linear space.

9(b) Lift implies Closing for Hamiltonian vector fields
The main change in the proof from the usual flow case is the need to restrict
attention to the energy surface when analysing the sequence of linear maps and
considering the boxes which contain the supports of the perturbations.

Let h =H(p*) be the energy of p* and Tlx be the transversal at x as before.
Consider the Poincare maps restricted to the energy surface H~x{h),

f :np*nH-\h)^Uv,(P")nH~\h).

Applying the selection theorem to the sequence of the tangent maps T, = Tp*f' gives
a sequence {tk} of {2, 4, 6 , . . .} and a splitting

Tp*(np.nH-\h)) = Wf • • • § VL.

Notice that that splitting only spans the tangent space to the energy surface and that
the shear in the B/dH direction is ignored. Proceed as before but now A, /„, and
Sn are all restricted to the energy surface. Applying Lemma 4.1 produces

on = (p, q, r, s, A)
satisfying (5.4) with

the projection into the energy surface of p and q, and

B = pr . expp* (r + A)

taking its values in this energy surface.
Because the boxes which are controlled are restricted to the energy surface, the

proof that the supports of the perturbations are disjoint must be augmented.
The supports of the perturbations restricted to the energy surface are contained
in the appropriate boxes which are disjoint as before,

supp£ nH-\h') n Up* ^fnB(I2m~2).

Since the gradient of H is non-zero at the points in question, H'1^') cannot
accumulate on itself, so the total supports are disjoint,

supp g"n n supp gp
k = 0 .

Also, as before, there is a p such that
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Since

it follows that

/r(p)=/VP)(<7).

Again fr(p) flows back to q outside the supports of the perturbations so q is on a
closed orbit.

9(c) Proof of the Lift Axiom for Hamiltonian vector fields
The verification for Hamiltonian vector fields is similar to volume-preserving vector
fields so we indicate the changes. Let (M, <o) be a symplectic manifold and (p e 9£l

H

be given with energy function H :M2" -»R,sow(<p) = dH. Assume 2m >4. Let Jf
be a neighbourhood of X = <p e 36l

H. Cover M by finitely many C°° coordinate charts
x such that for each p e Mv

4>(p) is transverse to the plane x1 = constant

BH
—2>0
dx2

in some chart x, say x = x( ; p). Again call ^ £ the plane x1 = constant through q
in the x( ; p)-chart. Let y = y( ; p) be the chart at p in which y' = x' except that
for/= 2, y'=H. This requires infinitely many charts y = y( ;p) but they are
uniformly C2, and, as before there is a T>0 independent of peMv, and a
continuous function S :MV -»(0,1) such that the curve

is transverse to the foliation 3>p if e < 1. Addition is carried out in the y-chart, /? is as
above, and so

Let 7?:3f'£-»Rm~1 be the linear projection in the y-chart. As in § 8c, define z-
coordinates on a neighbourhood of p by

z\q) = signed arc length of #,(p) from ^ to ^
2 i f <M

To make iMp) the trajectory of a Hamiltonian vector field, we want a C2 function
7] such that for z = (zi, 0)

Since drj is a C1 function of z\, we can use the Whitney Extension Theorem to
extend 17 as before. This time, the second partials
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are determined when either i = 1 or / = 1 and we can set

d d
—•--r)(zi,0) = 0, when i V l and/ # 1 ;
dz dz

T)(0,0) = 0.

To see that TJ(ZI, 0) = 0, let v, be the flow of the Hamiltonian vector field associated
to H + TJ. Then r,(p) = (Ar(p) on this one trajectory, so

H{p)=H(p) + v(p),
H(i>,(p)) + T, (p,(p)) = H(p) + V(i>t(p))x

because the Hamiltonian H + r\ is preserved by its flow and iMp) lies on the energy
surface H~\H(p)). Thus

as claimed.
Let a(zi), y(z 2 , . . . , z2n), and

a(z) = a(zi)y(z2\v\'\ . . . ,z2n\v\~l)

be as before and

K(z) = a-(z)r,{z).

The C2 bounds on K are exactly as before to show that H+K is in the neighbour-
hood JV for e > 0 sufficiently small. Q.E.D.

10. Are closed geodesies dense?
The geodesic flow on a manifold is a flow on TM or T*M On 7**M there is a
canonical two-form and the geodesic flow corresponds to the Hamiltonian flow of
a function that is quadratic on each fibre (the kinetic energy function). A C2

Riemannian metric corresponds to a C2 function on T*M which corresponds to
a CVector field. Thus it seems reasonable to ask if the closing lemma applies.

The problem is that the equations are second-order differential equations. What
this means is that, if the vector field is changed at any point of a fibre T*M, it
must be changed on the whole fibre. Thus the perturbation cannot be localized in
T*M (or TM) but only in M

To take account of this difficulty, one might try to modify the Fundamental
Lemma (4.1). In T*M all points are non-wandering (if M is compact) and a residual
set of points is recurrent. If M has dimension >3 then generically a residual set
of points is recurrent with trajectories passing through a fibre in T*M at most one
time. Thus one might try to find (2m -2)N flowboxes of the form T%M, where
U<=M is such that the trajectory only passes through each flowbox once before
returning close to p*e T*M. If this were possible, then the perturbation could be
localized in the T%M and the proof probably would go through.

Even the C Geodesic Closing Lemma is unproved. Imagine the manifold
embedded in R3 and a recurring geodesic y on M. Now y returns near its starting
point with nearly its starting direction. Try to put dents or bumps on the manifold
to warp y, causing it to close up smoothly.
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11. The General Density Theorem
Here we show that generically Axiom Ab of Smale, holds, see § 1, [16], and [21].

(11.1) General Density Theorem. Let ST = 3)\ &\ X\ 2}l(Mm), 3?l(Mm+1);
%l(Mm+1), @l(Mm+\ &l(Mm+2), %l(Mm+2), or^H(Mm+2) where Mis compact
and m > 2. Then the generic S e y satisfies

r(5) = n(5), (1)
where T{S) is the set of periodic trajectories of S, T(S) is its closure, and fl(5) is the
set of its non-wandering points. In the conservative cases, this implies T = M.

'Periodic' includes period zero: fixed points of flows. To handle periodic trajectories
that cannot be destroyed by small perturbations, we make the following two-step
definition.

Definition. Let y be a class of dynamical systems. If y is a periodic trajectory of
S € y then y is persistent relative to y provided that each S' near S in SP has a
periodic trajectory y' near y; and y is permanent relative to y provided that each
S' near S in 5" has a persistent periodic trajectory y' near y.

Note that the topologically stable fixed point 0of;t>-»;c-jc3is persistent but not
permanent.

(11.2) Stabilization Proposition. Let y be a periodic trajectory of S. If y is one of the
classes of dynamical systems in (11.1), then there exists S' near S in if with a
permanent periodic trajectory y' near y. Besides, S' = S off a small neighbourhood
ofy.

Proof. For the function spaces listed above, the proof of the Kupka-Smale Theorem,
[2], [13], and [19], gives this stabilization y' of y. Q.E.D.

Proof of (11.1). Let rperm(S) denote the permanent periodic trajectories of 5 and
let f perm(S) be its closure. The compact subsets of M form a natural metric space
K(M) with the Hausdorff metric [3, p. 112]. The map

is lower semi-continuous: its values can explode but not implode by permanence.
Semi-continuity implies continuity at a residual subset © of if, [3, p. 114].

If S € (3 then we claim

(2)

which implies (1). We know rperm is continuous at S. Suppose (2) is false, say

P*eCl(S)-Tperm(S).

By the C' Closing Lemma for Sf, we can find 5' = 5- in y with a periodic trajectory
y' almost through p*. By (11.2) we find S" = S' in y with a permanent y" = y'.
This defies continuity of rperm at S, for we produced S" in y arbitrarily near S with
a permanent periodic trajectory y" passing near p*, and p* is not near TpeTm(S).

Q.E.D.
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The case of non-compact M
The natural topology for a space of dynamical systems on a non-compact manifold
M is the Whitney topology. See § 1 and [7, Ch. 2]. In this topology, the perturbations
must grow smaller near infinity.

The proof of the Closing Lemma given in § 5 works equally well when M is
non-compact, provided that the point p* to be closed lies in

flc = {peil: a (p)uw(p)# 0} ,

where a(p) and w(p) refer to the a- and w-limit sets of the orbit through p. For
suppose p*e fic(<p) and w(p*) # 0 . Infinitely many points

<Mp*)> n=nun2,n3,...-><x>,

lie in a compact subset of M, and, in the proof of the Closing Lemma in § 5, we
can choose to analyse only the subsequence of the derivatives,

(D<f>n)P; n = rti,n2,

The TV disjoint lift-perturbations of § 5 are constructed near TV of these points and
so the perturbation which produces the periodic orbit passing near p* has support
in a fixed compact subset of M. There, the C1 Whitney topology becomes the usual
C1 topology and the rest of the proof of the Closing Lemma reverts to the compact
case. Using this non-compact Closing Lemma, we get:

(11.3) General Density Theorem for non-compact manifolds. For any of the function
spaces y in (11.1) on a non-compact manifold M, the generic S e Sf satisfies

f(S)=>nc(S). (3)

(11.4) COROLLARY. General Density Theorem for Hamiltonians. The generic C1

Hamiltonian vector field on a manifold W has its set of periodic trajectories dense
in the union U of the compact energy surfaces. In particular, the generic C2 proper
function H: T*M -* U has a Hamiltonian flow whose periodic trajectories are dense
in T*M.

Proof. U is open in W and is contained in fic, so (11.3) with

yields the first assertion in (11.4), if dim (HO >4. But if dim (HO = 2 then the
compact level surfaces have dimension one and are periodic trajectories or saddle
connections. The latter are discrete in U, so the former are dense in U.

The proper functions are open in C2(T*M, U) and their level surfaces are
compact. To each H corresponds a C1 Hamiltonian field on T*M, XH, and, up to
a constant, XH determines H. Hence, residuality in $£X

H pulls up to residuality in
C2

prop{T*M,R). Q.E.D.

Proof of (11.3). Although not metrizable, the spaces SP of (11.1) have the Baire
property when M is non-compact - residual sets are dense. Let K\, K2,..., be a
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sequence of compact subsets of M such that

LJ Int(AT,) = M

Call

f ,(S) = Closure ( F ^ S ) n Int (AT,))

for S e£f. This map F,: ^-*K(M) is lower semi-continuous: under perturbation of
S, FpermGS)n Int (AT,) cannot implode. (Note that rpeTm(S)nKi could implode if
entire permanent periodic orbits lie in M - I n t (AT,). They could slide off AT,. This
is why we intersect with Int (AT,-), not AT,.)

Let ©, be the set of continuity points of F, and let <5 = DT=\ ©,-. Since y has the
Baire property, (5 is residual and dense. If 5 e © we claim

Suppose (4) is false and take

for some Se(3. Choose / with p*eInt(AT,). By the Closing Lemma and (11.2)
there is a permanent periodic point p' of some S'eSf and S' = S, p' = p*. Since
p* e Int (AT,), p' e Int (AT,) also; i.e. p' e r,(S'), contradicting continuity of F, at 5. This
verifies (4) which implies (3). Q.E.D.

Added in proof. Using a generic Fubini argument (11.4) can be strengthened to

(11.5) THEOREM. The generic compact energy surface of the generic C1 Hamilton
vector field contains a dense set of periodic trajectories.
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