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SPECTRAL PROPERTIES OF FIRST ORDER ORDINARY

DIFFERENTIAL OPERATORS WITH

SHORT RANGE POTENTIALS

S. ITATSU AND H. KANETA

§1. Introduction and main theorem
The purpose of the present paper is to give a complete proof of the

theorem which will be used in a paper of the second author [4].
We will discuss certain spectral properties of self adjoint ordinary dif-

ferential operators of the form iA(d/dx) + V acting in U(R)n = 2] 0 L\R),
where A is a real diagonal constant matrix and V an Hermitian matrix
valued function on R which satisfies some conditions to be stated in the
sequel.

According to [1, p. 156] a function v in L\OC{R) is said to belong to
the class SR if, for some e > 0, the multiplication map: u(x) —> (1 +
\x\)ί+ev(x)u(x) is a compact operator from the Sobolev space H^R) into
U(R) (the square integrable functions on R). For a selfadjoint operator
L i n a Hubert space £>, let Lp, Lc and Lac stand, respectively, for the re-
striction of L to the subspace ξ>p spanned by all eigenvectors, !Q£ (the
orthogonal complement of φp) and the absolutely continuous subspace
£>ac([5], p. 516). Thus we have L = Lp Θ Lc and Lc D Lac. Let A be a real
diagonal nXn-matrix with (j, j)-component α, and V an Hermitian nXn-
matrix valued function on R with the (j, fe)-component Vjk in L\0C(R). As
will be shown in Lemma 1, the symmetric operator L = iA{djdx) + V
with domain Co(R)n = Σ ® Co(R) is essentially selfadjoint in the Hubert
space L\R)n = Σ ® L2(R), we denote the selfadjoint extension of L by L.
Then our main result is the following.

THEOREM, (i) Assume that aλ> an Φ 0. If each matrix element Vjk

of V belongs to the class SR, then L = Lac. Under the additional assump-

tion that for some ε > 0 and 0 < θ < 1/2 each Vjk satisfies
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(*) sup f(l + |*|Γ2< f I Vjk(y) f\y - xfdy] < oo ,
xeR L J \χ-y\<i J

Lac is unitarily equivalent to the selfadjoint multiplication operator M in

L\R)n defined by Mf(λ) = λf(X). Note that the condition (*) is satisfied if

Vjk(x) = Ofl*!"1") as | * | ->oo.

(ii) Assume that ax — = am = 0 ami am + 1 an =̂ 0 for some 0 <

m < n and that

' Vjk = 0 for j , k = 1, , m ,

Vjk is bounded for j = 1, >,m and k = m + 1, , n,

ViΛ and WJJC = Σ V/̂  Vii; are of the class SR for j, k

= m + 1, , n .

L Λas no eigenvalues differing from zero and Lc = Lac. In addition,

if each VjJc belongs to CXR) and satisfies

Vjk(x) = OQxl-1-) as \x\ >oo

for some ε > 0, then LQ is unitarily equivalent to the selfadjoint multipli-

cation operator M in L\R)n_m defined by Mf(λ) = λf(λ).

In § 3 a sufficient condition for L to have no eigenvalues will be

found.

§ 2. Proof of the theorem

We proceed as Agmon [1]. To begin with, we explain our notations.

The real and complex numbers will be denoted by R and C respectively.

As usual, C± = {ze C: ± Imz > 0} and /?* = R\{0}.

Lfoc(R) = lu(x): J \u(x)\pdx < oo for any compact set K in R\ .

U(R) = the square integrable functions with the usual norm || ||.

For real s,

L^{R) = {u(x): (1 + xψ2u e U(R)} with the norm || ||Oit:

For any integer m > 0 and real s, we define the weighted Sobolev space

Hm,s(R) by

Hm,s(R) = {u(x): ITu e U<S(R), 0 < m] with the norm || ||m>,:

Σ \\D°u\\lΛ , where D= - i *

0<α<m / dX
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For real m, the Sobolev space Hm(R) of order m is defined as the comple-

tion of C~(R) under the norm

Here ύ stands for the Fourier transform of u, namely,

ύ(λ) = (2π)^2 f u{x)e-ίxλdx .

Thus Hmf0(R) = Hm(R) for non-negative integer m. The continuous func-

tions and continuously differentiable functions on R will be denoted by

C(R) and C\R) respectively. For any 0 < 6 < 1 and real s we denote by

CΘ'S(R) the continuous functions such that

u\\\,,, = sup(l + \x\)s\u(x)\ + sup Γ(l + | * 1 ) ' ' ^ - y 1 ] < oo .
χ,y

0<\x-y\<l
x —

C"-valued functions on 1? whose components lie in L2(R), for example, will

be denoted by L\R)n.

Finally,

A: a real diagonal matrix with the (j,^-component α;.

V: an Hermitian matrix valued function on R whose (j, fe)-component

is Vjk.

V: an Hermitian matrix valued function on R whose (j, ^-compo-

nent is Vjk(m < j , k < w).

VF: an Hermitian matrix valued function on R whose {j, ^-compo-

n e n t i s WJk = Σ i < κ m Vj£V£k(m <j,k^ n).

DL: the domain of the operator L = iA(d/dx) + V.

LEMMA 1. The operator L = iA(djdx) + V iwϊ/i domain C~(R)n is es-

sentially self adjoint in L2(R)n.

Proof. Recall that Vjk e L2

l0C(R). Obviously L is symmetric. Assume

first that the diagonal matrix is non-degenerate. It remains only to show

that the range of L — z is dense for any zeC±. To this end, suppose

that a g e L\R)n satisfies

(1) ((L - z)f, g) = 0 for any fe C~(R)n .

Since Vjk e Lfoc(R), (1) implies that g is absolutely continuous and that

(2) iAg' + (V-z)g = 0.

https://doi.org/10.1017/S0027763000018900 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000018900
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Thus it follows easily that

(3) (Ag(x), g(x)Y = - 2 Im z(g(x), g(x)) .

Since a monotone function in U(R) is zero, the function (Ag(x), g(x)) is

zero. Now from (3) it follows that g = 0. Next assume that ax = =

αm = 0 and am+1 αn Φ 0. Then (1) implies that components g/m <y

< ή) are absolutely continuous. The rest of the proof is the same as

that in the case where det A Φ 0. Q.E.D.

Remark. The domain DL is Hx{R)n in the case (i) and L2^)

in the case (ii) of our theorem. In order to verify this, recalling the

theorem 4.3 of [5, p. 287], it suffices to show that there exist some con-

stants 0 < a and 0 < b < 1 such that

for a function υ belonging to class SR and for any fe H^R). To this end,

note first that the following inequality holds for some constant c.

Hence there exists positive constant r such that

f |ι;/|2dx<||/||?/4.
J \x\>r

Since |j/|U < c||/||ϊ for some constant, taking N large enough, we have

f \υffdx = (f + f )\υffdx < iV2||/||2 + ||/|g/4 .
J \x\<r \J \x\<r,\υ\<N J \x\<r,\v\>N/

2.1. Eigenvalues. The following lemma, together with Proposition 3

in § 3, implies that L has no eigenvalues in the case (i) and that L has

no eigenvalues differing from zero in the case (ii).

LEMMA 2. If v belongs to the class SR, then v is integrable.

Proof. Assume that for a positive ε the map u—> (1 + \x\)ί+εvu is a

compact operator from H^R) into L2(R). Then (1 + |x|)1+β|ι;||w|2 is inte-

grable for any ueH^R), in particular, for u = (1 + x2)"(1+s)/4. Q.E.D.

2.2. The limiting absorbtion principle.

Case (i). Let R0{z) be the resolvent (iA{djdx) - z)'1 for zeC±. We

note that the theorem 4.1 of [1] holds for R0(z), hence the boundary value
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DIFFERENTIAL OPERATORS 27

Ro(X) is a well defined bounded operator in B(D's(R)n, Hlt_s(R)n) for any

5 > 1/2.

DEFINITION. A function u e Hl°\R)n will be called a ^-outgoing func-

tion (resp. ^-incoming function) if for λ e R the relation holds:

u = Rϊ(X)f (resp. u = R;(λ)f) for some fe L2>s(R)n

with some s > 1/2. Among several steps to prove the limiting absorption

principle (cf. Theorem 4.2, [1]), Lemma 4.2 of [1] is the only one whose

proof needs new idea. A difficulty arises because A is not necessarily

definite. Therefore, we confine ourselves to the proof of the following

LEMMA 3 (cf. Lemma 4.2, [1]). Let u e HϊOG(R)n be a λ-outgoing (λ-

incomίng) function satisfying a differential equation in the distribution

sense:

(5) 4 r + Vdx

where the matrix element of V are of class SR. Then u belongs to H1)S(R)n

for all real s.

Proof. We shall prove the lemma for u outgoing, the proof for u

incoming is similar. By the assumption, u = Rϊ{λ) f for some /e U'So(R)n,

s0 > 1/2. This implies

(6) Uj(x) = iaj1 JJ e-ίaT^-y»f.(y)dy for ; e J + = {j: a, > 0}

= - iaj1 Γ e-tar1(*-v)*My)dy for j e J . = {j: a, < 0}.
j — °°

Since / is integrable, it follows that Uj(oo) = 0 (resp. UJ(-OΌ) = 0) for j e

J+(resp. j € J_) and that u is absolutely continuous. Thus (5) holds in the
ordinary sense, which yields, setting Im z = 0 in (3), the function (Au(x)>

u(x)) is constant. Thus we have

0 > l i m Σ aj\uj(x)\2= Σ < W * ) 2 = Urn Σ a3\uj(x)\2 > 0.
χ-*-<χ>

From this and (6) follows that fj(— λaj1) = 0. From now, the reasoning

in the proof of Lemma 4.2 of [1] is applicable. Q.E.D.

Case (ii). Let R(z) be the resolvent (iA(d/dx) + V— z)~x for ze C±9

I+ the injection (/m+1, ,/„)*-• (0, 0,/m+1, ,/ w ) ί and P+(resp. Po) the
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projection (fu •••,/»)'-* (fm+u -,/»)' (resp. (£, ,/m) ί). For 2 e C ± we

consider an operator L(z) with domain Hι(R)n.m:

(7) L(s) = iA-4- + V+z-ιW- z.

dx

First of all, note that the inverse R{z) of L(z) exists and that it satisfies

(8) R(z) = z-1(-P0 + Po VlM*)P+) θ Λ
In fact, given an fe L2(R)n, the equation (L — z)u = / has a unique solu-

tion u = R(z)fe L\R)m θ fli(i?)Λ-TO As one sees easily, w = 2?(;z)f if and

only if

(9) ( i l - f + V + z'ιW- Z)P+U = PJ + z'Ψ+ VPof,
\ dx I
pou = z'\- Pof + P0Vύ).

Since VjJc (m<j<n, l < ^ < m ) is bounded, the range (P+ + z-ψ+VP0)(L\R)n)

is equal to L2(R)n+m. Now assume that for a given /+ e-L2(R)n_m the equa-

tion L(z)u+ = jΓ+ admits two different solutions w(

+

y) (y = 1, 2). Then, from

the preceding observation, the equation (L — z)u = I+f+ has two distinct

solutions, which is a contradiction. The existence of R(z) has been proved.

Now (8) follows from (9). We will show that R(z) is a B((L2>s(R)n_m,

Hh -s(R)-valued continuous function on C± which has a continuous exten-

sion on C± U R*(s > 1/2). To this end, note that

(10) R(z) + R0(Z)(V + z-1 W)R(z) = R0(z) for z e C± ,

where R0(z) denotes the resolvent {iA{djdx) — z)~\ Since V as well as W

belongs to SR class by the assumption (**), repeating the argument in

the proof of Theorem 4.2 [1], together with Lemma 3, we see that a

B{Hu_s{R)n_m, Hh_s(R)n_m)-v2Llueά function f(z) = R0(z) (V + z~ιW) has

continuous extensions on C± U JR* and that I + f±{z) (ze C± U 1?*) is in-

vertible if and only if z is not an eigenvalue of L. Since L has no non-

zero eigenvaues, R(z) has the boundary values R*(X) = (I + T±(λ))-1Rt(λ)9

which is automatically continuous in λeR*:

lim R(z) = R*(λ) in B(U>s(R)n_m9 Hi,.,(«)».«).
±lmz>0

In view of (8), R(z) is a B(U'°(R)m, U s(R)m)®B(Π'°(R)π_m, fli,.f(Λ),.m)-valued

function which admits continuous extensions JR±(Z) on C± U R*. Now the
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absolute continuity of the spectrum of L on I?* follows.

2.3. The multiplicity of Lac.

Case (i). We assume the condition (*). In our case Theorem 5.1

of [1] runs as follows.

PROPOSITION 1. There exist two families φ±{x, X) of generalized eigen-

functίons of L defined for any λ e R having the following properties {recall

that L has no eigenvalues).

( i ) As a function of x and λ, φ±{x, X) is a measurable matrix valued

function of class Lloc{RχR).

(ii) For every fixed λ the function <p±(x, X) belongs to C(R) Π H}0C{R)

and satisfies the differential equation {iA{djdx) + V — X)φ±{x, X) — 0.

(iii) For any vector g in Cm, put φo(x, X) = e

{ίΛ)~lχλ\A\-1/2 and

φl(χ, X) = φ±{x, X)g, <pg

0(x, X) = φo(χ, X)g .

Here |A|"1/2 denotes the diagonal matrix with (j,j) component \aj\~1/2.

Then for a fixed λeR, the function φi(x, X) has the representation

φl(x, λ) = φ<(χ, λ) - R*(λ){V(.)φ&. , λ)](x) ,

where R*(X) are boundary values of the resolvent R(z) of L. In particular

ψl{x,X) lies in Cβi~s(R)n Π Hlj_s(R)n for any s > 1/2 and satisfies the dif-

ferential equation (5).

Therefore we can verify the eigenfunction expansion theorem for L

along the line of the proof of Theorem 6.2 [1]. Namely, define bounded

linear maps F±: U(R)n -> L\R)n by

F±f(X) = (2ττ)-1/2 lim f φ*(x, λ)f{x)dx in Π(R)n ,
iNΓ-oo J \χ\<N

Then F± unitarily transforms L into the self adjoint multiplication operator

M defined by Mf(λ) = λf(X).

Case (ii). We first note

PROPOSITION 2. Let the potential V be of class C^R) and satisfy the

first condition of the conditions (**). Then the multiplicity of ZA {the re-

striction of L to the orthogonal complement of the space £>0 spanned by

eigenvectors for eigenvalue zero) is at most n — m.

Proof. We shall show that L has an {n — m)x{n — m)-matrix valued
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30 S. ITATSU AND H. KANETA

spectral matrix p. The proof follows the same development as that of

Theorem 3.1 in Chapter 10 of [3]. However, in connection with the proof

of Parseval equality we should note that the image L(C~(R)n) is dense in

the orthogonal complement φj-, that it is a subset of DL because V is

smooth and that, making use of notations in Chapter 10 [3], we have

f

f

\Lf(x)fdx,

\Uf(x)fdx.
K\λ\<μ

The lemma below completes the proof of our theorem.

LEMMA 4. Let Lo be the self adjoint operator iA(d/dx) in L(R)n. For

any fe C0~(R)n of the form f= (0, , 0,/m+1, .,/„)', e

ULe'ίtLof converges

strongly as £-> <χ>.

Proof. As is well known ([5], Theorem 3.7 in Chapter X), the con-

vergence follows from the fact that \\Ve~ίtLof\\ is integrable on some inter-

val (t0, oo). By the assumption (***) there exist positive constants ε, K

and r ( > 1) such that | VJk(x)\ < K\x\'ι'e for \x\ > r. Since (e'ULof)j(x) =

fj(x + aόt)y assuming that a finite interval (— c,c) includes the support of

/ and denoting πάnm<j\aj\ (resp. supJiX\fj(x)\) by a (resp. s), we have the

following inequality:

||Ve-ίtLi\\2 < 2cK2s2nz\c + at\-2~2',

which yields the desired integrability of \\Ve'ίtLof\\. Q.E.D.

Proposition 2 and Lemma 4 imply that Lac is unitary equivalent to

the multiplication operator in L2(R)n_m. Since we have shown that Lc =

Lac (see 2.2), the last assertion of our theorem has been proved.

§3. Sufficient condition for L to have no eigenvalues

As stated in § 1, A denotes a real diagonal matrix, while V stands

for an Hermitian matrix valued function of class Lΐoc(R).

PROPOSITION 3. (i) Assume that detAΦO. If A is positive (or nega-

tive) definite or if V is integrable on a half line, then L has no eigenvalue.

(ii) Assume that ax — = am = 0 and αm + 1 an Φ 0 for some 0 <

m < n and that
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Vjk = 0 forl<j,k<m,

Vjk and Wjjc = J ] Vj£V£]c are integrable on a common half line
l<l<m

for m < j, k < n ,

then L has no eigenvalues differing from zero.

Proof. Suppose ue DL satisfies the following equation for a real λ.

(11) f i A — + V- λ)u = 0.

\ dx >

We shall show that u=0. Note that us are absolutely continuous in the

case (i) and that u5 (j > m) are also absolutely continuous in the case

(ii) (cf. the proof of Lemma 1). If A is definite, (3) implies that the func-

tion (Au(x), u{x)) is constant, thus u = 0. If V is integrable, say on (0, oo),

define υeL\R)n by the formula u=eUA)~lχiυ. Then υ satisfies

Since υ has a non-zero limit as x-> oo, provided υ φ 0 ([3], problem 6 in

Chapter 3), we conclude that u=0. In the case (ii) we must show w=0,

assuming that λΦO. We rewrite (11) in the form (9) with /=0 and z=λ.

Since the Hermitian matrix valued function V + λ'1 W is integrable on a

half line, it follows that P+u=0 via the same reasoning for the case (i).

From the second equality of (9), Pou=0. Thus u=0. Q.E.D.
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