ON NORMED LIE ALGEBRAS WITH SUFFICIENTLY MANY SUBALGEBRAS OF CODIMENSION 1

by E. V. KISSIN

(Received 21st January 1985)

0. Introduction

Let H be a finite or infinite dimensional Lie algebra. Barnes [2] and Towers [5] considered the case when H is a finite-dimensional Lie algebra over an arbitrary field, and all maximal subalgebras of H have codimension 1. Barnes, using the cohomology theory of Lie algebras, investigated solvable algebras, and Towers extended Barnes's results to include all Lie algebras. In [4] complex finite-dimensional Lie algebras were considered for the case when all the maximal subalgebras of H are not necessarily of codimension 1 but when

$$\bigcap_{M \in \mathcal{S}(H)} M = \{0\}$$
(1)

where S(H) is the set of all Lie subalgebras in H of codimension 1. Amayo [1] investigated the finite-dimensional Lie algebras with core-free subalgebras of codimension 1 and also obtained some interesting results about the structure of infinite dimensional Lie algebras with subalgebras of codimension 1.

By \mathfrak{X} we shall denote the class of complex finite or infinite dimensional normed Lie algebras for which (1) holds. In Section 2 the results of Amayo will be applied in order to prove that for every complex normed Lie algebra H and for every subalgebra $M \in S(H)$ the largest Lie ideal I(M) of H contained in M has codimension less or equal to 3. Using this result for the case when $H \in \mathfrak{X}$ we shall show that, if $S_k(H) = \{M \in S(H): \operatorname{codim} I(M) = k\}$, for k = 1, 2, 3, then $L(H) = \bigcap_{M \in S_1(H) \cup S_2(H)} I(M)$ is a semisimple ideal in H and $R(H) = \bigcap_{M \in S_3(H)} I(M)$ is the radical of H. We shall also prove that $H_{(2)} \subseteq L(H)$, so that $R(H)_{(2)} = 0$. If H is finite-dimensional, then it was proved in [4] that H = L(H) + R(H) and that $L(H) = L_1 + \cdots + L_n$, where all L_i are Lie ideals in H and isomorphic to $sl(2, \mathbb{C})$. If H is infinite dimensional, then this does not necessarily hold any longer. We shall consider an example of a normed Lie algebra H from \mathfrak{X} such that R(H) = 0 but $L(H) \neq H$. We shall also show that the property of belonging to \mathfrak{X} is inherited by all closed subalgebras of H and by all quotient algebras H/\mathcal{T}_S where S is any subset of S(H) and where $\mathcal{T}_S = \bigcap_{M \in S} I(M)$. Finally, we shall consider the set T of all ideals I(M) such that $\operatorname{codim} I(M) = 3$ and shall introduce a Jacobson's topology on T.

In Section 3 the structure of solvable algebras from \mathfrak{X} is investigated. For every $R \in \mathfrak{X}$ we consider a special set Σ of functionals on R from $R_{(1)}^0$ ($R_{(1)}^0$ is the polar of $R_{(1)}$) and

the corresponding set of ideals $R_{(1)}^g = \{r' \in R : [r, r'] = g(r)r' \text{ for every } r \in R\}$ in $R_{(1)}(g \in \Sigma)$. If R is a finite-dimensional solvable Lie algebra from \mathfrak{X} , then it was shown in [4] that

- (T₁) the nil-radical N of R is commutative and a commutative subalgebra Γ of R exists such that $R = \Gamma + N$,
- (T_2) $N = Z \dotplus R_{(1)}$, where Z is the centre of R, and $R_{(1)} = \sum_{i=1}^{n} \dotplus R_{(1)}^{g_i}$, where $g_i \in \Sigma$.

For the case when R is infinite dimensional but Σ is a finite set, we shall prove in Theorem 3.6 that (T_1) and (T_2) hold. (This is the main result of the section). If Σ is not finite, then the structure of R is more complicated. In particular, (T_1) and (T_2) may no longer hold. To illustrate this we shall consider a solvable algebra R such that $N = R_{(1)}$, that dim $(R/R_{(1)}) = 2$ and therefore dim $(R_{(1)}^0) = 2$, but Σ is infinite. We shall show that in this case (T_1) and (T_2) do not hold and that there is not even a commutative algebra Γ such that $\Gamma \cap N = 0$ and such that linear combinations of elements from Γ and N are dense in R. We shall also prove that $R_{(1)}^{e} = 0$ in this example for all $g \in \Sigma$.

Finally, I would like to thank the referee for the many helpful suggestions which have helped me to improve the article.

1. Preliminaries and notation

Let *m* and *n* be arbitrary integers. Then $\binom{m}{n}$ is the usual binomial coefficient with the understanding that $\binom{m}{n} = 0$ if m < 0 or n < 0 or m < n. But we take $\binom{m}{o} = 1$ if $m \ge -1$. As in [1] we define, for arbitrary integers,

$$\lambda_{ij} = \binom{i+j}{i+1} - \binom{i+j}{j+1}.$$
(2)

If a linear space B is the direct sum of its subspaces B_i , for i=1,...,n we shall denote it by

$$B = B_1 \dotplus \cdots \dotplus B_n.$$

Let H be a complex Lie algebra of finite or infinite dimension and let there exist a subalgebra M of codimension 1. By I(M) we denote the largest Lie ideal of H contained in M. Then I(M) contains any Lie ideal of H contained in M. Now put $I_0 = M$ and let h_- be an element in H which does not belong to M. For every $i \ge 0$ let us define by induction

$$I_{i+1} = \{h \in H: [h, h_{-}] \in I_i\}.$$
(3)

If $h \in H$ by $\{h\}$ we shall denote the one-dimensional subspace generated by h.

Theorem 1.1. [1] (Amayo) If M is a Lie subalgebra in H of codimension 1 then three possibilities exist:

(1) I(M) = M;

(2) dim (H/I(M)) = 2, H/I(M) is solvable but not commutative and there exist elements h_{-} and h_{0} in H such that

$$H = \{h_{-}\} + M, M = \{h_{0}\} + I(M)$$

and

$$[h_-, h_0] \equiv h_- \mod I(M); \tag{4}$$

(3) (i) all I_i are Lie ideals of M, $I_{i+1} \subseteq I_i$ and

$$I(M) = \bigcap_{i=0}^{\infty} I_i,$$

(ii) there exist elements h_i , possibly zero, such that

$$I_i = \{h_i\} + I_{i+1} \text{ and } [h_i, h_j] \equiv \lambda_{ij} h_{i+j} \mod I_{i+j+1},$$

(iii) if $I_i = I_{i+1}$ for some *i*, then $I_j = I_{j+1}$ for all $j \ge 2$, $I(M) = I_2$ and there exist elements h_- , h_0 and h_+ in H such that

$$H = \{h_{-}\} + M, M = \{h_{0}\} + \{h_{+}\} + I(M)$$
(5)

and

$$[h_{-}, h_{0}] \equiv 2h_{-} \mod I(M), [h_{0}, h_{+}] \equiv 2h_{+} \mod I(M),$$

$$[h_{+}, h_{-}] \equiv h_{0} \mod I(M).$$
(6)

Now let a complex Lie algebra H be a Banach space. We shall call H a normed Lie algebra if a constant C exists such that

$$\|[h_1, h_2]\| \le C \|h_1\| \|h_2\| \tag{7}$$

for every $h_1, h_2 \in H$. We say that a closed subalgebra M of a normed Lie algebra H has codimension 1 if there exists $h \in H$ such that $h \notin M$ and that $H = M \dotplus \{h\}$. By S(H) we denote the set of all closed Lie subalgebras of codimension 1 in H. We shall often make use of the following property of Lie algebras from \mathfrak{X} which follows easily from (1): for every $h \in H$ there exists $M \in S(H)$ such that $H = M \dotplus \{h\}$.

By $H^2 = [H, H]$ we shall denote the closed Lie subalgebra of H spanned by all Lie products of pairs of elements of H. H^k , for k > 1, is the closed Lie subalgebra which is defined inductively by the rule $H^k = [H^{k-1}, H]$. H is said to be nilpotent if $H^k = 0$ for some k. The closed subalgebras $H_{(k)}$ are also defined by the inductive rule that $H_{(1)} = H^2$ and $H_{(k+1)} = [H_{(k)}, H_{(k)}]$ for $k \ge 1$. H is called solvable if $H_{(k)} = 0$ for some k. A solvable (nilpotent) ideal R(N) is called the radical (nil-radical) of H if it contains every solvable (nilpotent) ideal of H. If R = 0, then H is called semisimple.

For every linear subspace G in H let \overline{G} be its closure. Using (7) one can easily prove that $[G_1, G_2] = [\overline{G}_1, \overline{G}_2]$ for all subspaces G_1 and G_2 in H and that, if G is a subalgebra of H, then \overline{G} is also a subalgebra of H. Therefore, if G is a solvable (nilpotent) subalgebra of H, then \overline{G} is also a solvable (nilpotent) subalgebra of H. Thus R and N are closed ideals of H.

The simple Lie algebra of complex matrices $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ is denoted by $sl(2, \mathbb{C})$. Set $h = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $h_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then

$$[h_0, h_+] = 2h_+, [h_0, h_-] = -2h_-, [h_+, h_-] = h_0.$$
(8)

2. The structure of normed Lie algebras from X

Theorem 2.1. Let H be a complex normed Lie algebra and let there exist a closed Lie subalgebra M of codimension 1. Then

- (i) I(M) is closed,
- (ii) if dim (H/I(M)) > 2, then dim (H/I(M)) = 3, H/I(M) is isomorphic to $sl(2, \mathbb{C})$ and there exist elements h_{-} , h_0 and h_{+} in H such that formulae (5) and (6) hold.

Proof. Since I(M) is the largest Lie ideal of H contained in M, the proof of (i) follows from the fact that, if G is a Lie ideal of H, then \overline{G} is also a Lie ideal of H.

If H is finite-dimensional, then the proof of (ii) follows immediately from Theorem 1.1 (3) (iii). Now let H be infinite dimensional. First we shall show by induction that all I_i are closed. $I_0 = M$ is closed. Suppose that I_k is closed. Let elements $h^{(p)}$ belong to I_{k+1} and converge to h. By (7),

$$\|[h, h_{-1}] - [h^{(p)}, h_{-1}]\| = \|[h - h^{(p)}, h_{-1}]\| \le C \|h - h^{(p)}\| \|h_{-1}\| \to 0.$$

Hence the elements $[h^{(p)}, h_{-1}]$ converge to $[h, h_{-1}]$. By (3), $[h^{(p)}, h_{-1}]$ belong to I_k and, since I_k is closed, we have that $[h, h_{-1}]$ belongs to I_k . Therefore $h \in I_{k+1}$ and I_{k+1} is closed.

It follows from Theorem 1.1 (3) (ii) and from (2), that for $j \ge 0$

$$[h_0, h_j] = jh_j + a_{j+1}$$

where $a_{j+1} \in I_{j+1}$. Since, by Theorem 1.1 (3) (i), all I_i are ideals of M and since $h_0 \in M$, we have that $[h_0, h] \in I_{j+1}$ for every $h \in I_{j+1}$ and that

$$[h_0, h_i + h] = [h_0, h_i] + [h_0, h] = jh_i + h'$$

where $h' = a_{i+1} + [h_0, h]$ belongs to I_{i+1} . By (7),

$$||jh_j + h'|| = ||[h_0, h_j + h]|| \le C ||h_0|| ||h_j + h||.$$

Dividing by j we get that for every $h \in I_{i+1}$ the element f(h) = h'/j in I_{i+1} exists such

that

$$||h_j + f(h)|| \le C_1 ||h_j + h||$$
 (9)

where $C_1 = C ||h_0||/j$. Let us choose an element $h^{(1)}$ in I_{j+1} and let us put by induction $h^{(k)} = f(h^{(k-1)})$. Then, by (9),

$$\|h_j + h^{(k)}\| = \|h_j + f(h^{(k-1)})\| \le C_1 \|h_j + h^{(k-1)}\|$$
$$= C_1 \|h_j + f(h^{(k-2)})\| \le C_1^2 \|h_j + h^{(k-2)}\| \le \cdots \le C_1^{k-1} \|h_j + h^{(1)}\|.$$

If j is large enough so that $C_1 < 1$, then we obtain that $||h_j + h^{(k)}|| \to 0$. Since all $h^{(k)}$ belong to I_{j+1} and since I_{j+1} is closed, we have that $h_j \in I_{j+1}$. Hence, by Theorem 1.1 (3) (ii), $I_j = \{h_j\} + I_{j+1} = I_{j+1}$ and the proof of the theorem follows from Theorem 1.1 (3) (iii) and from formula (8).

For k = 1, 2 and 3 we put

$$S_k(H) = \{ M \in S(H) : \operatorname{codim} I(M) = k \}.$$

Then $S(H) = \bigcup_{k=1}^{3} S_k(H)$. Now put

$$L(H) = \bigcap_{M \in S_1(H) \cup S_2(H)} I(M) \text{ and } R(H) = \bigcap_{M \in S_3(H)} I(M).$$

If $S_1(H) \cup S_2(H) = \emptyset$, then put L(H) = H. If $S_3(H) = \emptyset$, then put R(H) = H. If $H \in \mathfrak{X}$, then it follows from (1) that

$$L(H) \cap R(H) = \bigcap_{M \in S(H)} I(M) \subseteq \bigcap_{M \in S(H)} M = 0.$$

Since all I(M) are closed, L(H) and R(H) are also closed.

Lemma 2.2. If $H \in \mathfrak{X}$, then $H_{(2)} \subseteq L(H)$.

Proof. Let $M \in S_1(H)$. Then I(M) = M and an element h_- exists such that $H = \{h_-\} \neq M$. Therefore $H_{(1)} = [H, H] \subseteq I(M)$. Since M is an arbitrary subalgebra in $S_1(H)$, we obtain that

$$H_{(2)} \subseteq H_{(1)} \subseteq \bigcap_{M \in S_1(H)} I(M).$$

Now let $M \in S_2(H)$. Then, by Theorem 1.1(2), the elements h_- and h_0 exist such that

$$H = \{h_{-}\} + M, M = \{h_{0}\} + I(M)$$

and

$$[h_-, h_0] \equiv h_- \mod I(M).$$

Therefore $H_{(1)} \subseteq \{h_-\} + I(M)$ and $H_{(2)} = [H_{(1)}, H_{(1)}] \subseteq I(M)$. Since M is an arbitrary subalgebra in $S_2(H)$, we obtain that

$$H_{(2)} \subseteq \bigcap_{M \in S_2(H)} I(M).$$

Thus $H_{(2)} \subseteq \bigcap_{M \in S_1(H) \cup S_2(H)} I(M) = L(H)$ which completes the proof. For every closed subalgebra G of H set

$$S_G(H) = \{M \in S(H): G \not\subseteq M\}$$
 and $S^G(H) = \{M \in S(H): G \subseteq M\}$.

Then $S(H) = S_G(H) \cup S^G(H)$. Now let S be a subset in S(H). Set

$$\mathcal{T}_{S} = \bigcap_{M \in S} I(M).$$

Then \mathcal{T}_s is a closed ideal of H.

Theorem 2.3. Let $H \in \mathfrak{X}$.

- (i) If G is a closed subalgebra of H, then $G \in \mathfrak{X}$.
- (ii) For every subset S in S(H) the quotient algebra H/\mathcal{T}_S belongs to \mathfrak{X} .

Proof. Let G be a closed subalgebra of H. For every $M \in S_G(H)$ set $M_G = G \cap M$. Then all M_G are closed subalgebras in G of codimension 1 and

$$\bigcap_{M' \in S(G)} M' \subseteq \bigcap_{M_G \in S(G)} M_G = G \cap \left(\bigcap_{M \in S_G(H)} M\right) = \bigcap_{M \in S(H)} M = 0.$$

Therefore $G \in \mathfrak{X}$ and (i) is proved.

Now let $S \subseteq S(H)$ and let f be the homomorphism of H onto H/\mathcal{T}_S . If $M \in S^{\mathcal{T}_S}(H)$, then f(M) is a closed subalgebra of codimension 1 in H/\mathcal{T}_S . Therefore in order to prove (ii) it is sufficient to prove that

(a) if $h \notin \mathcal{T}_s$, then there exists $M \in S^{\mathcal{T}_s}(H)$ such that $h \notin M$.

Since $h \notin \mathcal{T}_S$, there exists $M_0 \in S$ such that $h \notin I(M_0)$.

If $M_0 \in S_1(H)$, then $I(M_0) = M_0$ and therefore $h \notin M_0$. Since $M_0 \in S^{\mathcal{F}s}(H)$, we obtain that (a) holds for h.

If $M_0 \in S_2(H)$, then there exist elements h_- and h_0 such that (4) holds. Therefore $h = ah_- + bh_0 + i$ where a and b are complex and where $i \in I(M_0)$. If $a \neq 0$, then $h \notin M_0$ and (a) holds for h. Let a=0, that is, $h=bh_0+i$ and $b\neq 0$. Then $h \in M_0$. Set $x=h_-+h_0$ and $M = I(M_0) + \{x\}$. We have that M is a Lie subalgebra of H and that $h \notin M$. Since $I(M_0)$ is closed and since dim $(H/I(M_0)) = 2$, we obtain easily that M is closed and that codim M = 1. Since $\mathscr{T}_S \subseteq I(M_0) \subset M$, (a) holds for h.

Finally, let $M_0 \in S_3(H)$. Then there exist elements h_- , h_0 and h_+ such that (5) and (6) hold. Therefore $h = ah_- + bh_0 + ch_+ + i$ where a, b and c are complex and where $i \in I(M_0)$. If $a \neq 0$, then $h \notin M_0$ and (a) holds for h. Let a = 0, that is, $h = bh_0 + ch_+ + i$ and $|b| + |c| \neq 0$. Then $h \in M_0$. If $c \neq 0$, then set $M = I(M_0) + \{h_-\} + \{h_0\}$. Since $I(M_0)$ is closed and since dim $(H/I(M_0)) = 3$, we obtain easily that M is closed. It follows from (5) and (6) that M is a Lie subalgebra of H, that $h \notin M$ and that codim M = 1. Since $\mathscr{T}_S \subseteq I(M_0) \subset M$, (a) holds for h. Now let c = 0, so that $h = bh_0 + i$ and $b \neq 0$. Set

$$x = h_{-} + h_{0}$$
, $y = h_{-} + 2h_{0} - 4h_{+}$ and $M = I(M_{0}) + \{x\} + \{y\}$.

It follows from (6) that $[x, y] = 2y \mod I(M_0)$. Therefore M is a closed Lie subalgebra of codimension 1 in H and h does not belong to M. Thus (a) holds for h and the proof of (ii) is complete.

From Lemma 2.2 and from Theorem 2.3 we obtain immediately the following corollary.

Corollary 2.4. If $H \in \mathfrak{X}$ and if H' = H/L(H), then H' is solvable, $H'_{(2)} = 0$ and L(H) and H' belong to \mathfrak{X} .

Lemma 2.5. Let $M \in S_3(H)$.

- (i) The elements h_{-} , h_{0} and h_{+} in formulae (5) and (6) can be chosen from L(H).
- (ii) Subalgebra $M_L = M \cap L(H)$ has codimension 1 in L(H), $I(M_L) = L(H) \cap I(M)$ and $M_L \in S_3(L(H))$.

Proof. Let $M \in S_3(H)$. By Theorem 1.1(3)(iii), the elements h'_- , h'_0 and h'_+ exist in H such that $H = \{h'_-\} + M$, $M = \{h'_0\} + \{h'_+\} + I(M)$ and elements g_- , g_0 and g_+ exist in I(M) such that

$$[h'_{-}, h'_{0}] = 2h'_{-} + g_{-}, [h'_{0}, h'_{+}] = 2h'_{+} + g_{+}, [h'_{+}, h'_{-}] = h'_{0} + g_{0}.$$
 (10)

Put $h_0 = [[h'_0, h'_+], [h'_-, h'_0]]/4$, $h_- = [[h'_-, h'_0], [h'_+, h'_-]]/4$ and $h_+ = [[h'_+, h'_-], [h'_0, h'_+]]/4$. By Lemma 2.2, h_0 , h_- and h_+ belong to L(H). It follows from (10) that

$$h_0 = [2h'_+ + g_+, 2h'_- + g_-]/4 \equiv [h'_+, h'_-] \mod I(M) \equiv h'_0 \mod I(M).$$

In the same way we can show that

$$h_{-} \equiv h'_{-} \mod I(M)$$

and that

$$h_+ \equiv h'_+ \bmod I(M).$$

from which the rest of the proof of (i) follows immediately.

Let $M_L = M \cap L(H)$. Since $h_- \in L(H)$ and $h_- \notin M$ and since codim M = 1, M_L is a closed subalgebra of codimension 1 in L(H). Let $I = L(H) \cap I(M)$. Then I is a closed ideal of L(H) contained in M_L and, by (i) and by Theorem 1.1 (3) (iii),

$$L(H) = \{h_{-}\} \dotplus M_{L}$$

and

$$M_L = \{h_0\} + \{h_+\} + I.$$

Since h_- , h_0 and h_+ belong to L(H), all identities in (6) hold modulo I. Therefore the quotient algebra L(H)/I is isomorphic to $sl(2, \mathbb{C})$. From this it follows easily that I is the maximal ideal of L(H) contained in M_L , that is, $I = I(M_L)$. Thus $M_L \in S_3(L(H))$ and the proof is complete.

Theorem 2.6. (i) R(H) is the radical of H and $R(H)_{(2)} = 0$. (ii) L(H) is semisimple.

Proof. It follows from Lemma 2.2 that $R(H)_{(2)} \subseteq L(H)$. Since R(H) is a Lie ideal of H, we have that $R(H)_{(2)} \subseteq R(H)$. But $L(H) \cap R(H) = 0$. Hence $R(H)_{(2)} = 0$. Therefore R(H) is a solvable ideal in H.

Now suppose that R is another closed solvable ideal in H. Let $M \in S_3(H)$ and let f be the homomorphism of H onto H/I(M). Then f(R) is a solvable Lie ideal in H/I(M). But, by Theorem 2.1 H/I(M) is isomorphic to $sl(2, \mathbb{C})$ which is simple, Therefore every solvable ideal in H/I(M) is trivial. Hence $R \subseteq I(M)$. Since M is an arbitrary subalgebra in $S_3(H)$, we obtain that

$$R \subseteq \bigcap_{M \in S_3(H)} I(M) = R(H)$$

and (i) is proved.

It follows from the definition of the radical and from Lemma 2.5(ii) that

$$R(L(H)) = \bigcap_{M' \in S_3(L(H))} M' \subseteq \bigcap_{M \in S_3(H)} M_L = L(H) \cap \left(\bigcap_{M \in S_3(H)} M\right) = L(H) \cap R(H) = 0.$$

Therefore L(H) is semisimple.

Remark. If H is finite-dimensional, then it was proved in [4] that H = L(H) + R(H)and that $L(H) = L_1 + \cdots + L_k$ where all L_i are Lie ideals of H and isomorphic to $sl(2, \mathbb{C})$.

Now we shall consider an example of a normed infinite dimensional Lie algebra H from \mathfrak{X} such that R(H) = 0 but $L(H) \neq H$.

Example 1. Let $H = \{A = \{A_n\}_{n=1}^{\infty}$: (i) $A_n \in sl(2, \mathbb{C})$, (ii) there exists a matrix $A_0 = \begin{pmatrix} a & b \\ 0 & -a \end{pmatrix}$ such that $\lim A_n = A_0\}$.

Set $||A|| = \sup_n ||A_n||$ and set $[A, B] = \{[A_n, B_n]\}_{n=1}^{\infty}$. Then H is a normed Lie algebra. It is well-known that $sl(2, \mathbb{C}) \in \mathfrak{X}$ and that $S(sl(2, \mathbb{C})) = S_3(sl(2, \mathbb{C}))$. For every subalgebra \mathcal{M} of codimension 1 in $sl(2, \mathbb{C})$ and for every positive integer k let

$$M_k = \{A = \{A_n\}_{n=1}^{\infty} \in H \colon A_k \in \mathcal{M}\}.$$

Then M_k are subalgebras of codimension 1 in H and

$$\bigcap_{M \in S(H)} M \subseteq \bigcap_{k=1}^{\infty} M_k = 0.$$

$$\mathcal{M} \in S(sl(2, \mathbb{C}))$$

Thus $H \in \mathfrak{X}$. Let $I_k = \{A \in H : A_k = 0\}$. Then I_k are ideals of H and $I(M_k) = I_k$ for every subalgebra $\mathcal{M} \in S(sl(2, \mathbb{C}))$. Every ideal I_k has codimension 3 in H and H/I_k is isomorphic to $sl(2, \mathbb{C})$. Therefore all M_k belong to $S_3(H)$. Then we have that

$$R(H) = \bigcap_{M \in S_3(H)} I(M) \subseteq \bigcap_{k=1}^{\infty} I_k = 0.$$

Now let $I_{\infty} = \{A \in H: \lim A_n = 0\}$. By G we shall denote the two-dimensional solvable Lie algebra of all complex matrices $\begin{pmatrix} a & -b \\ 0 & -a \end{pmatrix}$. Then $G \in \mathfrak{X}$ and $S(G) = S_1(G) \bigcup S_2(G)$. For every $\mathcal{M} \in S(G)$ let $M_{\infty} = \{A \in H: \lim A_n \in \mathcal{M}\}$. Then M_{∞} are subalgebras of codimension 1 in H and $I_{\infty} \subset M_{\infty}$. If $I(M_{\infty})$ is the corresponding maximal ideal of H in M_{∞} then $I_{\infty} \subseteq I(M_{\infty})$. Since codim $I_{\infty} = 2$ we have that codim $I(M_{\infty}) \leq 2$. Hence $M_{\infty} \in S_1(H) \cup S_2(H)$. Therefore

$$L(H) = \bigcap_{M \in S_1(H) \cup S_2(H)} I(M) \subseteq \bigcap_{\mathcal{M} \subset G} I(M_{\infty}) = I_{\infty}.$$

In fact one can easily prove that $L(H) = I_{\infty}$. Thus $L(H) \neq H$, R(H) = 0 and H/L(H) is isomorphic to G. It can also be proved easily that $H_{(2)} = L(H)$ and that $L(H)_{(1)} = L(H)$.

Remark. If H is a finite-dimensional semisimple Lie algebra, then $H_{(1)} = H$. In the example above H is infinite dimensional and, although it is semisimple, we have that $H_{(1)} \neq H$. But we also have that $L(H)_{(1)} = L(H)$. The question arises as to whether $L(H)_{(1)} = L(H)$ for every $H \in \mathfrak{X}$.

By T we shall denote the set of all ideals I(M) such that $\operatorname{codim} I(M) = 3$. Let τ be any subset in T. Put $I(\tau) = \bigcap_{I(M) \in \tau} I(M)$ and put $\overline{\tau} = \{I(M) \in T : I(\tau) \subseteq I(M)\}$. Now suppose that \mathcal{T}_1 and \mathcal{T}_2 are Lie ideals such that $\mathcal{T}_1 \cap \mathcal{T}_2 \subseteq I(M)$ where $I(M) \in T$. Let f be the homomorphism of H onto H/I(M). Then $f(\mathcal{T}_1)$ and $f(\mathcal{T}_2)$ are Lie ideals in H/I(M). But since H/I(M) is simple, we have that $f(\mathcal{T}_1)$ and $f(\mathcal{T}_2)$ are either trivial ideals or coincide with H/I(M). Taking into account that $[h_1, h_2] \in \mathcal{T}_1 \cap \mathcal{T}_2 \subseteq I(M)$ for every $h_1 \in \mathcal{T}_1$ and for every $h_2 \in \mathcal{T}_2$ we obtain that $[f(h_1), f(h_2)] = f([h_1, h_2]) = 0$. Since H/I(M) is not commutative we obtain that at least one of these ideals is trivial. Thus if \mathcal{T}_1 and \mathcal{T}_2 are ideals such that $\mathcal{T}_1 \cap \mathcal{T}_2 \subseteq I(M) \in T$ then either $\mathcal{T}_1 \subseteq I(M)$ or $\mathcal{T}_2 \subseteq I(M)$.

Using this argument and repeating the proof of Lemma 3.1.1 [3] we can easily prove the following lemma:

Lemma 2.7.

- (i) $\overline{\emptyset} = \emptyset$ and $\tau \subseteq \overline{\tau}$ for every $\tau \subset T$
- (ii) $\overline{\tau} = \overline{\tau}$ for every $\tau \subset T$ and $\overline{\tau_1 \cup \tau_2} = \overline{\tau_1} \cup \overline{\tau_2}$ if $\tau_1, \tau_2 \subset T$.

From Lemma 2.7. it follows that there exists a unique topology (Jacobson's topology) on T such that for every $\tau \subset T$ the set $\overline{\tau}$ is its closure in this topology. Since every I(M) in T is maximal we have that it is closed.

3. The structure of normed solvable algebras from X

We shall start the section with a well-known lemma.

Lemma 3.1. Let N be a normed nilpotent algebra from \mathfrak{X} . Then N is commutative.

Let R be a normed solvable algebra from \mathfrak{X} and let N be its nil-radical. It follows from Theorem 2.6 that $R_{(2)}=0$. Hence $R_{(1)}$ is a commutative ideal of R. Therefore $R_{(1)}\subseteq N$. By Theorem 2.3(i), N belongs to \mathfrak{X} and hence, by Lemma 3.1, N is commutative.

By R^* we shall denote the dual space of R which consists of all bounded functionals on R. For every $r \in R$ we denote by A, the operator on R^* which is defined by the formula

$$(A_r f)(r_1) = f([r, r_1]).$$
(11)

Then A, is a linear operator and it is bounded since

$$||A_rf|| = \sup_{||r_1||=1} |(A_rf)(r_1)| \le ||f|| \sup_{||r_1||=1} ||[r,r_1]|| \le C ||f|| ||r||.$$

By $R_{(1)}^0$ we denote the polar of $R_{(1)}$ which consists of all functionals f in R^* such that $f|_{R_{(1)}}=0$.

Lemma 3.2.

- (i) $A_r f = 0$ for every $r \in R$ if and only if $f \in R^0_{(1)}$.
- (ii) If $A_r f = g(r) f$ for every $r \in R$, where g is a functional on R, then $f \in R^0_{(1)}$ and $g(r) \equiv 0$.
- (iii) Every operator A_r is continuous in $\sigma(R^*, R)$ -topology

Proof. If $f \in R_{(1)}^0$, then, by (11), $(A_r f)(r_1) = 0$ for all $r, r_1 \in R$. Hence $A_r f = 0$. If, on the other hand, we have that $A_r f = 0$ for all $r \in R$, then, by (11), $f([r, r_1]) = 0$ for every $r_1 \in R$. Hence $R_{(1)} \subseteq \text{Ker } f$ and therefore $f \in R_{(1)}^0$. Thus (i) is proved.

Now let $A_r f = g(r)f$ for every $r \in R$ and let $r_1 \in \text{Ker } f$. Then

$$f([r, r_1] = (A, f)(r_1) = g(r)f(r_1) = 0.$$

Hence $[r,r_1] \in \text{Ker } f$. Therefore Ker f is an ideal in R. Let $r_0 \in R$ be such that $R = \{r_0\} \neq \text{Ker } f$ and that $f(r_0) = 1$. Then for every $r \in R$ there exists a complex t such that $r = tr_0 + r_1$ where $r_1 \in \text{Ker } f$. Then

$$(A_r f)(r_0) = g(r)f(r_0) = f([r, r_0]) = f([r_1, r_0]) = 0,$$

since $[r_1, r] \in \text{Ker } f$. Hence g(r) = 0 for all $r \in R$. Therefore it follows from (i) that $f \in R_{(1)}$ and (ii) is proved.

Let $r \in R$ and let (f_{α}) be a directed set of elements in R^* converging to 0 in $\sigma(R^*, R)$ -topology. For every finite set $(r_i)_{i=1}^n$ put $r'_i = [r, r_i]$. Let $\varepsilon > 0$ and let us choose α_0 such that $|f_{\alpha}(r'_i)| < \varepsilon$ for all *i* and for $\alpha > \alpha_0$. Then

$$|A_r f_{\alpha}(r_i)| = |f_{\alpha}([r, r_i]) < \varepsilon$$

and (A, f_{α}) converges to 0 in $\sigma(R^*, R)$ -topology. Hence (iii) is proved.

Lemma 3.3. Let $r_{-} \in R_{(1)}$ and let $M \in S(R)$ be a subalgebra such that $r_{-} \notin M$. Then $M \in S_{2}(R)$ and there exist $r_{0} \in M$ and functionals $g \in R_{(1)}^{0}$ and $f \notin R_{(1)}^{0}$ such that $r_{0} \notin R_{(1)}$, $g(r_{0}) \neq 0$, $f(r_{-}) \neq 0$, $[r_{0}, r_{-}] \equiv r_{-} \mod I(M)$ and for every $r \in R$

$$A_r f = g(r)f - f(r)g.$$

Proof. Since $R \in \mathfrak{X}$, there exists a subalgebra $M \in S(R)$ such that $r_{-} \notin M$. If M is an ideal in R, then $R_{(1)} \subseteq M$ which contradicts the fact that r_{-} does not belong to M. Hence $M \notin S_1(R)$. Since R is solvable, we have that $S_3(R) = \emptyset$. Hence $M \in S_2(H)$. By Theorem 1.1(2), an element $r_0 \in M$ exists such that $M = \{r_0\} + I(M)$ and that $[r_0, r_-] \equiv r_- \mod I(M)$. Therefore $R_{(1)} \subseteq \{r_-\} + I(M)$. Hence r_0 does not belong to $R_{(1)}$.

Since M is closed and codim (M) = 1, there exists a functional f such that Ker f = M. Hence $f(r_-) \neq 0$ and therefore $f \notin R^0_{(1)}$. The subspace $\{r_-\} \neq I(M)$ is closed and has codimension 1 in R. Therefore a functional f_1 exists such that Ker $f_1 = \{r_-\} \neq I(M)$. Hence $f_1(r_0) \neq 0$. Since $R_{(1)} \subseteq \{r_-\} \neq I(M)$, we have that $f_1 \in R^0_{(1)}$.

Let $I^0(M) = \{f \in R^*: f|_{I(M)} = 0\}$ be the polar of I(M) in R^* . Since codim I(M) = 2, we have that dim $I^0(M) = 2$. The functionals f and f_1 belong to $I^0(M)$ and, since $f(r_-) \neq 0$ and $f_1(r_-) = 0$, they are linearly independent. Hence f and f_1 form a basis in $I^0(M)$. Since I(M) is an ideal in R, it follows from (11) that $I^0(M)$ is invariant under all operators $A_r, r \in R$. Hence

$$A_r f = g(r)f + h(r)f_1$$

where g and h are linear bounded functionals on R. Then, since $f(r_0)=0$ and since $f_1(r_-)=0$, we have that

$$(A_r f)(r_0) = f([r, r_0]) = g(r) f(r_0) + h(r) f_1(r_0) = h(r) f_1(r_0),$$
(12)

$$(A_r f)(r_-) = f([r, r_-]) = g(r)f(r_-) + h(r)f_1(r_-) = g(r)f(r_-).$$
(13)

If $r \in I(M)$, then $[r, r_0] \in I(M)$ and $f([r, r_0]) = 0$. Since $f_1(r_0) \neq 0$, we get from (12) that $I(M) \subseteq \operatorname{Ker} h$. If $r = r_0$, then, by (12), $h(r_0) = 0$. Hence $M = \{r_0\} + I(M) = \operatorname{Ker} f \subseteq \operatorname{Ker} h$. Therefore h = af where a is a complex number. If $r = r_-$ then $[r_-, r_0] \equiv -r_- \mod I(M)$ and, by (12),

$$-f(r_{-})=af(r_{-})f_{1}(r_{0}).$$

Hence $a = -1/f_1(r_0)$.

Now if $r \in I(M)$, then $[r, r_-] \in I(M)$ and $f([r, r_-]) = 0$. Since $f(r_-) \neq 0$, we get from (13) that $I(M) \subseteq \text{Ker } g$. If $r = r_-$, then, by (13), $g(r_-) = 0$. Hence $\{r_-\} + I(M) = \text{Ker } f_1 \subseteq \text{Ker } g$. Therefore $g = bf_1 \in \mathbb{R}^0_{(1)}$ where b is a complex number. If $r = r_0$, then $[r_0, r_-] = r_- \mod I(M)$ and, by (13),

$$f(r_-) = bf_1(r_0)f(r_-)$$

Hence $b = 1/f_1(r_0) = -a$. Therefore

$$h(r)f_1 = af(r)f_1 = -bf(r)f_1 = -f(r)g.$$

Hence $A_r f = g(r)f - f(r)g$ which concludes the proof of the lemma.

Let $g \in R_{(1)}^{\circ}$. By T_q we shall denote the set of all functionals f such that for every $r \in R$

$$A_r f = g(r)f - f(r)g. \tag{14}$$

Then $\lambda g \in T_a$, where λ is complex, since, by Lemma 3.2,

$$A_r g = 0 = g(r)\lambda g - \lambda g(r)g.$$

For some $g \in R_{(1)}^0$, $T_g = \{g\}$ where $\{g\}$ is one-dimensional subspace generated by g.

Let

$$T = \bigcup_{g \in R_{(1)}^0} T_e$$

and let

$$\Sigma = \{g \in R^0_{(1)} : T_a \neq \{g\}\}$$

We shall denote by [T] the linear span of T closed in the norm topology and by $[T]_{\sigma}$ the linear span of T closed in $\sigma(R^*, R)$ -topology.

Lemma 3.4.

- (i) T_g is a $\sigma(R^*, R)$ -closed linear subspace in R^* , and $T_g \cap R^0_{(1)} = \{g\}$.
- (ii) $T_g \cap T_{\lambda g} = \{g\}$, and $T_{g_1} \cap T_{g_2} = 0$ if $g_2 \notin \{g_1\}$.

- (iii) If $g \in \Sigma$, then $g \in N^0$ where N^0 is the polar of N in R^* .
- (iv) The quotient subspaces $T_g/\{g\}$, for $g \in \Sigma$, are linearly independent in the quotient space $R^*/R_{(1)}^0$.

Proof. Let (f_{α}) be a directed set of elements in T_g converging to $f \in R^*$ in $\sigma(R^*, R)$ -topology. Since, by Lemma 3.2 (iii), A_r is continuous in $\sigma(R^*, R)$ -topology, we have that $A_r f_{\alpha} \rightarrow A_r f$. But, by (14),

$$A_r f_a = g(r) f_a - f_a(r) g$$

converges to g(r)f - f(r)g. Hence $A_r f = g(r)f - f(r)g$, so that $f \in T_g$. If $f \in T_g \cap R^0_{(1)}$, then, by (11) and by (14), for every $r, r_1 \in R$

$$(A_r f)(r_1) = f([r, r_1]) = 0 = g(r) f(r_1) - f(r)g(r_1),$$

since $[r, r_1] \in R_{(1)}$. Hence, Ker f = Ker g and therefore f = tg where t is complex. Thus (i) is proved.

If $f \in T_{g_1} \cap T_{g_2}$, then for every $r \in R$

$$A_{r}f = g_{1}(r)f - f(r)g_{1} = g_{2}(r)f - f(r)g_{2}.$$

Hence g(r)f - f(r)g = 0 where $g = g_1 - g_2$. Hence Ker f = Ker g and therefore $f = tg \in R_{(1)}^0$ where t is complex. By (i), there exist complex λ_1 and λ_2 such that $f = \lambda_1 g_1 = \lambda_2 g_2$. Hence $g_2 = (\lambda_1/\lambda_2)g_1$. Thus if $g_2 \notin \{g_1\}$, then $T_{g_1} \cap T_{g_2} = 0$. If $g_2 = \lambda g_1$, then $T_{g_1} \cap T_{g_2} = \{g_1\}$ and (ii) is proved.

Since $R_{(1)} \subseteq N$, we have that $N^0 \subseteq R_{(1)}^0$. Now suppose that $g \in R_{(1)}^0$ but $g \notin N^0$. Then there exists $n \in N$ such that $g(n) \neq 0$. By (14), for every $f \in T_g$ and for every $r \in R_{(1)}$ we have

$$(A_r f)(n) = f([r, n]) = 0 = g(r)f(n) - f(r)g(n) = -f(r)g(n).$$

Hence f(r) = 0 and $f \in R_{(1)}^0$. By (i), f = tg. Hence $T_g = \{g\}$ and $g \notin \Sigma$ so (iii) is proved.

Let $f \in T_g$, for $g \in \Sigma$, and let \tilde{f} be its image in the quotient space $R^*/R_{(1)}^0$. Then, by (14), for every $r \in R$ we have that $(\tilde{A_rf}) = g(r)\tilde{f}$ and the rest of the proof of (iv) is obvious.

Let $g \in R_{(1)}^0$. Put

$$T_g^{\perp} = T \setminus T_g = \bigcup_{g' \in R_{(1)}^0 \setminus g} T_{g'}.$$

Let $(T_g^{\perp})^0$ be the polar of T_g^{\perp} in R. Put $R_{(1)}^g = (T_g^{\perp})^0$. By $[T_g^{\perp}]_{\sigma}$ we shall denote the $\sigma(R^*, R)$ -closed span of T_g^{\perp} in R^* .

Theorem 3.5.

- (i) A solvable normed Lie algebra R belongs to \mathfrak{X} if and only if $[T]_{\sigma} = R^*$.
- (ii) Let $R \in \mathfrak{X}$. The following conditions are equivalent:

- (a) there exists a closed commutative subalgebra G in R such that $G \cap R_{(1)} = 0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R,
- (b) there exists a $\sigma(R^*, R)$ -closed linear subspace S in R^* such that $S \cap R^0_{(1)} = 0$ and that $S \cap T_g$ has codimension 1 in T_g for every $g \in \Sigma$.
- (iii) $R_{(1)}^{g} \neq 0$ if and only if $[T_{g}^{\perp}]_{\sigma} \neq R^{*}$; $R_{(1)}^{g}$ is a closed ideal in $R_{(1)}$ such that for every $r' \in R_{(1)}^{g}$ and for every $r \in R$

$$[r,r']=g(r)r'.$$

$$R_{(1)}^{g_1} \cap R_{(1)}^{g_2} = 0$$
 if $g_1 \neq g_2$, and if $g \notin \Sigma$, then $R_{(1)}^g = 0$.

Proof. We shall consider R^* in $\sigma(R^*, R)$ -topology. Then R is the dual space of R^* . Let $R \in \mathfrak{X}$. By definition we have that $R_{(1)}^0 \subseteq T$. Let T^0 be the polar of T in R which consists of all $r \in R$ such that f(r) = 0, for all $f \in T$. It follows from Lemma 3.3 that, if $r \in R_{(1)}$, then there exist $g \in R_{(1)}^0$ and $f \in T_g$ such that $f(r) \neq 0$. Hence $T^0 \cap R_{(1)} = 0$. Now let $r \notin R_{(1)}$. Then there exists $g \in R_{(1)}^0$ such that $g(r) \neq 0$. Hence $r \notin T^0$. Thus $T^0 = 0$. If T^{00} is the bipolar of T in R^* , then $T^{00} = R^*$. But $T^{00} = [T]_{\sigma}$. Hence $[T]_{\sigma} = R^*$.

Now suppose that R is solvable and that $[T]_{\sigma} = R^*$. Let $f \in T_g$. If $r, r' \in \text{Ker } f$ then, by (14),

$$f([r, r']) = g(r)f(r') - f(r)g(r') = 0.$$

Hence $[r,r'] \in \text{Ker } f$. Thus we obtain that Ker f is a subalgebra and hence Ker $f \in S(R)$. Let $r \in \bigcap_{f \in T} \text{Ker } f$. Since $[T]_{\sigma} = R^*$, we obtain that f(r) = 0 for every $f \in R^*$. Hence r=0. Therefore

$$\bigcap_{M \in S(R)} M \subseteq \bigcap_{f \in T} \operatorname{Ker} f = 0.$$

Hence $R \in \mathfrak{X}$ and (i) is proved.

Now let us prove that (b) follows from (a). Put $S = G^0$. Then S is a $\sigma(R^*, R)$ -closed linear subspace in R^* . If $f \in S \cap R^0_{(1)}$, then $f|_G = 0$ and $f|_{R_{(1)}} = 0$. Hence f = 0. Thus $S \cap R^0_{(1)} = 0$. If $g \in \Sigma$, then $g \in R^0_{(1)}$ and hence $g \notin S$. Now let $f \in T_g$. Since $g \notin S$, there exists $r \in G$ such that $g(r) \neq 0$. Then, by (14),

$$g(r)f = f(r)g + A_r f.$$
⁽¹⁵⁾

But, by (11), $(A_r f)(r') = f([r, r']) = 0$ for every $r' \in G$, since G is commutative. Hence $A_r f \in S$. Since $g(r) \neq 0$, it follows from (15) that $f \equiv tg \mod S$ where t = f(r)/g(r). Hence $S \cap T_g$ has codimension 1 in T_g .

Now let us prove that (a) follows from (b). Let S^0 be the polar of S in R. Put $G = S^0$. Then G is a linear subspace in R closed in the norm topology. Let $r_1, r_2 \in G$. Put $r_- = [r_1, r_2]$. Then $r_- \in R_{(1)}$. If $r_- \neq 0$, then, by Lemma 3.3, there exist functionals $g \in R_{(1)}^0$ and $f \in T_g$ such that $f(r_-) \neq 0$. Since $S \cap T_g$ has codimension 1 in T_g and since $g \notin S$, there exists a complex t such that $f_1 = f - tg \in S \cap T_g$. Then $f_1(r_1) = f_1(r_2) = 0$ and

$$f_1(r_-) = f(r_-) - tg(r_-) = f(r_-) \neq 0.$$
(16)

But, by (11) and by (14),

$$(A_{r_1}f_1)(r_2) = f_1([r_1, r_2]) = f_1(r_-) = g(r_1)f_1(r_2) - f_1(r_1)g(r_2) = 0$$

which contradicts (16). Hence $r_{-}=0$ and G is commutative.

Now let $r \in G \cap R_{(1)}$. If $r \neq 0$, then repeating the argument which preceded (16) we obtain that there exist functionals $g \in R_{(1)}^0$ and $f_1 \in S \cap T_g$ such that $f_1(r) \neq 0$. But this contradicts the fact that $r \in G$ and that $f_1 \in S = G^0$. Hence $G \cap R_{(1)} = 0$.

Let L be the closed linear span of G and $R_{(1)}$, and let L^0 be the polar of L in R^* . Then $L^0 = G^0 \cap R^0_{(1)}$. Since G is the polar of S in R, we have that G^0 is the bipolar of S in R^* and hence $G^0 = [S]_{\sigma} = S$. Therefore $L^0 = S \cap R^0_{(1)} = 0$. Hence L = R which concludes the proof of (ii).

Let $(R_{(1)}^g)^0$ be the polar of $R_{(1)}^g$ in R^* and let $(T_g^{\perp})^{00}$ be the bipolar of T_g^{\perp} in R^* . Then

$$(R_{(1)}^g)^0 = (T_g^{\perp})^{00} = [T_g^{\perp}]_{\sigma}$$

If $R_{(1)}^g = 0$, then $(R_{(1)}^g)^0 = R^* = [T_g^{\perp}]_{\sigma}$. If, on the other hand, $[T_g^{\perp}]_{\sigma} = R^*$, then $(R_{(1)}^g)^0 = R^*$ and hence $R_{(1)}^g = 0$.

We have that $R_{(1)}^0 \subset T$. Since $T_g \cap R_{(1)}^0 = \{g\}$, we have that

$$R^{0}_{(1)} \setminus \{g\} \subset T \setminus T_{g} = T^{\perp}_{g}.$$

$$\tag{17}$$

Hence $R_{(1)}^g = (T_g^{\perp})^0 \subset (R_{(1)}^0 \setminus \{g\})^0$. But since the closure of $R_{(1)}^0 \setminus \{g\}$ in the norm topology is $R_{(1)}^0$, we obtain that

$$(R_{(1)}^{0} \setminus \{g\})^{0} = (R_{(1)}^{0})^{0} = R_{(1)}$$

Hence $R_{(1)}^g \subseteq R_{(1)}$.

Now let $R_{(1)}^g \neq 0$, let $r' \in R_{(1)}^g$ and let $r \in R$. Put

$$r_1 = [r, r'] - g(r)r'.$$

Then $r_1 \in R_{(1)}$ and hence $g'(r_1) = 0$ for every $g' \in R_{(1)}^0$. For every functional $f \in T_g$, by (14),

$$f(r_1) = f([r, r']) - g(r)f(r') = -f(r)g(r') = 0,$$

since g(r')=0. Let $f \in T_{g'}$, where $g' \in R^0_{(1)}$ and $g' \neq g$, and let $f \neq tg'$. Then $f \in T^{\perp}_g$ and hence f(r')=0. Therefore, by (14),

$$f(r_1) = f([r, r']) - g(r)f(r') = f([r, r']) = g'(r)f(r') - f(r)g'(r') = 0,$$

since g'(r') = 0. Hence $f(r_1) = 0$ for every $f \in T$. Therefore, by (i), $r_1 = 0$ and

$$[r, r'] = g(r)r'.$$
 (18)

If $g_1 \neq g_2$, then it follows from (18) that $R_{(1)}^{g_1} \cap R_{(1)}^{g_2} = 0$.

If $g \notin \Sigma$, then $T_g = \{g\}$. Since the closure of $R^0_{(1)} \setminus \{g\}$ in the $\sigma(R^*, R)$ -topology is $R^0_{(1)}$, we have, by (17), that

$$T_g = \{g\} \subseteq R^0_{(1)} = [R^0_{(1)} \setminus \{g\}]_\sigma \subseteq [T^\perp_g]_\sigma.$$

Since $T_g \subseteq [T_g^{\perp}]_{\sigma}$, we get that $[T_g^{\perp}]_{\sigma} = [T]_{\sigma}$. Hence, by (i), $[T_g^{\perp}]_{\sigma} = R^*$ and therefore $R_{(1)}^g = 0$ which concludes the proof of the theorem.

The case when dim $R < \infty$ was considered in [4]. It was proved there that R is the direct sum of G and $R_{(1)}$, and that $R_{(1)}$ is the direct sum of $R_{(1)}^{g_i}$, where $\Sigma = \{g_i\}_{i=1}^n$ is a finite set. We shall consider the case when dim $R = \infty$ and Σ is a finite set later on but now we shall consider an example when dim $R = \infty$ and Σ is an infinite set. We shall show that, although dim $(R/R_{(1)}) = 2$ in the example, there does not exist a commutative subalgebra G such that $G \cap R_{(1)} = 0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R. We shall also prove that $R_{(1)}^g = 0$ for all $g \in \Sigma$.

Example. Let R be a Hilbert space with a basis $(e_i)_{i=-1}^{\infty}$, let N be the subspace generated by $(e_i)_{i=1}^{\infty}$ and let A be the bounded operator on R such that

$$Ae_{-1} = Ae_0 = 0$$
 and $Ae_i = a_ie_i + e_{i+1}$ for $1 \le i$, (19)

where a_i are complex numbers such that $a_i \neq a_i$, $a_i \neq 0$ and $\sup_i |a_i| < \frac{1}{2}$. Put

$$[x, y] = 0, \text{ for } x, y \in N; [e_0, e_0] = [e_{-1}, e_{-1}] = 0;$$

$$[e_0, e_i] = Ae_i, [e_{-1}, e_i] = A^2 e_i, \text{ for } 1 \le i,$$
 (20)

and $[e_{-1}, e_0] = e_1$.

It is easy to check that R is a Lie algebra and that

$$[x, y] = (x_{-1}y_0 - y_{-1}x_0)e_1 + x_{-1}A^2y - y_{-1}A^2x + x_0Ay - y_0Ax,$$
(21)

for $x = \sum_{i=-1}^{\infty} x_i e_i$ and $y = \sum_{i=-1}^{\infty} y_i e_i$. Then

$$||[x, y]|| \le 2(||e_1|| + ||A^2|| + ||A||)||x|| ||y||.$$

Hence R is a normed Lie algebra. By (20), N is a commutative ideal in R and $R_{(1)} \subseteq N$. Thus R is solvable, N is the nil-radical of R and $R_{(2)} = 0$. If $R_{(1)} \neq N$, then there exists an element $Z = \sum_{i=1}^{\infty} Z_i e_i$ in N such that for every $i \ge 0$

$$(Z, [e_0, e_i]) = (Z, [e_{-1}, e_i]) = 0.$$

Since $[e_0, e_i] = a_i e_i + e_{i+1}$, for $i \ge 1$, we obtain that $Z_i \bar{a}_i + Z_{i+1} = 0$. Since $[e_{-1}, e_0] = e_1$, we obtain that $Z_1 = 0$ and hence all $Z_i = 0$, for $i \ge 1$. Thus Z = 0 and therefore $R_{(1)} = N$.

For every $f \in R^*$ there exists an element y_f in R such that $f(x) = (x, y_f)$ for every

 $x \in R$. For $r \in R$ put $f_r = A_r f$. Then

$$(A_r f)(x) = f([r, x]) = ([r, x], y_f) = (x, y_f).$$

From (21) it follows that

$$([r, x], y_f) = (r_{-1}x_0 - x_{-1}r_0)(e_1, y_f) + r_{-1}(A^2x, y_f)$$
$$-x_{-1}(A^2r, y_f) + r_0(Ax, y_f) - x_0(Ar, y_f).$$

Therefore from the two preceding formulae we obtain that

$$y_{f_r} = (\bar{r}_{-1}(A^*)^2 + \bar{r}_0A^*)y_f - (y_f, r_0e_1 + A^2r)e_{-1} + (y_f, r_{-1}e_1 - Ar)e_0.$$
(22)

For every $g \in R_{(1)}^0$ we have that $y_g = \mu e_{-1} + \lambda e_0$. If $f \in T_g$, then, by (14), we have that

$$y_{f_r} = \overline{g(r)} y_f - \overline{f(r)} y_g = (y_g, r) y_f - (y_f, r) y_g.$$
(23)

Let $r \in N$. Then $r_{-1} = r_0 = 0$. From (22) and from (23) we get that

$$y_{f_r} = -(y_f, A^2 r)e_{-1} - (y_f, Ar)e_0 = -(y_f, r)(\mu e_{-1} + \lambda e_0),$$

since $(y_q, r) = 0$. Hence

$$(y_f, Ar) = \lambda(y_f, r)$$
 and $(y_f, A^2r) = \mu(y_f, r).$ (24)

Let $y_f = y_{-1}e_{-1} + y_0e_0 + \hat{y}_f$ where $\hat{y}_f \in N$. Since N is invariant under A, we obtain from (24) that for every $r \in N$

$$(\hat{y}_f, A_r) = \lambda(\hat{y}_f, r)$$
 and $(\hat{y}_f, A^2 r) = \mu(\hat{y}_f, r)$.

Since N is invariant under A^* , we get that $A^*\hat{y}_f = \lambda\hat{y}_f$ and that $(A^*)^2\hat{y}_f = \mu\hat{y}_f$. Hence $\mu = \lambda^2$.

It follows from (19) that

$$A^*e_1 = \bar{a}_1e_1$$
 and $A^*e_i = \bar{a}_ie_i + e_{i-1}$, for $i \ge 2$.

If $\hat{y}_f = \sum_{i=1}^{\infty} y_i e_i$, then, since $A^* \hat{y}_f = \lambda \hat{y}_f$, we get that

$$(\bar{a}_i - \lambda)y_i + y_{i+1} = 0,$$

for $i \ge 1$. Hence we obtain that for $i \ge 2$

$$y_i = y_1 \prod_{j=1}^{i-1} (\lambda - \bar{a}_j).$$
(25)

Now let $r_{-} \neq 0$ and $r_{0} \neq 0$ in (22) and in (23). Then after some calculations we obtain from (22) and from (23) that

$$\lambda(\lambda y_0 - y_{-1}) = (\hat{y}_f, e_1) = y_1.$$
(26)

But the element y_f , of which coordinates y_i satisfy (25) and (26), belongs to R if and only if

$$\sum_{i=2}^{\infty} |y_i|^2 = |y_1|^2 \sum_{i=2}^{\infty} \left(\prod_{j=1}^{i-1} |\lambda - \bar{a}_j|^2 \right) < \infty.$$
(27)

From all these considerations it follows that

- (i) $\Sigma = \{g(\lambda) \in R_{(1)}^0: y_{g(\lambda)} = \lambda^2 e_{-1} + \lambda e_0, \text{ where } \lambda \neq 0 \text{ and satisfies } (27)\},\$
- (ii) any functional f such that $y_f = \sum_{i=-1}^{\infty} y_i e_i$, where y_i satisfy (25) and (26), belongs to $T_{q(\lambda)}$.

It follows from (i) and (ii) that dim $T_{g(\lambda)} = 2$. Since $\sup_i |a_i| \leq \frac{1}{2}$, then (27) uniformly converges for all $|\lambda| \leq q < \frac{1}{2}$. Now suppose that there exists a $\sigma(R^*, R)$ -closed subspace S in R^* such that $S \cap R^0_{(1)} = 0$ and that $S \cap T_{g(\lambda)}$ has codimension 1 in $T_{g(\lambda)}$ for every $g(\lambda) \in \Sigma$. Then S is a Hilbert subspace in R^* and, for every $g(\lambda) \in \Sigma$, there exists a unique element $y(\lambda) = \sum_{i=-1}^{\infty} y_i(\lambda)e_i$ such that $y(\lambda) \in S \cap T_{g(\lambda)}$, that $y_1(\lambda) = 1$ and that $y_i(\lambda)$ satisfy (25) and (26). Then, by (26),

$$1/\lambda = \lambda y_0(\lambda) - y_{-1}(\lambda).$$
⁽²⁸⁾

Now let S^{\perp} be the subspace orthogonal to S. Since $S \cap R_{(1)}^{0} = 0$, it is easy to see that dim $S^{\perp} \ge 2$. Suppose that $S^{\perp} \cap N \neq 0$ and let $Z \in S^{\perp} \cap N$. For every $\lambda = \bar{a}_{j}$ the series (27) converges and it follows from (25) that the coordinates $y_{i}(\bar{a}_{j})$ of the corresponding elements $y(\bar{a}_{j})$ satisfy the following conditions:

$$y_i(\bar{a}_i) \neq 0$$
, if $1 \leq i \leq j$, and $y_i(\bar{a}_i) = 0$, if $j < i$. (29)

Since $(Z, y(\bar{a}_j)) = 0$ for every \bar{a}_j , we obtain easily that Z = 0. Hence $S^{\perp} \cap N = 0$. Then there exist elements Z^1 and Z^2 in S^{\perp} such that

$$Z^{1} = e_{-1} + \sum_{i=1}^{\infty} Z_{i}^{1} e_{i}, Z^{2} = e_{0} + \sum_{i=1}^{\infty} Z_{i}^{2} e_{i}.$$

Since $(y(\lambda), Z^K) = 0$ for K = 1, 2, we get that

$$y_{-1}(\lambda) = -\sum_{i=1}^{\infty} \overline{Z}_i^1 y_i(\lambda), y_0(\lambda) = -\sum_{i=1}^{\infty} \overline{Z}_i^2 y_i(\lambda)$$

for all $y(\lambda) \in S$. By (28),

$$|1/\lambda| = \left| \sum_{i=1}^{\infty} \left(\bar{Z}_{i}^{1} - \lambda \bar{Z}_{i}^{2} \right) y_{i}(\lambda) \right| \stackrel{\cdot}{\leq} \left(\sum_{i=1}^{\infty} |\bar{Z}_{i}^{1} - \lambda \bar{Z}_{i}^{2}|^{2} \right)^{1/2} \left(\sum_{i=1}^{\infty} |y_{i}(\lambda)|^{2} \right)^{1/2}.$$

Earlier we observed that for all $|\lambda| \le q < \frac{1}{2}(27)$ converges uniformly. Hence the expression on the right-hand side of the inequality above is bounded for all $|\lambda| < q$. But $1/\lambda \to \infty$. This contradiction shows that S does not exist. Hence, by Theorem 3.5(ii), there does not exist a commutative subalgebra G such that $G \cap R_{(1)} = 0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R.

Now we shall prove that $R_{(1)}^g = 0$ for all $g \in \Sigma$. Let $g(\lambda_0) \in \Sigma$. By definition,

$$T_{g(\lambda_0)}^{\perp} = \bigcup_{\substack{g(\lambda) \in \Sigma \\ g(\lambda) \neq g(\lambda_0)}} T_g.$$

It follows from (17) that $R_{(1)}^0 \subset [T_{g(\lambda_0)}^{\perp}]_{\sigma}$. Hence $[T_{g(\lambda_0)}^{\perp}]_{\sigma}$ contains e_{-1} , e_0 and all $y \in T_{g(\lambda)}$, for $\lambda \neq \lambda_0$. Suppose that $[T_{g(\lambda_0)}^{\perp}]_{\sigma} \neq R^*$. Then there exists $Z \in R^*$ which is orthogonal to $[T_{g(\lambda_0)}^{\perp}]_{\sigma}$. Since e_{-1} and e_0 belong to $[T_{g(\lambda_0)}^{\perp}]_{\sigma}$, we have that $Z_{-1} = Z_0 = 0$, so that $Z \in N$.

Let $\lambda_0 \neq \bar{a}_j$. Then, since all $g(\tilde{a}_j) \in \Sigma$, we get that $(Z, y(\tilde{a}_j)) = 0$ for every a_j . Using (29) as above we obtain that Z = 0 and, hence, that $[T_{g(\lambda_0)}^{\perp}]_{\sigma} = R^*$. Hence, by Theorem 3.5(iii), $R_{(1)}^{g(\lambda_0)} = 0$.

Now let $\lambda_0 = \bar{a}_j$. Then $(Z, y(\bar{a}_i)) = 0$ for every $a_i \neq a_j$. Using (29) we obtained by induction that

$$Z_i = 0$$
, for $i = 1, ..., j-1$; and that $Z_i = Z_j \prod_{K=j+1}^{i} (a_j - a_K)^{-1}$, for $i \ge j+1$.

Taking into account that $\sup_i |a_i| \leq \frac{1}{2}$ we get that $|a_j - a_k| \leq 1$ and therefore $|Z_i| \geq |Z_j|$. Hence the element Z does not belong to N. Therefore $[T_{g(\bar{a}_j)}^{\perp}]_{\sigma} = R^*$ and, by Theorem 3.5(iii), $R_{(1)}^{g(\bar{a}_j)} = 0$.

Thus in the example $R_{(1)}^g = 0$, for every $g \in \Sigma$, and, although dim $(R/R_{(1)}) = 2$, Σ is infinite as was shown in (i). In the theorem below we shall consider the case when Σ is finite.

Theorem 3.6. Let $R \in \mathfrak{X}$ and let $\Sigma = \{g_i\}_{i=1}^n$ be a finite set. Then

- (i) there exists a finite-dimensional commutative subalgebra Γ in R such that dim $\Gamma \leq n$ and that R is the direct sum of Γ and the nil-radical N;
- (ii) N is the direct sum of $R_{(1)}$ and the centre Z, and $R_{(1)}$ is the direct sum of $R_{(1)}^{g_i}$, for $i=1,\ldots,n$.

Proof. Let S_{g_i} , for i=1,...,n, be $\sigma(R^*,R)$ -closed subspaces in T_{g_i} of codimension 1 such that $T_{g_i} = S_{g_i} + \{g_i\}$. First we shall prove that if a directed set $f^{(\alpha)} + g^{(\alpha)}$, where $g^{(\alpha)} \in R^0_{(1)}$, $f^{(\alpha)} = \sum_{i=1}^n f_i^{(\alpha)}$ and $f_i^{(\alpha)} \in S_{g_i}$, converges to an element from R^* in $\sigma(R^*, R)$ -topology, then the directed set $g^{(\alpha)}$ and all directed sets $(f_i^{(\alpha)})_{i=1}^n$ converge to some elements from R^* .

Suppose that there exist directed sets $f^{(\alpha)} + g^{(\alpha)}$ which converge to elements from R^* but such that at least one of the corresponding directed sets $f_i^{(\alpha)}$ does not converge. For every such set let $p(f^{(\alpha)}, g^{(\alpha)})$ be the number of the sets $f_i^{(\alpha)}$ which do not converge and let p be the smallest of all $p(f^{(\alpha)}, g^{(\alpha)})$. Then $1 \le p \le n$. Suppose that p > 1. Let us choose

one of the directed sets $f^{(\alpha)} + g^{(\alpha)}$ which converges to h with exactly p sets $(f_{i_i}^{(\alpha)})_{j=1}^p$ which do not converge. Then for every $r \in R$, by Lemma 3.2 and by (14),

$$A_{r}(f^{(\alpha)} + g^{(\alpha)}) = A_{r}f^{(\alpha)} = \sum_{j=1}^{p} (g_{ij}(r) f^{(\alpha)}_{ij} - f^{(\alpha)}_{ij}(r)g_{ij})$$

converges to $A_{r}h$. Hence the directed set

$$g_{i_p}(r)(f^{(\alpha)} + g^{(\alpha)}) - A_r(f^{(\alpha)} + g^{(\alpha)}) = g_{i_p}(r)g^{(\alpha)} + \sum_{j=1}^p f^{(\alpha)}_{i_j}(r)g_{i_j}$$
$$+ \sum_{j=1}^{p-1} (g_{i_p}(r) - g_{i_j}(r))f^{(\alpha)}_{i_j}$$

converges to $g_{i_n}(r)h - A_rh$. Put $\tilde{f}^{(\alpha)} = \sum_{j=1}^{p-1} \tilde{f}^{(\alpha)}_{i_j}$ and

$$\tilde{g}^{(\alpha)} = g_{i_p}(r)g^{(\alpha)} + \sum_{j=1}^{p} f_{i_j}^{(\alpha)}(r)g_{i_j},$$

where $\tilde{f}_{i_j}^{(\alpha)} = (g_{i_p}(r) - g_{i_j}(r)) f_{i_j}^{(\alpha)}$. Then $\tilde{g}^{(\alpha)} \in R_{(1)}^0$ and the directed set $\tilde{f}^{(\alpha)} + \tilde{g}^{(\alpha)}$ converges to $g_{i_p}(r)h - A_rh$. Since all functionals $(g_{i_j})_{j=1}^p$ are different, we can choose such r that $g_{i_p}(r) - g_{i_1}(r) \neq 0$. Then at least the directed set $\tilde{f}_{i_1}^{(\alpha)}$ does not converge. Hence $1 \leq p(\tilde{f}^{(\alpha)}, \tilde{g}^{(\alpha)}) \leq p-1$ which contradicts the assumption that p > 1 is the smallest of such numbers.

Now suppose that p=1. Then there exist directed sets $f_i^{(\alpha)} \in S_{g_i}$ and $g^{(\alpha)} \in R_{(1)}^0$ such that the directed set $f_i^{(\alpha)} + g^{(\alpha)}$ converges to an element $h \in \mathbb{R}^*$ and that the directed set $f_i^{(\alpha)}$ does not converge. Since S_{g_i} is $\sigma(R^*, R)$ -closed in R^* and since $g_i \notin S_{g_i}$, there exists $r \in R$ such that $g_i(r) = 1$ and that f(r) = 0 for all $f \in S_{g_i}$. Then, since all $f_i^{(\alpha)} \in S_{g_i}$, we obtain from Lemma 3.2 and from (14) that the directed set

$$A_{r}(f_{i}^{(\alpha)} + g^{(\alpha)}) = A_{r}f_{i}^{(\alpha)} = g_{i}(r)f_{i}^{(\alpha)} - f_{i}^{(\alpha)}(r)g_{i} = f_{i}^{(\alpha)}$$

converges to A,h. This contradiction shows that $p \neq 1$.

Thus from all these considerations we obtain that, if a directed set $\sum_{i=1}^{n} f_{i}^{(\alpha)} + g^{(\alpha)}$, where $f_{i}^{(\alpha)} \in S_{g_{i}}$ and $g^{(\alpha)} \in R_{(1)}^{0}$, converges to an element h in R^{*} , then all the directed sets $f_i^{(\alpha)}$ converge to elements $h_i \in S_{g_i}$ and, hence, the directed set $g^{(\alpha)}$ converges to an element g in $R^0_{(1)}$.

From this fact, from Lemma 3.4 and from Theorem 3.5(i) it follows that R^* is the

direct sum of $R_{(1)}^0$ and S_{g_i} , for i = 1, ..., n. Put $S = S_{g_1} + \cdots + S_{g_n}$. Then S is $\sigma(R^*, R)$ -closed, $S \cap R_{(1)}^0 = 0$ and $S \cap T_{g_i} = S_{g_i}$ has codimension 1 in T_{g_i} . Hence, by Theorem 3.5(ii), $G = S^0$ is a commutative subalgebra of R such that $G \cap R_{(1)} = 0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R.

For every i = 1, ..., n we have that

$$T_{g_i}^{\perp} = R_{(1)}^0 \setminus \{g_i\} + \sum_{\substack{k=1\\k \neq i}}^n + S_{g_k}.$$

Hence

$$[T_{g_i}^{\perp}]_{\sigma} = R_{(1)}^0 + \sum_{\substack{k=1\\k\neq i}}^n + S_{g_k} \neq R^*.$$
(30)

Hence, by Theorem 3.5(iii), $R_{(1)}^{g_i} \neq 0$. Let L be the closed linear span of all $R_{(1)}^{g_i}$, for $i=1,\ldots,n$, and let L^0 be its polar in R^* . Since $R_{(1)}^{g_i} = (T_{g_i}^{\perp})^0$, we have that

$$L^{0} = \bigcap_{i=1}^{n} (R_{(1)}^{g_{i}})^{0} = \bigcap_{i=1}^{n} (T_{g_{i}}^{\perp})^{0} = \bigcap_{i=1}^{n} [T_{g_{i}}^{\perp}]_{\sigma}.$$

It follows from (30) that $L^0 = R_{(1)}^0$. Hence $L = R_{(1)}$. Thus $R_{(1)}$ is the closed linear span of $R_{(1)}^{g_i}$, for i = 1, ..., n.

Now suppose that there exist sequences $r^{(k)} = \sum_{i=1}^{n} r_i^{(k)} + s^{(k)}$, where $r_i^{(k)} \in R_{(1)}^{g_i}$ and $s^{(k)} \in G$, which converge to elements from R but some of the sequences $r_i^{(k)}$ do not converge. For every such sequence let $p(r^{(k)})$ be the number of the sequences $r_i^{(k)}$ which do not converge and let p be the smallest of all $p(r^{(k)})$.

Suppose p > 1. Then there exists a sequence $r^{(k)} = \sum_{j=1}^{p} r^{(k)}_{i_j} + s^{(k)}$, where $r^{(k)}_{i_j} \in R^{q_{i_j}}_{(1)}$ and $s^{(k)} \in G$, which converges to an element r and none of the sequences $r^{(k)}_{i_j}$, for j = 1, ..., p, converge. Then, by (18), for every $r' \in G$ the sequence

$$[r', r^{(k)}] = \sum_{j=1}^{p} g_{i_j}(r') r_{i_j}^{(k)}$$

converges to $[r', r] \in R_{(1)}$. Hence the sequence

$$\tilde{r}^{(k)} = [r', r^{(k)}] - g_{i_p}(r')r^{(k)} = \sum_{j=1}^{p-1} (g_{i_j}(r') - g_{i_p}(r'))r^{(k)}_{i_j} - g_{i_p}(r')s^{(k)}$$

converges to $[r', r] - g_{i_p}(r')r$. Since all functionals g_{i_j} are different, there exists $r' \in G$ such that at least $g_{i_1}(r') - g_{i_p}(r') \neq 0$. Hence $1 \leq p(\tilde{r}^{(k)}) \leq p-1$ which contradicts the assumption that p > 1 is the smallest of such numbers.

Let p=1 and let a sequence $r^{(k)} = r^{(k)}_i + s^{(k)}$, where $r^{(k)}_i \in R^{g_i}_{(1)}$ and $s^{(k)} \in G$, converges to $r \in R$ and let the sequence $r^{(k)}_i$ not converge. Then, by (18), for every $r' \in G$ the sequence

$$[r', r^{(k)}] = [r', r_i^{(k)}] = g_i(r')r_i^{(k)}$$

converges to [r', r]. Choosing r' such that $g_i(r') \neq 0$ we get that $r_i^{(k)}$ converges which contradicts the assumption that $r_i^{(k)}$ does not converge.

Therefore we obtain that, if a sequence $r^{(k)} = \sum_{i=1}^{n} r_i^{(k)} + s^{(k)}$, where $r_i^{(k)} \in R_{(1)}^{g_i}$ and $s^{(k)} \in G$, converges, then all sequences $r_i^{(k)}$ converge to elements in $R_{(1)}^{g_i}$ and, hence, $s^{(k)}$ converges to an element in G. Hence R is the direct sum of $R_{(1)}$ and G, and $R_{(1)}$ is the direct sum of $R_{(1)}^{g_i}$, for i = 1, ..., n.

Now let $Z = (\bigcap_{i=1}^{n} \operatorname{Ker} g_i) \cap G$. If $r = \sum_{i=1}^{n} r_i$, where $r_i \in R_{(1)}^{g_i}$, then for every $z \in Z$, by (18),

$$[z,r] = \sum_{i=1}^{n} g_i(z)r_i = 0.$$

Since $Z \subset G$ and since G is commutative, we obtain that Z is the centre of R. Z is closed and has finite codimension in G. Therefore there exists a finite commutative subalgebra Γ in G such that $G = \Gamma + Z$ and that dim $\Gamma \leq n$. It is easy to see that $Z + R_{(1)}$ is the nilradical in R which concludes the proof of the theorem.

REFERENCES

1. R. K. AMAYO, Quasi-ideals of Lie algebras II, Proc. London Math. Soc. (3) 33 (1976), 37-64.

2. D. W. BARNES, On the cohomology of soluble algebras, Math. Z. 101 (1967), 343-349.

3. J. DIXMIER, Les C*-algebras et leurs representations (Gauthier-Villars Editeur, Paris, 1969).

4. E. V. KISSIN, On some reflexive algebras of operators and the operator Lie algebras of their derivations, *Proc. London Math. Soc.* (3) 49 (1984), 1-35.

5. D. TOWERS, Lie algebras all of whose maximal subalgebras have codimension one, Proc. Edinburgh Math. Soc. 24 (1981), 217-219.

DEPARTMENT OF MATHEMATICS STATISTICS AND COMPUTING THE POLYTECHNIC OF NORTH LONDON HOLLOWAY, LONDON N7 8DB