ON NORMED LIE ALGEBRAS WITH SUFFICIENTLY MANY SUBALGEBRAS OF CODIMENSION 1

by E. V. KISSIN

(Received 21st January 1985)

0. Introduction

Let H be a finite or infinite dimensional Lie algebra. Barnes [2] and Towers [5] considered the case when H is a finite-dimensional Lie algebra over an arbitrary field, and all maximal subalgebras of H have codimension 1. Barnes, using the cohomology theory of Lie algebras, investigated solvable algebras, and Towers extended Barnes's results to include all Lie algebras. In [4] complex finite-dimensional Lie algebras were considered for the case when all the maximal subalgebras of H are not necessarily of codimension 1 but when

$$
\begin{equation*}
\bigcap_{M \in S(H)} M=\{0\} \tag{1}
\end{equation*}
$$

where $S(H)$ is the set of all Lie subalgebras in H of codimension 1. Amayo [1] investigated the finite-dimensional Lie algebras with core-free subalgebras of codimension 1 and also obtained some interesting results about the structure of infinite dimensional Lie algebras with subalgebras of codimension 1.

By \mathfrak{X} we shall denote the class of complex finite or infinite dimensional normed Lie algebras for which (1) holds. In Section 2 the results of Amayo will be applied in order to prove that for every complex normed Lie algebra H and for every subalgebra $M \in S(H)$ the largest Lie ideal $I(M)$ of H contained in M has codimension less or equal to 3 . Using this result for the case when $H \in \mathfrak{X}$ we shall show that, if $S_{k}(H)=$ $\{M \in S(H): \operatorname{codim} I(M)=k\}$, for $k=1,2,3$, then $L(H)=\bigcap_{M \in S_{1}(H) \cup S_{2}(H)} I(M)$ is a semisimple ideal in H and $R(H)=\bigcap_{M \in S_{3}(H)} I(M)$ is the radical of H. We shall also prove that $H_{(2)} \subseteq L(H)$, so that $R(H)_{(2)}=0$. If H is finite-dimensional, then it was proved in [4] that $H=L(H) \dot{+} R(H)$ and that $L(H)=L_{1} \dot{+} \cdots \dot{+} L_{n}$, where all L_{i} are Lie ideals in H and isomorphic to $s l(2, \mathbb{C})$. If H is infinite dimensional, then this does not necessarily hold any longer. We shall consider an example of a normed Lie algebra H from \mathfrak{X} such that $R(H)=0$ but $L(H) \neq H$. We shall also show that the property of belonging to \mathfrak{X} is inherited by all closed subalgebras of H and by all quotient algebras H / \mathscr{T}_{s} where S is any subset of $S(H)$ and where $\mathscr{T}_{S}=\bigcap_{M \in S} I(M)$. Finally, we shall consider the set T of all ideals $I(M)$ such that $\operatorname{codim} I(M)=3$ and shall introduce a Jacobson's topology on T.

In Section 3 the structure of solvable algebras from \mathfrak{X} is investigated. For every $R \in \mathfrak{X}$ we consider a special set Σ of functionals on R from $R_{(1)}^{0}\left(R_{(1)}^{0}\right.$ is the polar of $\left.R_{(1)}\right)$ and
the corresponding set of ideals $R_{(1)}^{g}=\left\{r^{\prime} \in R:\left[r, r^{\prime}\right]=g(r) r^{\prime}\right.$ for every $\left.r \in R\right\}$ in $R_{(1)}(g \in \Sigma)$. If R is a finite-dimensional solvable Lie algebra from \mathfrak{X}, then it was shown in [4] that
(T_{1}) the nil-radical N of R is commutative and a commutative subalgebra Γ of R exists such that $R=\Gamma \dot{+} N$,
$\left(T_{2}\right) N=Z \dot{+} R_{(1)}$, where Z is the centre of R, and $R_{(1)}=\sum_{i=1}^{n} \dot{+} R_{(1)}^{g_{i}}$, where $g_{i} \in \Sigma$.
For the case when R is infinite dimensional but Σ is a finite set, we shall prove in Theorem 3.6 that (T_{1}) and (T_{2}) hold. (This is the main result of the section). If Σ is not finite, then the structure of R is more complicated. In particular, $\left(T_{1}\right)$ and $\left(T_{2}\right)$ may no longer hold. To illustrate this we shall consider a solvable algebra R such that $N=R_{(1)}$, that $\operatorname{dim}\left(R / R_{(1)}\right)=2$ and therefore $\operatorname{dim}\left(R_{(1)}^{0}\right)=2$, but Σ is infinite. We shall show that in this case $\left(T_{1}\right)$ and $\left(T_{2}\right)$ do not hold and that there is not even a commutative algebra Γ such that $\Gamma \cap N=0$ and such that linear combinations of elements from Γ and N are dense in R. We shall also prove that $R_{(1)}^{g}=0$ in this example for all $g \in \Sigma$.

Finally, I would like to thank the referee for the many helpful suggestions which have helped me to improve the article.

1. Preliminaries and notation

Let m and n be arbitrary integers. Then $\binom{m}{n}$ is the usual binomial coefficient with the understanding that $\binom{m}{n}=0$ if $m<0$ or $n<0$ or $m<n$. But we take $\binom{m}{0}=1$ if $m \geqq-1$. As in [1] we define, for arbitrary integers,

$$
\begin{equation*}
\lambda_{i j}=\binom{i+j}{i+1}-\binom{i+j}{j+1} . \tag{2}
\end{equation*}
$$

If a linear space B is the direct sum of its subspaces B_{i}, for $i=1, \ldots, n$ we shall denote it by

$$
B=B_{1} \dot{+} \cdots \dot{+} B_{n}
$$

Let H be a complex Lie algebra of finite or infinite dimension and let there exist a subalgebra M of codimension 1. By $I(M)$ we denote the largest Lie ideal of H contained in M. Then $I(M)$ contains any Lie ideal of H contained in M. Now put $I_{0}=M$ and let h_{-}be an element in H which does not belong to M. For every $i \geqq 0$ let us define by induction

$$
\begin{equation*}
I_{i+1}=\left\{h \in H:\left[h, h_{-}\right] \in I_{i}\right\} . \tag{3}
\end{equation*}
$$

If $h \in H$ by $\{h\}$ we shall denote the one-dimensional subspace generated by h.
Theorem 1.1. [1] (Amayo) If M is a Lie subalgebra in H of codimension 1 then three possibilities exist:
(1) $I(M)=M$;
(2) $\operatorname{dim}(H / I(M))=2, H / I(M)$ is solvable but not commutative and there exist elements h_{-}and h_{0} in H such that

$$
H=\left\{h_{-}\right\} \dot{+} M, M=\left\{h_{0}\right\} \dot{+} I(M)
$$

and

$$
\begin{equation*}
\left[h_{-}, h_{0}\right] \equiv h_{-} \bmod I(M) \tag{4}
\end{equation*}
$$

(3) (i) all I_{i} are Lie ideals of $M, I_{i+1} \subseteq I_{i}$ and

$$
I(M)=\bigcap_{i=0}^{\infty} I_{i}
$$

(ii) there exist elements h_{i}, possibly zero, such that

$$
I_{i}=\left\{h_{i}\right\} \dot{+} I_{i+1} \text { and }\left[h_{i}, h_{j}\right] \equiv \lambda_{i j} h_{i+j} \bmod I_{i+j+1}
$$

(iii) if $I_{i}=I_{i+1}$ for some i, then $I_{j}=I_{j+1}$ for all $j \geqq 2, I(M)=I_{2}$ and there exist elements h_{-}, h_{0} and h_{+}in H such that

$$
\begin{equation*}
H=\left\{h_{-}\right\} \dot{+} M, M=\left\{h_{0}\right\} \dot{+}\left\{h_{+}\right\} \dot{+} I(M) \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
& {\left[h_{-}, h_{0}\right] \equiv 2 h_{-} \bmod I(M),\left[h_{0}, h_{+}\right] \equiv 2 h_{+} \bmod I(M)} \\
& {\left[h_{+}, h_{-}\right] \equiv h_{0} \bmod I(M)} \tag{6}
\end{align*}
$$

Now let a complex Lie algebra H be a Banach space. We shall call H a normed Lie algebra if a constant C exists such that

$$
\begin{equation*}
\left\|\left[h_{1}, h_{2}\right]\right\| \leqq C\left\|h_{1}\right\|\left\|h_{2}\right\| \tag{7}
\end{equation*}
$$

for every $h_{1}, h_{2} \in H$. We say that a closed subalgebra M of a normed Lie algebra H has codimension 1 if there exists $h \in H$ such that $h \notin M$ and that $H=M \dot{+}\{h\}$. By $S(H)$ we denote the set of all closed Lie subalgebras of codimension 1 in H. We shall often make use of the following property of Lie algebras from \mathfrak{X} which follows easily from (1): for every $h \in H$ there exists $M \in S(H)$ such that $H=M \dot{+}\{h\}$.

By $H^{2}=[H, H]$ we shall denote the closed Lie subalgebra of H spanned by all Lie products of pairs of elements of $H . H^{k}$, for $k>1$, is the closed Lie subalgebra which is defined inductively by the rule $H^{k}=\left[H^{k-1}, H\right] . H$ is said to be nilpotent if $H^{k}=0$ for some k. The closed subalgebras $H_{(k)}$ are also defined by the inductive rule that $H_{(1)}=H^{2}$ and $H_{(k+1)}=\left[H_{(k)}, H_{(k)}\right]$ for $k \geqq 1 . H$ is called solvable if $H_{(k)}=0$ for some k. A solvable (nilpotent) ideal $R(N)$ is called the radical (nil-radical) of H if it contains every solvable (nilpotent) ideal of H. If $R=0$, then H is called semisimple.

For every linear subspace G in H let \bar{G} be its closure. Using (7) one can easily prove that $\left[G_{1}, G_{2}\right]=\left[\bar{G}_{1}, \bar{G}_{2}\right]$ for all subspaces G_{1} and G_{2} in H and that, if G is a subalgebra of H, then \bar{G} is also a subalgebra of H. Therefore, if G is a solvable (nilpotent) subalgebra of H, then \bar{G} is also a solvable (nilpotent) subalgebra of H. Thus R and N are closed ideals of H.

The simple Lie algebra of complex matrices $\left(\begin{array}{cc}a & \left.\begin{array}{c}b \\ c\end{array}\right)\end{array}\right)$ is denoted by $s l(2, \mathbb{C})$. Set $h=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, $h_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$ and $h_{+}=\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$. Then

$$
\begin{equation*}
\left[h_{0}, h_{+}\right]=2 h_{+},\left[h_{0}, h_{-}\right]=-2 h_{-},\left[h_{+}, h_{-}\right]=h_{0} . \tag{8}
\end{equation*}
$$

2. The structure of normed Lie algebras from \mathfrak{X}

Theorem 2.1. Let H be a complex normed Lie algebra and let there exist a closed Lie subalgebra M of codimension 1 . Then
(i) $I(M)$ is closed,
(ii) if $\operatorname{dim}(H / I(M))>2$, then $\operatorname{dim}(H / I(M))=3, H / I(M)$ is isomorphic to $s l(2, \mathbb{C})$ and there exist elements h_{-}, h_{0} and h_{+}in H such that formulae (5) and (6) hold.

Proof. Since $I(M)$ is the largest Lie ideal of H contained in M, the proof of (i) follows from the fact that, if G is a Lie ideal of H, then \bar{G} is also a Lie ideal of H.

If H is finite-dimensional, then the proof of (ii) follows immediately from Theorem 1.1 (3) (iii). Now let H be infinite dimensional. First we shall show by induction that all I_{i} are closed. $I_{0}=M$ is closed. Suppose that I_{k} is closed. Let elements $h^{(p)}$ belong to I_{k+1} and converge to h. By (7),

$$
\left\|\left[h, h_{-1}\right]-\left[h^{(p)}, h_{-1}\right]\right\|=\left\|\left[h-h^{(p)}, h_{-1}\right]\right\| \leqq C\left\|h-h^{(p)}\right\|\left\|h_{-1}\right\| \rightarrow 0 .
$$

Hence the elements $\left[h^{(p)}, h_{-1}\right.$] converge to $\left[h, h_{-1}\right]$. By (3), $\left[h^{(p)}, h_{-1}\right.$] belong to I_{k} and, since I_{k} is closed, we have that $\left[h, h_{-1}\right]$ belongs to I_{k}. Therefore $h \in I_{k+1}$ and I_{k+1} is closed.

It follows from Theorem 1.1 (3) (ii) and from (2), that for $j \geqq 0$

$$
\left[h_{0}, h_{j}\right]=j h_{j}+a_{j+1}
$$

where $a_{j+1} \in I_{j+1}$. Since, by Theorem 1.1 (3) (i), all I_{i} are ideals of M and since $h_{0} \in M$, we have that $\left[h_{0}, h\right] \in I_{j+1}$ for every $h \in I_{j+1}$ and that

$$
\left[h_{0}, h_{j}+h\right]=\left[h_{0}, h_{j}\right]+\left[h_{0}, h\right]=j h_{j}+h^{\prime}
$$

where $h^{\prime}=a_{j+1}+\left[h_{0}, h\right]$ belongs to I_{j+1}. By (7),

$$
\left\|j h_{j}+h^{\prime}\right\|=\left\|\left[h_{0}, h_{j}+h\right]\right\| \leqq C\left\|h_{0}\right\|\left\|h_{j}+h\right\| .
$$

Dividing by j we get that for every $h \in I_{j+1}$ the element $f(h)=h^{\prime} / j$ in I_{j+1} exists such
that

$$
\begin{equation*}
\left\|h_{j}+f(h)\right\| \leqq C_{1}\left\|h_{j}+h\right\| \tag{9}
\end{equation*}
$$

where $C_{1}=C\left\|h_{0}\right\| / j$. Let us choose an element $h^{(1)}$ in I_{j+1} and let us put by induction $h^{(k)}=f\left(h^{(k-1)}\right)$. Then, by (9),

$$
\begin{aligned}
&\left\|h_{j}+h^{(k)}\right\|=\left\|h_{j}+f\left(h^{(k-1)}\right)\right\| \leqq C_{1}\left\|h_{j}+h^{(k-1)}\right\| \\
&=C_{1}\left\|h_{j}+f\left(h^{(k-2)}\right)\right\| \leqq C_{1}^{2}\left\|h_{j}+h^{(k-2)}\right\| \leqq \cdots \leqq C_{1}^{k-1}\left\|h_{j}+h^{(1)}\right\| .
\end{aligned}
$$

If j is large enough so that $C_{1}<1$, then we obtain that $\left\|h_{j}+h^{(k)}\right\| \rightarrow 0$. Since all $h^{(k)}$ belong to I_{j+1} and since I_{j+1} is closed, we have that $h_{j} \in I_{j+1}$. Hence, by Theorem 1.1 (3) (ii), $I_{j}=\left\{h_{i}\right\}+I_{j+1}=I_{j+1}$ and the proof of the theorem follows from Theorem 1.1 (3) (iii) and from formula (8).

For $k=1,2$ and 3 we put

$$
S_{k}(H)=\{M \in S(H): \operatorname{codim} I(M)=k\}
$$

Then $S(H)=\bigcup_{k=1}^{3} S_{k}(H)$. Now put

$$
L(H)=\bigcap_{M \in S_{1}(H) \cup S_{2}(H)} I(M) \text { and } R(H)=\bigcap_{M \in S_{3}(H)} I(M) .
$$

If $S_{1}(H) \cup S_{2}(H)=\varnothing$, then put $L(H)=H$. If $S_{3}(H)=\varnothing$, then put $R(H)=H$. If $H \in \mathfrak{X}$, then it follows from (1) that

$$
L(H) \cap R(H)=\bigcap_{M \in S(H)} I(M) \subseteq \bigcap_{M \in S(H)} M=0
$$

Since all $I(M)$ are closed, $L(H)$ and $R(H)$ are also closed.
Lemma 2.2. If $H \in \mathfrak{X}$, then $H_{(2)} \subseteq L(H)$.
Proof. Let $M \in S_{1}(H)$. Then $I(M)=M$ and an element h_{-}exists such that $H=$ $\left\{h_{-}\right\} \dot{+} M$. Therefore $H_{(1)}=[H, H] \subseteq I(M)$. Since M is an arbitrary subalgebra in $S_{1}(H)$, we obtain that

$$
H_{(2)} \subseteq H_{(1)} \subseteq \bigcap_{M \in S_{1}(H)} I(M) .
$$

Now let $M \in S_{2}(H)$. Then, by Theorem $1.1(2)$, the elements h_{-}and h_{0} exist such that

$$
H=\left\{h_{-}\right\} \dot{+} M, M=\left\{h_{0}\right\} \dot{+} I(M)
$$

and

$$
\left[h_{-}, h_{0}\right] \equiv h_{-} \bmod I(M)
$$

Therefore $H_{(1)} \subseteq\left\{h_{-}\right\} \dot{+} I(M)$ and $H_{(2)}=\left[H_{(1)}, H_{(1)}\right] \subseteq I(M)$. Since M is an arbitrary subalgebra in $S_{2}(H)$, we obtain that

$$
H_{(2)} \subseteq \bigcap_{M \in S_{2}(H)} I(M)
$$

Thus $H_{(2)} \subseteq \bigcap_{M \in S_{1}(H) \cup S_{2}(H)} I(M)=L(H)$ which completes the proof.
For every closed subalgebra G of H set

$$
S_{G}(H)=\{M \in S(H): G \nsubseteq M\} \text { and } S^{G}(H)=\{M \in S(H): G \subseteq M\}
$$

Then $S(H)=S_{G}(H) \cup S^{G}(H)$. Now let S be a subset in $S(H)$. Set

$$
\mathscr{F}_{S}=\bigcap_{M \in S} I(M)
$$

Then \mathscr{T}_{S} is a closed ideal of H.

Theorem 2.3. Let $H \in \mathfrak{X}$.

(i) If G is a closed subalgebra of H, then $G \in \mathfrak{X}$.
(ii) For every subset S in $S(H)$ the quotient algebra H / \mathscr{T}_{S} belongs to \mathfrak{X}.

Proof. Let G be a closed subalgebra of H. For every $M \in S_{G}(H)$ set $M_{G}=G \cap M$. Then all M_{G} are closed subalgebras in G of codimension 1 and

$$
\bigcap_{M^{\prime} \in S(G)} M^{\prime} \subseteq \bigcap_{M_{G} \in S(G)} M_{G}=G \cap\left(\bigcap_{M \in S_{G}(H)} M\right)=\bigcap_{M \in S(H)} M=0
$$

Therefore $G \in \mathfrak{X}$ and (i) is proved.
Now let $S \subseteq S(H)$ and let f be the homomorphism of H onto H / \mathscr{T}_{s}. If $M \in S^{\mathscr{G} s}(H)$, then $f(M)$ is a closed subalgebra of codimension 1 in H / \mathscr{T}_{s}. Therefore in order to prove (ii) it is sufficient to prove that

Since $h \notin \mathscr{T}_{S}$, there exists $M_{0} \in S$ such that $h \notin I\left(M_{0}\right)$.
If $M_{0} \in S_{1}(H)$, then $I\left(M_{0}\right)=M_{0}$ and therefore $h \notin M_{0}$. Since $M_{0} \in S^{\sigma} s(H)$, we obtain that (a) holds for h.

If $M_{0} \in S_{2}(H)$, then there exist elements h_{-}and h_{0} such that (4) holds. Therefore $h=a h_{-}+b h_{0}+i$ where a and b are complex and where $i \in I\left(M_{0}\right)$. If $a \neq 0$, then $h \notin M_{0}$ and (a) holds for h. Let $a=0$, that is, $h=b h_{0}+i$ and $b \neq 0$. Then $h \in M_{0}$. Set $x=h_{-}+h_{0}$ and $M=I\left(M_{0}\right)+\{x\}$. We have that M is a Lie subalgebra of H and that $h \notin M$. Since $I\left(M_{0}\right)$ is closed and since $\operatorname{dim}\left(H / I\left(M_{0}\right)\right)=2$, we obtain easily that M is closed and that $\operatorname{codim} M=1$. Since $\mathscr{T}_{s} \subseteq I\left(M_{0}\right) \subset M$, (a) holds for h.

Finally, let $M_{0} \in S_{3}(H)$. Then there exist elements h_{-}, h_{0} and h_{+}such that (5) and (6) hold. Therefore $h=a h_{-}+b h_{0}+c h_{+}+i$ where a, b and c are complex and where $i \in I\left(M_{0}\right)$. If $a \neq 0$, then $h \notin M_{0}$ and (a) holds for h. Let $a=0$, that is, $h=b h_{0}+c h_{+}+i$ and $|b|+|c| \neq 0$. Then $h \in M_{0}$. If $c \neq 0$, then set $M=I\left(M_{0}\right) \dot{+}\left\{h_{-}\right\} \dot{+}\left\{h_{0}\right\}$. Since $I\left(M_{0}\right)$ is closed and since $\operatorname{dim}\left(H / I\left(M_{0}\right)\right)=3$, we obtain easily that M is closed. It follows from (5) and (6) that M is a Lie subalgebra of H, that $h \notin M$ and that $\operatorname{codim} M=1$. Since $\mathscr{T}_{s} \subseteq I\left(M_{0}\right) \subset M$, (a) holds for h. Now let $c=0$, so that $h=b h_{0}+i$ and $b \neq 0$. Set

$$
x=h_{-}+h_{0}, y=h_{-}+2 h_{0}-4 h_{+} \text {and } M=I\left(M_{0}\right) \dot{+}\{x\} \dot{+}\{y\} .
$$

It follows from (6) that $[x, y]=2 y \bmod I\left(M_{0}\right)$. Therefore M is a closed Lie subalgebra of codimension 1 in H and h does not belong to M. Thus (a) holds for h and the proof of (ii) is complete.

From Lemma 2.2 and from Theorem 2.3 we obtain immediately the following corollary.

Corollary 2.4. If $H \in \mathfrak{X}$ and if $H^{\prime}=H / L(H)$, then H^{\prime} is solvable, $H_{(2)}^{\prime}=0$ and $L(H)$ and H^{\prime} belong to \mathfrak{X}.

Lemma 2.5. Let $M \in S_{3}(H)$.
(i) The elements h_{-}, h_{0} and h_{+}in formulae (5) and (6) can be chosen from $L(H)$.
(ii) Subalgebra $M_{L}=M \cap L(H)$ has codimension 1 in $L(H), I\left(M_{L}\right)=L(H) \cap I(M)$ and $M_{L} \in S_{3}(L(H))$.

Proof. Let $M \in S_{3}(H)$. By Theorem 1.1 (3) (iii), the elements $h_{-}^{\prime}, h_{0}^{\prime}$ and h_{+}^{\prime} exist in H such that $H=\left\{h_{-}^{\prime}\right\} \dot{+} M, M=\left\{h_{0}^{\prime}\right\} \dot{+}\left\{h_{+}^{\prime}\right\} \dot{+} I(M)$ and elements g_{-}, g_{0} and g_{+}exist in $I(M)$ such that

$$
\begin{equation*}
\left[h_{-}^{\prime}, h_{0}^{\prime}\right]=2 h_{-}^{\prime}+g_{-},\left[h_{0}^{\prime}, h_{+}^{\prime}\right]=2 h_{+}^{\prime}+g_{+},\left[h_{+}^{\prime}, h_{-}^{\prime}\right]=h_{0}^{\prime}+g_{0} \tag{10}
\end{equation*}
$$

Put $h_{0}=\left[\left[h_{0}^{\prime}, h_{+}^{\prime}\right],\left[h_{-}^{\prime}, h_{0}^{\prime}\right]\right] / 4, h_{-}=\left[\left[h_{-}^{\prime}, h_{0}^{\prime}\right], \quad\left[h_{+}^{\prime}, h_{-}^{\prime}\right]\right] / 4$ and $h_{+}=\left[\left[h_{+}^{\prime}, h_{-}^{\prime}\right]\right.$, $\left.\left[h_{0}^{\prime}, h_{+}^{\prime}\right]\right] / 4$. By Lemma 2.2, h_{0}, h_{-}and h_{+}belong to $L(H)$. It follows from (10) that

$$
h_{0}=\left[2 h_{+}^{\prime}+g_{+}, 2 h_{-}^{\prime}+g_{-}\right] / 4 \equiv\left[h_{+}^{\prime}, h_{-}^{\prime}\right] \bmod I(M) \equiv h_{0}^{\prime} \bmod I(M)
$$

In the same way we can show that

$$
h_{-} \equiv h_{-}^{\prime} \bmod I(M)
$$

and that

$$
h_{+} \equiv h_{+}^{\prime} \bmod I(M)
$$

from which the rest of the proof of (i) follows immediately.

Let $M_{L}=M \cap L(H)$. Since $h_{-} \in L(H)$ and $h_{-} \notin M$ and since $\operatorname{codim} M=1, M_{L}$ is a closed subalgebra of codimension 1 in $L(H)$. Let $I=L(H) \cap I(M)$. Then I is a closed ideal of $L(H)$ contained in M_{L} and, by (i) and by Theorem 1.1 (3) (iii),

$$
L(H)=\left\{h_{-}\right\} \dot{+} M_{L}
$$

and

$$
M_{L}=\left\{h_{0}\right\} \dot{+}\left\{h_{+}\right\}+I
$$

Since h_{-}, h_{0} and h_{+}belong to $L(H)$, all identities in (6) hold modulo I. Therefore the quotient algebra $L(H) / I$ is isomorphic to $s l(2, \mathbb{C})$. From this it follows easily that I is the maximal ideal of $L(H)$ contained in M_{L}, that is, $I=I\left(M_{L}\right)$. Thus $M_{L} \in S_{3}(L(H))$ and the proof is complete.

Theorem 2.6. (i) $R(H)$ is the radical of H and $R(H)_{(2)}=0$. (ii) $L(H)$ is semisimple.
Proof. It follows from Lemma 2.2 that $R(H)_{(2)} \subseteq L(H)$. Since $R(H)$ is a Lie ideal of H, we have that $R(H)_{(2)} \subseteq R(H)$. But $L(H) \cap R(H)=0$. Hence $R(H)_{(2)}=0$. Therefore $R(H)$ is a solvable ideal in H.

Now suppose that R is another closed solvable ideal in H. Let $M \in S_{3}(H)$ and let f be the homomorphism of H onto $H / I(M)$. Then $f(R)$ is a solvable Lie ideal in $H / I(M)$. But, by Theorem $2.1 H / I(M)$ is isomorphic to $\operatorname{sl}(2, \mathbb{C})$ which is simple, Therefore every solvable ideal in $H / I(M)$ is trivial. Hence $R \subseteq I(M)$. Since M is an arbitrary subalgebra in $S_{3}(H)$, we obtain that

$$
R \subseteq \bigcap_{M \in S_{3}(H)} I(M)=R(H)
$$

and (i) is proved.
It follows from the definition of the radical and from Lemma 2.5 (ii) that

$$
R(L(H))=\bigcap_{M^{\prime} \in S_{3}(L(H))} M^{\prime} \subseteq \bigcap_{M \in S_{3}(H)} M_{L}=L(H) \cap\left(\bigcap_{M \in S_{3}(H)} M\right)=L(H) \cap R(H)=0
$$

Therefore $L(H)$ is semisimple.
Remark. If H is finite-dimensional, then it was proved in [4] that $H=L(H) \dot{+} R(H)$ and that $L(H)=L_{1} \dot{+} \cdots+L_{k}$ where all L_{i} are Lie ideals of H and isomorphic to $s l(2, \mathbb{C})$.

Now we shall consider an example of a normed infinite dimensional Lie algebra H from \mathfrak{X} such that $R(H)=0$ but $L(H) \neq H$.

Example 1. Let $H=\left\{A=\left\{A_{n}\right\}_{n=1}^{\infty}\right.$: (i) $A_{n} \in s l(2, \mathbb{C})$, (ii) there exists a matrix $A_{0}=\left(\begin{array}{ll}a & b \\ 0 & -b\end{array}\right)$ such that $\left.\lim A_{n}=A_{0}\right\}$.

Set $\|A\|=\sup _{n}\left\|A_{n}\right\|$ and set $[A, B]=\left\{\left[A_{n}, B_{n}\right]\right\}_{n=1}^{\infty}$. Then H is a normed Lie algebra.
It is well-known that $s l(2, \mathbb{C}) \in \mathfrak{X}$ and that $S(s l(2, \mathbb{C}))=S_{3}(s l(2, \mathbb{C}))$. For every subalgebra \mathscr{M} of codimension 1 in $s l(2, \mathbb{C})$ and for every positive integer k let

$$
M_{k}=\left\{A=\left\{A_{n}\right\}_{n=1}^{\infty} \in H: A_{k} \in \mathscr{M}\right\} .
$$

Then M_{k} are subalgebras of codimension 1 in H and

$$
\bigcap_{M \in S(H)} M \subseteq \bigcap_{M \in=1}^{\infty} \quad M_{k}=0 .
$$

Thus $H \in \mathfrak{X}$. Let $I_{k}=\left\{A \in H: A_{k}=0\right\}$. Then I_{k} are ideals of H and $I\left(M_{k}\right)=I_{k}$ for every subalgebra $\mathscr{M} \in S(s l(2, \mathbb{C}))$. Every ideal I_{k} has codimension 3 in H and H / I_{k} is isomorphic to $\operatorname{sl}(2, \mathbb{C})$. Therefore all M_{k} belong to $S_{3}(H)$. Then we have that

$$
R(H)=\bigcap_{M \in S_{3}(H)} I(M) \subseteq \bigcap_{k=1}^{\infty} I_{k}=0
$$

Now let $I_{\infty}=\left\{A \in H: \lim A_{n}=0\right\}$. By G we shall denote the two-dimensional solvable Lie algebra of all complex matrices $\left(\begin{array}{cc}a \\ 0 & - \\ 0\end{array}\right)$. Then $G \in \mathfrak{X}$ and $S(G)=S_{1}(G) \bigcup S_{2}(G)$. For every $\mathscr{M} \in S(G)$ let $M_{\infty}=\left\{A \in H: \lim A_{n} \in \mathscr{M}\right\}$. Then M_{∞} are subalgebras of codimension 1 in H and $I_{\infty} \subset M_{\infty}$. If $I\left(M_{\infty}\right)$ is the corresponding maximal ideal of H in M_{∞} then $I_{\infty} \subseteq I\left(M_{\infty}\right)$. Since $\operatorname{codim} I_{\infty}=2$ we have that $\operatorname{codim} I\left(M_{\infty}\right) \leqq 2$. Hence $M_{\infty} \in S_{1}(H) \cup S_{2}(H)$. Therefore

$$
L(H)=\bigcap_{M \in S_{1}(H) \cup S_{2}(H)} I(M) \subseteq \bigcap_{M \in G} I\left(M_{\infty}\right)=I_{\infty} .
$$

In fact one can easily prove that $L(H)=I_{\infty}$. Thus $L(H) \neq H, R(H)=0$ and $H / L(H)$ is isomorphic to G. It can also be proved easily that $H_{(2)}=L(H)$ and that $L(H)_{(1)}=L(H)$.

Remark. If H is a finite-dimensional semisimple Lie algebra, then $H_{(1)}=H$. In the example above H is infinite dimensional and, although it is semisimple, we have that $H_{(1)} \neq H$. But we also have that $L(H)_{(1)}=L(H)$. The question arises as to whether $L(H)_{(\mathbf{1})}=L(H)$ for every $H \in \mathfrak{X}$.

By T we shall denote the set of all ideals $I(M)$ such that $\operatorname{codim} I(M)=3$. Let τ be any subset in T. Put $I(\tau)=\bigcap_{\ell(M) \in \tau} I(M)$ and put $\bar{\tau}=\{I(M) \in T: I(\tau) \subseteq I(M)\}$. Now suppose that \mathscr{T}_{1} and \mathscr{T}_{2} are Lie ideals such that $\mathscr{T}_{1} \cap \mathscr{T}_{2} \subseteq I(M)$ where $I(M) \in T$. Let f be the homomorphism of H onto $H / I(M)$. Then $f\left(\mathscr{T}_{1}\right)$ and $f\left(\mathscr{T}_{2}\right)$ are Lie ideals in $H / I(M)$. But since $H / I(M)$ is simple, we have that $f\left(\mathscr{F}_{1}\right)$ and $f\left(\mathscr{F}_{2}\right)$ are either trivial ideals or coincide with $H / I(M)$. Taking into account that $\left[h_{1}, h_{2}\right] \in \mathscr{T}_{1} \cap \mathscr{T}_{2} \subseteq I(M)$ for every $h_{1} \in \mathscr{T}_{1}$ and for every $h_{2} \in \mathscr{T}_{2}$ we obtain that $\left[f\left(h_{1}\right), f\left(h_{2}\right)\right]=f\left(\left[h_{1}, h_{2}\right]\right)=0$. Since $H / I(M)$ is not commutative we obtain that at least one of these ideals is trivial. Thus if \mathscr{T}_{1} and \mathscr{T}_{2} are ideals such that $\mathscr{T}_{1} \cap \mathscr{T}_{2} \subseteq I(M) \in T$ then either $\mathscr{T}_{1} \subseteq I(M)$ or $\mathscr{T}_{2} \subseteq I(M)$.

Using this argument and repeating the proof of Lemma 3.1.1 [3] we can easily prove the following lemma:

Lemma 2.7.

(i) $\bar{\varnothing}=\varnothing$ and $\tau \subseteq \bar{\tau}$ for every $\tau \subset T$
(ii) $\bar{\tau}=\bar{\tau}$ for every $\tau \subset T$ and $\overline{\tau_{1} \cup \tau_{2}}=\bar{\tau}_{1} \cup \bar{\tau}_{2}$ if $\tau_{1}, \tau_{2} \subset T$.

From Lemma 2.7. it follows that there exists a unique topology (Jacobson's topology) on T such that for every $\tau \subset T$ the set $\bar{\tau}$ is its closure in this topology. Since every $I(M)$ in T is maximal we have that it is closed.

3. The structure of normed solvable algebras from \boldsymbol{x}

We shall start the section with a well-known lemma.
Lemma 3.1. Let N be a normed nilpotent algebra from \mathfrak{X}. Then N is commutative.
Let R be a normed solvable algebra from \mathfrak{X} and let N be its nil-radical. It follows from Theorem 2.6 that $R_{(2)}=0$. Hence $R_{(1)}$ is a commutative ideal of R. Therefore $R_{(1)} \subseteq N$. By Theorem $2.3(\mathrm{i}), N$ belongs to \mathfrak{X} and hence, by Lemma 3.1, N is commutative.

By R^{*} we shall denote the dual space of R which consists of all bounded functionals on R. For every $r \in R$ we denote by A_{r} the operator on R^{*} which is defined by the formula

$$
\begin{equation*}
\left(A_{r} f\right)\left(r_{1}\right)=f\left(\left[r, r_{1}\right]\right) \tag{11}
\end{equation*}
$$

Then A_{r} is a linear operator and it is bounded since

$$
\left\|A_{r} f\right\|=\sup _{\left\|r_{1}\right\|=1}\left|\left(A_{r} f\right)\left(r_{1}\right)\right| \leqq\|f\| \sup _{\left\|r_{1}\right\|=1}\left\|\left[r, r_{1}\right]\right\| \leqq C\|f\|\|r\| .
$$

By $R_{(1)}^{0}$ we denote the polar of $R_{(1)}$ which consists of all functionals f in R^{*} such that $\left.f\right|_{R_{(1)}}=0$.

Lemma 3.2.

(i) $A_{r} f=0$ for every $r \in R$ if and only if $f \in R_{(1)}^{0}$.
(ii) If $A_{r} f=g(r) f$ for every $r \in R$, where g is a functional on R, then $f \in R_{(1)}^{0}$ and $g(r) \equiv 0$.
(iii) Every operator A_{r} is continuous in $\sigma\left(R^{*}, R\right)$-topology

Proof. If $f \in R_{(1)}^{0}$, then, by (11), $\left(A_{r} f\right)\left(r_{1}\right)=0$ for all $r, r_{1} \in R$. Hence $A_{r} f=0$. If, on the other hand, we have that $A_{r} f=0$ for all $r \in R$, then, by (11), $f\left(\left[r, r_{1}\right]\right)=0$ for every $r_{1} \in R$. Hence $R_{(1)} \subseteq \operatorname{Ker} f$ and therefore $f \in R_{(1)}^{0}$. Thus (i) is proved.

Now let $A_{r} f=g(r) f$ for every $r \in R$ and let $r_{1} \in \operatorname{Ker} f$. Then

$$
f\left(\left[r, r_{1}\right]=\left(A_{r} f\right)\left(r_{1}\right)=g(r) f\left(r_{1}\right)=0 .\right.
$$

Hence $\left[r, r_{1}\right] \in \operatorname{Ker} f$. Therefore $\operatorname{Ker} f$ is an ideal in R. Let $r_{0} \in R$ be such that $R=$ $\left\{r_{0}\right\} \dot{+} \operatorname{Ker} f$ and that $f\left(r_{0}\right)=1$. Then for every $r \in R$ there exists a complex t such that $r=t r_{0}+r_{1}$ where $r_{1} \in \operatorname{Ker} f$. Then

$$
\left(A_{r} f\right)\left(r_{0}\right)=g(r) f\left(r_{0}\right)=f\left(\left[r, r_{0}\right]\right)=f\left(\left[r_{1}, r_{0}\right]\right)=0
$$

since $\left[r_{1}, r\right] \in \operatorname{Ker} f$. Hence $g(r)=0$ for all $r \in R$. Therefore it follows from (i) that $f \in R_{(1)}$ and (ii) is proved.

Let $r \in R$ and let $\left(f_{\alpha}\right)$ be a directed set of elements in R^{*} converging to 0 in $\sigma\left(R^{*}, R\right)$ topology. For every finite set $\left(r_{i}\right)_{i=1}^{n}$ put $r_{i}^{\prime}=\left[r, r_{i}\right]$. Let $\varepsilon>0$ and let us choose α_{0} such that $\left|f_{\alpha}\left(r_{i}^{\prime}\right)\right|<\varepsilon$ for all i and for $\alpha>\alpha_{0}$. Then

$$
\left|A_{r} f_{\alpha}\left(r_{i}\right)\right|=\mid f_{a}\left(\left[r, r_{i}\right]\right)<\varepsilon
$$

and $\left(A_{r} f_{\alpha}\right)$ converges to 0 in $\sigma\left(R^{*}, R\right)$-topology. Hence (iii) is proved.
Lemma 3.3. Let $r_{-} \in R_{(1)}$ and let $M \in S(R)$ be a subalgebra such that $r_{-} \notin M$. Then $M \in S_{2}(R)$ and there exist $r_{0} \in M$ and functionals $g \in R_{(1)}^{0}$ and $f \notin R_{(1)}^{0}$ such that $r_{0} \notin R_{(1)}$, $g\left(r_{0}\right) \neq 0, f\left(r_{-}\right) \neq 0,\left[r_{0}, r_{-}\right] \equiv r_{-} \bmod I(M)$ and for every $r \in R$

$$
A_{r} f=g(r) f-f(r) g
$$

Proof. Since $R \in \mathfrak{X}$, there exists a subalgebra $M \in S(R)$ such that $r_{-} \notin M$. If M is an ideal in R, then $R_{(1)} \subseteq \mathrm{M}$ which contradicts the fact that r_{-}does not belong to M. Hence $M \notin S_{1}(R)$. Since R is solvable, we have that $S_{3}(R)=\varnothing$. Hence $M \in S_{2}(H)$. By Theorem 1.1 (2), an element $r_{0} \in M$ exists such that $M=\left\{r_{0}\right\}+I(M)$ and that $\left[r_{0}, r_{-}\right] \equiv r_{-} \bmod I(M)$. Therefore $R_{(1)} \subseteq\left\{r_{-}\right\} \dot{+} I(M)$. Hence r_{0} does not belong to $R_{(1)}$.

Since M is closed and $\operatorname{codim}(M)=1$, there exists a functional f such that $\operatorname{Ker} f=M$. Hence $f\left(r_{-}\right) \neq 0$ and therefore $f \notin R_{(1)}^{0}$. The subspace $\left\{r_{-}\right\} \dot{+} I(M)$ is closed and has codimension 1 in R. Therefore a functional f_{1} exists such that Ker $f_{1}=\left\{r_{-}\right\} \dot{+} I(M)$. Hence $f_{1}\left(r_{0}\right) \neq 0$. Since $R_{(1)} \subseteq\left\{r_{-}\right\} \dot{+} I(M)$, we have that $f_{1} \in R_{(1)}^{0}$.

Let $I^{0}(M)=\left\{f \in R^{*}:\left.f\right|_{I(M)}=0\right\}$ be the polar of $I(M)$ in R^{*}. Since codim $I(M)=2$, we have that $\operatorname{dim} I^{0}(M)=2$. The functionals f and f_{1} belong to $I^{0}(M)$ and, since $f\left(r_{-}\right) \neq 0$ and $f_{1}\left(r_{-}\right)=0$, they are linearly independent. Hence f and f_{1} form a basis in $I^{0}(M)$. Since $I(M)$ is an ideal in R, it follows from (11) that $I^{0}(M)$ is invariant under all operators $A_{r}, r \in R$. Hence

$$
A_{r} f=g(r) f+h(r) f_{1}
$$

where g and h are linear bounded functionals on R. Then, since $f\left(r_{0}\right)=0$ and since $f_{1}\left(r_{-}\right)=0$, we have that

$$
\begin{gather*}
\left(A_{r} f\right)\left(r_{0}\right)=f\left(\left[r, r_{0}\right]\right)=g(r) f\left(r_{0}\right)+h(r) f_{1}\left(r_{0}\right)=h(r) f_{1}\left(r_{0}\right) \tag{12}\\
\left(A_{r} f\right)\left(r_{-}\right)=f\left(\left[r, r_{-}\right]\right)=g(r) f\left(r_{-}\right)+h(r) f_{1}\left(r_{-}\right)=g(r) f\left(r_{-}\right) \tag{13}
\end{gather*}
$$

If $r \in I(M)$, then $\left[r, r_{0}\right] \in I(M)$ and $f\left(\left[r, r_{0}\right]\right)=0$. Since $f_{1}\left(r_{0}\right) \neq 0$, we get from (12) that $I(M) \subseteq \operatorname{Ker} h$. If $r=r_{0}$, then, by (12), $h\left(r_{0}\right)=0$. Hence $M=\left\{r_{0}\right\} \dot{+} I(M)=\operatorname{Ker} f \subseteq \operatorname{Ker} h$. Therefore $h=a f$ where a is a complex number. If $r=r_{-}$then $\left[r_{-}, r_{0}\right] \equiv-r_{-} \bmod I(M)$ and, by (12),

$$
-f\left(r_{-}\right)=a f\left(r_{-}\right) f_{1}\left(r_{0}\right)
$$

Hence $a=-1 / f_{1}\left(r_{0}\right)$.
Now if $r \in I(M)$, then $\left[r, r_{-}\right] \in I(M)$ and $f\left(\left[r, r_{-}\right]\right)=0$. Since $f\left(r_{-}\right) \neq 0$, we get from (13) that $I(M) \subseteq \operatorname{Kerg}$. If $r=r_{-}$, then, by (13), $g\left(r_{-}\right)=0$. Hence $\left\{r_{-}\right\} \dot{+} I(M)=$ Ker $f_{1} \subseteq \operatorname{Ker} g$. Therefore $g=b f_{1} \in R_{(1)}^{0}$ where b is a complex number. If $r=r_{0}$, then $\left[r_{0}, r_{-}\right]=r_{-} \bmod I(M)$ and, by (13),

$$
f\left(r_{-}\right)=b f_{1}\left(r_{0}\right) f\left(r_{-}\right)
$$

Hence $b=1 / f_{1}\left(r_{0}\right)=-a$. Therefore

$$
h(r) f_{1}=a f(r) f_{1}=-b f(r) f_{1}=-f(r) g .
$$

Hence $A_{r} f=g(r) f-f(r) g$ which concludes the proof of the lemma.
Let $g \in R_{(1)}^{0}$. By T_{g} we shall denote the set of all functionals f such that for every $r \in R$

$$
\begin{equation*}
A_{r} f=g(r) f-f(r) g \tag{14}
\end{equation*}
$$

Then $\lambda g \in T_{g}$, where λ is complex, since, by Lemma 3.2,

$$
A_{\mathrm{r}} g=0=g(r) \lambda g-\lambda g(r) g .
$$

For some $g \in R_{(1)}^{0}, T_{g}=\{g\}$ where $\{g\}$ is one-dimensional subspace generated by g.
Let

$$
T=\bigcup_{g \in R_{(1)}^{0}} T_{g}
$$

and let

$$
\Sigma=\left\{g \in R_{(1)}^{0}: T_{g} \neq\{g\}\right\} .
$$

We shall denote by [T] the linear span of T closed in the norm topology and by $[T]_{0}$ the linear span of T closed in $\sigma\left(R^{*}, R\right)$-topology.

Lemma 3.4.

(i) T_{g} is a $\sigma\left(R^{*}, R\right)$-closed linear subspace in R^{*}, and $T_{g} \cap R_{(1)}^{0}=\{g\}$.
(ii) $T_{g} \cap T_{\lambda_{g}}=\{g\}$, and $T_{g_{1}} \cap T_{g_{2}}=0$ if $g_{2} \notin\left\{g_{1}\right\}$.
(iii) If $g \in \Sigma$, then $g \in N^{0}$ where N^{0} is the polar of N in R^{*}.
(iv) The quotient subspaces $T_{g} /\{g\}$, for $g \in \Sigma$, are linearly independent in the quotient space $R^{*} / R_{(1)}^{0}$.

Proof. Let (f_{α}) be a directed set of elements in T_{g} converging to $f \in R^{*}$ in $\sigma\left(R^{*}, R\right)$ topology. Since, by Lemma 3.2 (iii), A_{r} is continuous in $\sigma\left(R^{*}, R\right)$-topology, we have that $A_{r} f_{\alpha} \rightarrow A_{r} f$. But, by (14),

$$
A_{r} f_{\alpha}=g(r) f_{\alpha}-f_{\alpha}(r) g
$$

converges to $g(r) f-f(r) g$. Hence $A_{r} f=g(r) f-f(r) g$, so that $f \in T_{g}$. If $f \in T_{g} \cap R_{(1)}^{0}$, then, by (11) and by (14), for every $r, r_{1} \in R$

$$
\left(A_{r} f\right)\left(r_{1}\right)=f\left(\left[r, r_{1}\right]\right)=0=g(r) f\left(r_{1}\right)-f(r) g\left(r_{1}\right)
$$

since $\left[r, r_{1}\right] \in R_{(1)}$. Hence $\operatorname{Ker} f=\operatorname{Ker} g$ and therefore $f=\operatorname{tg}$ where t is complex. Thus (i) is proved.

If $f \in T_{g_{1}} \cap T_{g_{2}}$, then for every $r \in R$

$$
A_{r} f=g_{1}(r) f-f(r) g_{1}=g_{2}(r) f-f(r) g_{2}
$$

Hence $g(r) f-f(r) g=0$ where $g=g_{1}-g_{2}$. Hence $\operatorname{Ker} f=\operatorname{Ker} g$ and therefore $f=\operatorname{tg} \in R_{(1)}^{0}$ where t is complex. By (i), there exist complex λ_{1} and λ_{2} such that $f=\lambda_{1} g_{1}=\lambda_{2} g_{2}$. Hence $g_{2}=\left(\lambda_{1} / \lambda_{2}\right) g_{1}$. Thus if $g_{2} \notin\left\{g_{1}\right\}$, then $T_{g_{1}} \cap T_{g_{2}}=0$. If $g_{2}=\lambda g_{1}$, then $T_{g_{1}} \cap T_{g_{2}}=$ $\left\{g_{1}\right\}$ and (ii) is proved.

Since $R_{(1)} \subseteq N$, we have that $N^{0} \subseteq R_{(1)}^{0}$. Now suppose that $g \in R_{(1)}^{0}$ but $g \notin N^{0}$. Then there exists $n \in N$ such that $g(n) \neq 0$. By (14), for every $f \in T_{g}$ and for every $r \in R_{(1)}$ we have

$$
\left(A_{r} f\right)(n)=f([r, n])=0=g(r) f(n)-f(r) g(n)=-f(r) g(n) .
$$

Hence $f(r)=0$ and $f \in R_{(1)}^{0}$. By (i), $f=t g$. Hence $T_{g}=\{g\}$ and $g \notin \Sigma$ so (iii) is proved.
Let $f \in T_{g}$, for $g \in \Sigma$, and let f be its image in the quotient space $R^{*} / R_{(1)}^{0}$. Then, by (14), for every $r \in R$ we have that $\left(\widetilde{A_{r} f}\right)=g(r) f$ and the rest of the proof of (iv) is obvious.

Let $g \in R_{(1)}^{0}$. Put

$$
T_{g}^{\perp}=T \backslash T_{g}=\bigcup_{g^{\prime} \in R_{(1)}^{\prime} \backslash g} T_{g^{\prime}}
$$

Let $\left(T_{g}^{\perp}\right)^{0}$ be the polar of T_{g}^{\perp} in R. Put $R_{(1)}^{g}=\left(T_{g}^{\perp}\right)^{0}$. By $\left[T_{g}^{\perp}\right]_{\sigma}$ we shall denote the $\sigma\left(R^{*}, R\right)$-closed span of T_{g}^{\perp} in R^{*}.

Theorem 3.5.

(i) A solvable normed Lie algebra R belongs to \mathfrak{X} if and only if $[T]_{\sigma}=R^{*}$.
(ii) Let $R \in \mathfrak{X}$. The following conditions are equivalent:
(a) there exists a closed commutative subalgebra G in R such that $G \cap R_{(1)}=0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R,
(b) there exists a $\sigma\left(R^{*}, R\right)$-closed linear subspace S in R^{*} such that $S \cap R_{(1)}^{0}=0$ and that $S \cap T_{g}$ has codimension 1 in T_{g} for every $g \in \Sigma$.
(iii) $R_{(1)}^{g} \neq 0$ if and only if $\left[T_{g}^{\perp}\right]_{\sigma} \neq R^{*} ; R_{(1)}^{g}$ is a closed ideal in $R_{(1)}$ such that for every $r^{\prime} \in R_{(1)}^{g}$ and for every $r \in R$

$$
\left[r, r^{\prime}\right]=g(r) r^{\prime}
$$

$$
R_{(1)}^{g_{1}} \cap R_{(1)}^{g_{2}}=0 \text { if } g_{1} \neq g_{2}, \text { and if } g \notin \Sigma \text {, then } R_{(1)}^{g}=0 \text {. }
$$

Proof. We shall consider R^{*} in $\sigma\left(R^{*}, R\right)$-topology. Then R is the dual space of R^{*}. Let $R \in \mathfrak{X}$. By definition we have that $R_{(1)}^{0} \subseteq T$. Let T^{0} be the polar of T in R which consists of all $r \in R$ such that $f(r)=0$, for all $f \in T$. It follows from Lemma 3.3 that, if $r \in R_{(1)}$, then there exist $g \in R_{(1)}^{0}$ and $f \in T_{g}$ such that $f(r) \neq 0$. Hence $T^{0} \cap R_{(1)}=0$. Now let $r \notin R_{(1)}$. Then there exists $g \in R_{(1)}^{0}$ such that $g(r) \neq 0$. Hence $r \notin T^{0}$. Thus $T^{0}=0$. If T^{00} is the bipolar of T in R^{*}, then $T^{00}=R^{*}$. But $T^{00}=[T]_{\sigma}$. Hence $[T]_{\sigma}=R^{*}$.

Now suppose that R is solvable and that $[T]_{\sigma}=R^{*}$. Let $f \in T_{g}$. If $r, r^{\prime} \in \operatorname{Ker} f$ then, by (14),

$$
f\left(\left[r, r^{\prime}\right]\right)=g(r) f\left(r^{\prime}\right)-f(r) g\left(r^{\prime}\right)=0
$$

Hence $\left[r, r^{\prime}\right] \in \operatorname{Ker} f$. Thus we obtain that $\operatorname{Ker} f$ is a subalgebra and hence $\operatorname{Ker} f \in S(R)$. Let $r \in \bigcap_{f \in T}$ Ker f. Since $[T]_{\sigma}=R^{*}$, we obtain that $f(r)=0$ for every $f \in R^{*}$. Hence $r=0$. Therefore

$$
\bigcap_{M \in S(R)} M \subseteq \bigcap_{f \in T} \operatorname{Ker} f=0
$$

Hence $R \in \mathfrak{X}$ and (i) is proved.
Now let us prove that (b) follows from (a). Put $S=G^{0}$. Then S is a $\sigma\left(R^{*}, R\right)$-closed linear subspace in R^{*}. If $f \in S \cap R_{(1)}^{0}$, then $\left.f\right|_{G}=0$ and $\left.f\right|_{R_{(1)}}=0$. Hence $f=0$. Thus $S \cap R_{(1)}^{0}=0$. If $g \in \Sigma$, then $g \in R_{(1)}^{0}$ and hence $g \notin S$. Now let $f \in T_{g}$. Since $g \notin S$, there exists $r \in G$ such that $g(r) \neq 0$. Then, by (14),

$$
\begin{equation*}
g(r) f=f(r) g+A_{r} f \tag{15}
\end{equation*}
$$

But, by (11), $\left(A_{r} f\right)\left(r^{\prime}\right)=f\left(\left[r, r^{\prime}\right]\right)=0$ for every $r^{\prime} \in G$, since G is commutative. Hence $A_{r} f \in S$. Since $g(r) \neq 0$, it follows from (15) that $f \equiv \operatorname{tg} \bmod S$ where $t=f(r) / g(r)$. Hence $S \cap T_{g}$ has codimension 1 in T_{g}.

Now let us prove that (a) follows from (b). Let S^{0} be the polar of S in R. Put $G=S^{0}$. Then G is a linear subspace in R closed in the norm topology. Let $r_{1}, r_{2} \in G$. Put $r_{-}=\left[r_{1}, r_{2}\right]$. Then $r_{-} \in R_{(1)}$. If $r_{-} \neq 0$, then, by Lemma 3.3, there exist functionals $g \in R_{(1)}^{0}$ and $f \in T_{g}$ such that $f\left(r_{-}\right) \neq 0$. Since $S \cap T_{g}$ has codimension 1 in T_{g} and since $g \notin S$, there exists a complex t such that $f_{1}=f-\operatorname{tg} \in S \cap T_{g}$. Then $f_{1}\left(r_{1}\right)=f_{1}\left(r_{2}\right)=0$ and

$$
\begin{equation*}
f_{1}\left(r_{-}\right)=f\left(r_{-}\right)-\operatorname{tg}\left(r_{-}\right)=f\left(r_{-}\right) \neq 0 \tag{16}
\end{equation*}
$$

But, by (11) and by (14),

$$
\left(A_{r_{1}} f_{1}\right)\left(r_{2}\right)=f_{1}\left(\left[r_{1}, r_{2}\right]\right)=f_{1}\left(r_{-}\right)=g\left(r_{1}\right) f_{1}\left(r_{2}\right)-f_{1}\left(r_{1}\right) g\left(r_{2}\right)=0
$$

which contradicts (16). Hence $r_{-}=0$ and G is commutative.
Now let $r \in G \cap R_{(1)}$. If $r \neq 0$, then repeating the argument which preceded (16) we obtain that there exist functionals $g \in R_{(1)}^{0}$ and $f_{1} \in S \cap T_{g}$ such that $f_{1}(r) \neq 0$. But this contradicts the fact that $r \in G$ and that $f_{1} \in S=G^{0}$. Hence $G \cap R_{(1)}=0$.

Let L be the closed linear span of G and $R_{(1)}$, and let L^{0} be the polar of L in R^{*}. Then $L^{0}=G^{0} \cap R_{(1)}^{0}$. Since G is the polar of S in R, we have that G^{0} is the bipolar of S in R^{*} and hence $G^{0}=[S]_{\sigma}=S$. Therefore $L^{0}=S \cap R_{(1)}^{0}=0$. Hence $L=R$ which concludes the proof of (ii).

Let $\left(R_{(1)}^{g}\right)^{0}$ be the polar of $R_{(1)}^{g}$ in R^{*} and let $\left(T_{g}^{\perp}\right)^{00}$ be the bipolar of T_{g}^{\perp} in R^{*}. Then

$$
\left(R_{(1)}^{g}\right)^{0}=\left(T_{g}^{\perp}\right)^{00}=\left[T_{g}^{\perp}\right]_{\sigma} .
$$

If $R_{(1)}^{g}=0$, then $\left(R_{(1)}^{g}\right)^{0}=R^{*}=\left[T_{g}^{\perp}\right]_{\sigma}$. If, on the other hand, $\left[T_{g}^{\perp}\right]_{\sigma}=R^{*}$, then $\left(R_{(1)}^{g}\right)^{0}=R^{*}$ and hence $R_{(1)}^{g}=0$.

We have that $R_{(1)}^{0} \subset T$. Since $T_{g} \cap R_{(1)}^{0}=\{g\}$, we have that

$$
\begin{equation*}
R_{(1)}^{0} \backslash\{g\} \subset T \backslash T_{g}=T_{g}^{\perp} \tag{17}
\end{equation*}
$$

Hence $R_{(1)}^{g}=\left(T_{g}^{\perp}\right)^{0} \subset\left(R_{(1)}^{0} \backslash\{g\}\right)^{0}$. But since the closure of $R_{(1)}^{0} \backslash\{g\}$ in the norm topology is $R_{(1)}^{0}$, we obtain that

$$
\left(R_{(1)}^{0} \backslash\{g\}\right)^{0}=\left(R_{(1)}^{0}\right)^{0}=R_{(1)} .
$$

Hence $R_{(1)}^{g} \subseteq R_{(1)}$.
Now let $R_{(1)}^{g} \neq 0$, let $r^{\prime} \in R_{(1)}^{g}$ and let $r \in R$. Put

$$
r_{1}=\left[r, r^{\prime}\right]-g(r) r^{\prime}
$$

Then $r_{1} \in R_{(1)}$ and hence $g^{\prime}\left(r_{1}\right)=0$ for every $g^{\prime} \in R_{(1)}^{0}$. For every functional $f \in T_{g}$, by (14),

$$
f\left(r_{1}\right)=f\left(\left[r, r^{\prime}\right]\right)-g(r) f\left(r^{\prime}\right)=-f(r) g\left(r^{\prime}\right)=0
$$

since $g\left(r^{\prime}\right)=0$. Let $f \in T_{g^{\prime}}$, where $g^{\prime} \in R_{(1)}^{0}$ and $g^{\prime} \neq g$, and let $f \neq t g^{\prime}$. Then $f \in T_{g}^{\perp}$ and hence $f\left(r^{\prime}\right)=0$. Therefore, by (14),

$$
f\left(r_{1}\right)=f\left(\left[r, r^{\prime}\right]\right)-g(r) f\left(r^{\prime}\right)=f\left(\left[r, r^{\prime}\right]\right)=g^{\prime}(r) f\left(r^{\prime}\right)-f(r) g^{\prime}\left(r^{\prime}\right)=0,
$$

since $g^{\prime}\left(r^{\prime}\right)=0$. Hence $f\left(r_{1}\right)=0$ for every $f \in T$. Therefore, by (i), $r_{1}=0$ and

$$
\begin{equation*}
\left[r, r^{\prime}\right]=g(r) r^{\prime} \tag{18}
\end{equation*}
$$

If $g_{1} \neq g_{2}$, then it follows from (18) that $R_{(1)}^{g_{1}} \cap R_{(1)}^{g_{2}}=0$.

If $g \notin \Sigma$, then $T_{g}=\{g\}$. Since the closure of $R_{(1)}^{0} \backslash\{g\}$ in the $\sigma\left(R^{*}, R\right)$-topology is $R_{(1)}^{0}$, we have, by (17), that

$$
T_{g}=\{g\} \subseteq R_{(1)}^{0}=\left[R_{(1)}^{0} \backslash\{g\}\right]_{\sigma} \subseteq\left[T_{g}^{\perp}\right]_{\sigma}
$$

Since $T_{g} \subseteq\left[T_{g}^{\perp}\right]_{\sigma}$, we get that $\left[T_{g}^{\perp}\right]_{\sigma}=[T]_{\sigma}$. Hence, by (i), $\left[T_{g}^{\perp}\right]_{\sigma}=R^{*}$ and therefore $R_{(1)}^{g}=0$ which concludes the proof of the theorem.

The case when $\operatorname{dim} R<\infty$ was considered in [4]. It was proved there that R is the direct sum of G and $R_{(1)}$, and that $R_{(1)}$ is the direct sum of $R_{(1)}^{g_{i}}$, where $\Sigma=\left\{g_{i}\right\}_{i=1}^{n}$ is a finite set. We shall consider the case when $\operatorname{dim} R=\infty$ and Σ is a finite set later on but now we shall consider an example when $\operatorname{dim} R=\infty$ and Σ is an infinite set. We shall show that, although $\operatorname{dim}\left(R / R_{(1)}\right)=2$ in the example, there does not exist a commutative subalgebra G such that $G \cap R_{(1)}=0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R. We shall also prove that $R_{(1)}^{g}=0$ for all $g \in \Sigma$.

Example. Let R be a Hilbert space with a basis $\left(e_{i}\right)_{i=-1}^{\infty}$, let N be the subspace generated by $\left(e_{i}\right)_{i=1}^{\infty}$ and let A be the bounded operator on R such that

$$
\begin{equation*}
A e_{-1}=A e_{0}=0 \quad \text { and } A e_{i}=a_{i} e_{i}+e_{i+1} \quad \text { for } \quad 1 \leqq i \tag{19}
\end{equation*}
$$

where a_{i} are complex numbers such that $a_{i} \neq a_{j}, a_{i} \neq 0$ and $\sup _{i}\left|a_{i}\right|<\frac{1}{2}$. Put

$$
\begin{gather*}
{[x, y]=0, \text { for } x, y \in N ;\left[e_{0}, e_{0}\right]=\left[e_{-1}, e_{-1}\right]=0} \\
{\left[e_{0}, e_{i}\right]=A e_{i},\left[e_{-1}, e_{i}\right]=A^{2} e_{i}, \text { for } 1 \leqq i} \tag{20}
\end{gather*}
$$

and $\left[e_{-1}, e_{0}\right]=e_{1}$.
It is easy to check that R is a Lie algebra and that

$$
\begin{equation*}
[x, y]=\left(x_{-1} y_{0}-y_{-1} x_{0}\right) e_{1}+x_{-1} A^{2} y-y_{-1} A^{2} x+x_{0} A y-y_{0} A x \tag{21}
\end{equation*}
$$

for $x=\sum_{i=-1}^{\infty} x_{i} e_{i}$ and $y=\sum_{i=-1}^{\infty} y_{i} e_{i}$. Then

$$
\|[x, y]\| \leqq 2\left(\left\|e_{1}\right\|+\left\|A^{2}\right\|+\|A\|\right)\|x\|\|y\| .
$$

Hence R is a normed Lie algebra. By (20), N is a commutative ideal in R and $R_{(1)} \subseteq N$. Thus R is solvable, N is the nil-radical of R and $R_{(2)}=0$. If $R_{(1)} \neq N$, then there exists an element $Z=\sum_{i=1}^{\infty} Z_{i} e_{i}$ in N such that for every $i \geqq 0$

$$
\left(Z,\left[e_{0}, e_{i}\right]\right)=\left(Z,\left[e_{-1}, e_{i}\right]\right)=0
$$

Since $\left[e_{0}, e_{i}\right]=a_{i} e_{i}+e_{i+1}$, for $i \geqq 1$, we obtain that $Z_{i} \bar{a}_{i}+Z_{i+1}=0$. Since $\left[e_{-1}, e_{0}\right]=e_{1}$, we obtain that $Z_{1}=0$ and hence all $Z_{i}=0$, for $i \geqq 1$. Thus $Z=0$ and therefore $R_{(1)}=N$.

For every $f \in R^{*}$ there exists an element y_{f} in R such that $f(x)=\left(x, y_{f}\right)$ for every
$x \in R$. For $r \in R$ put $f_{r}=A_{r} f$. Then

$$
\left(A_{r} f\right)(x)=f([r, x])=\left([r, x], y_{f}\right)=\left(x, y_{f_{r}}\right)
$$

From (21) it follows that

$$
\begin{aligned}
\left([r, x], y_{f}\right)= & \left(r_{-1} x_{0}-x_{-1} r_{0}\right)\left(e_{1}, y_{f}\right)+r_{-1}\left(A^{2} x, y_{f}\right) \\
& -x_{-1}\left(A^{2} r, y_{f}\right)+r_{0}\left(A x, y_{f}\right)-x_{0}\left(A r, y_{f}\right) .
\end{aligned}
$$

Therefore from the two preceding formulae we obtain that

$$
\begin{equation*}
y_{f_{r}}=\left(\bar{r}_{-1}\left(A^{*}\right)^{2}+\bar{r}_{0} A^{*}\right) y_{f}-\left(y_{f}, r_{0} e_{1}+A^{2} r\right) e_{-1}+\left(y_{f}, r_{-1} e_{1}-A r\right) e_{0} . \tag{22}
\end{equation*}
$$

For every $g \in R_{(1)}^{0}$ we have that $y_{g}=\mu e_{-1}+\lambda e_{0}$. If $f \in T_{g}$, then, by (14), we have that

$$
\begin{equation*}
y_{f_{r}}=\overline{g(r)} y_{f}-\overline{f(r)} y_{g}=\left(y_{g}, r\right) y_{f}-\left(y_{f}, r\right) y_{g} \tag{23}
\end{equation*}
$$

Let $r \in N$. Then $r_{-1}=r_{0}=0$. From (22) and from (23) we get that

$$
y_{f_{r}}=-\left(y_{f}, A^{2} r\right) e_{-1}-\left(y_{f}, A r\right) e_{0}=-\left(y_{f}, r\right)\left(\mu e_{-1}+\lambda e_{0}\right),
$$

since $\left(y_{g}, r\right)=0$. Hence

$$
\begin{equation*}
\left(y_{f}, A r\right)=\lambda\left(y_{f}, r\right) \quad \text { and } \quad\left(y_{f}, A^{2} r\right)=\mu\left(y_{f}, r\right) . \tag{24}
\end{equation*}
$$

Let $y_{f}=y_{-1} e_{-1}+y_{0} e_{0}+\hat{y}_{f}$ where $\hat{y}_{f} \in N$. Since N is invariant under A, we obtain from (24) that for every $r \in N$

$$
\left(\hat{y}_{f}, A_{r}\right)=\lambda\left(\hat{y}_{f}, r\right) \quad \text { and } \quad\left(\hat{y}_{f}, A^{2} r\right)=\mu\left(\hat{y}_{f}, r\right) .
$$

Since N is invariant under A^{*}, we get that $A^{*} \hat{y}_{f}=\lambda \hat{y}_{f}$ and that $\left(A^{*}\right)^{2} \hat{y}_{f}=\mu \hat{y}_{f}$. Hence $\mu=\lambda^{2}$.

It follows from (19) that

$$
A^{*} e_{1}=\bar{a}_{1} e_{1} \quad \text { and } A^{*} e_{i}=\bar{a}_{i} e_{i}+e_{i-1}, \text { for } i \geqq 2
$$

If $\hat{y}_{f}=\sum_{i=1}^{\infty} y_{i} e_{i}$, then, since $A^{*} \hat{y}_{f}=\lambda \hat{y}_{f}$, we get that

$$
\left(\bar{a}_{i}-\lambda\right) y_{i}+y_{i+1}=0,
$$

for $i \geqq 1$. Hence we obtain that for $i \geqq 2$

$$
\begin{equation*}
y_{i}=y_{1} \prod_{j=1}^{i-1}\left(\lambda-\bar{a}_{j}\right) \tag{25}
\end{equation*}
$$

Now let $r_{-} \neq 0$ and $r_{0} \neq 0$ in (22) and in (23). Then after some calculations we obtain from (22) and from (23) that

$$
\begin{equation*}
\lambda\left(\lambda y_{0}-y_{-1}\right)=\left(\hat{y}_{f}, e_{1}\right)=y_{1} \tag{26}
\end{equation*}
$$

But the element y_{f}, of which coordinates y_{i} satisfy (25) and (26), belongs to R if and only if

$$
\begin{equation*}
\sum_{i=2}^{\infty}\left|y_{i}\right|^{2}=\left|y_{1}\right|^{2} \sum_{i=2}^{\infty}\left(\prod_{j=1}^{i-1}\left|\lambda-\bar{a}_{j}\right|^{2}\right)<\infty . \tag{27}
\end{equation*}
$$

From all these considerations it follows that
(i) $\Sigma=\left\{g(\lambda) \in R_{(1)}^{0}: y_{g(\lambda)}=\lambda^{2} e_{-1}+\lambda e_{0}\right.$, where $\lambda \neq 0$ and satisfies (27) $\}$,
(ii) any functional f such that $y_{f}=\sum_{i=-1}^{\infty} y_{i} e_{i}$, where y_{i} satisfy (25) and (26), belongs to $T_{g(\lambda)}$.
It follows from (i) and (ii) that $\operatorname{dim} T_{g(\lambda)}=2$. Since $\sup _{i}\left|a_{i}\right| \leqq \frac{1}{2}$, then (27) uniformly converges for all $|\lambda| \leqq q<\frac{1}{2}$. Now suppose that there exists a $\sigma\left(R^{*}, R\right)$-closed subspace S in R^{*} such that $S \cap R_{(1)}^{0}=0$ and that $S \cap T_{g(\lambda)}$ has codimension 1 in $T_{g(\lambda)}$ for every $g(\lambda) \in \Sigma$. Then S is a Hilbert subspace in R^{*} and, for every $g(\lambda) \in \Sigma$, there exists a unique element $y(\lambda)=\sum_{i=-1}^{\infty} y_{i}(\lambda) e_{i}$ such that $y(\lambda) \in S \cap T_{g(\lambda)}$, that $y_{1}(\lambda)=1$ and that $y_{i}(\lambda)$ satisfy (25) and (26). Then, by (26),

$$
\begin{equation*}
1 / \lambda=\lambda y_{0}(\lambda)-y_{-1}(\lambda) . \tag{28}
\end{equation*}
$$

Now let S^{\perp} be the subspace orthogonal to S. Since $S \cap R_{(1)}^{0}=0$, it is easy to see that $\operatorname{dim} S^{\perp} \geqq 2$. Suppose that $S^{\perp} \cap N \neq 0$ and let $Z \in S^{\perp} \cap N$. For every $\lambda=\bar{a}_{j}$ the series (27) converges and it follows from (25) that the coordinates $y_{i}\left(\bar{a}_{j}\right)$ of the corresponding elements $y\left(\bar{a}_{j}\right)$ satisfy the following conditions:

$$
\begin{equation*}
y_{i}\left(\bar{a}_{j}\right) \neq 0, \quad \text { if } \quad 1 \leqq i \leqq j, \quad \text { and } \quad y_{i}\left(\bar{a}_{j}\right)=0, \quad \text { if } \quad j<i \tag{29}
\end{equation*}
$$

Since $\left(Z, y\left(\bar{a}_{j}\right)\right)=0$ for every \bar{a}_{j}, we obtain easily that $Z=0$. Hence $S^{\perp} \cap N=0$. Then there exist elements Z^{1} and Z^{2} in S^{\perp} such that

$$
Z^{1}=e_{-1}+\sum_{i=1}^{\infty} Z_{i}^{1} e_{i}, Z^{2}=e_{0}+\sum_{i=1}^{\infty} Z_{i}^{2} e_{i}
$$

Since $\left(y(\lambda), Z^{K}\right)=0$ for $K=1,2$, we get that

$$
y_{-1}(\lambda)=-\sum_{i=1}^{\infty} \bar{Z}_{i}^{1} y_{i}(\lambda), y_{0}(\lambda)=-\sum_{i=1}^{\infty} \bar{Z}_{i}^{2} y_{i}(\lambda)
$$

for all $y(\lambda) \in S$. By (28),

$$
|1 / \lambda|=\left|\sum_{i=1}^{\infty}\left(\bar{Z}_{i}^{1}-\lambda \bar{Z}_{i}^{2}\right) y_{i}(\lambda)\right| \leqq\left(\sum_{i=1}^{\infty}\left|\bar{Z}_{i}^{1}-\lambda \bar{Z}_{i}^{2}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{\infty}\left|y_{i}(\lambda)\right|^{2}\right)^{1 / 2}
$$

Earlier we observed that for all $|\lambda| \leqq q<\frac{1}{2}$ (27) converges uniformly. Hence the expression on the right-hand side of the inequality above is bounded for all $|\lambda|<q$. But $1 / \lambda \rightarrow \infty$. This contradiction shows that S does not exist. Hence, by Theorem 3.5 (ii), there does not exist a commutative subalgebra G such that $G \cap R_{(1)}=0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R.

Now we shall prove that $R_{(1)}^{g}=0$ for all $g \in \Sigma$. Let $g\left(\lambda_{0}\right) \in \Sigma$. By definition,

$$
T_{g\left(\lambda_{0}\right)}^{\perp}=\bigcup_{\substack{g(\lambda) \in \mathcal{E} \\ g(\lambda) \neq g\left(\lambda_{0}\right)}} T_{g} .
$$

It follows from (17) that $R_{(1)}^{0} \subset\left[T_{g\left(\lambda_{0}\right)}^{\perp}\right]_{\sigma}$. Hence $\left[T_{g\left(\lambda_{0}\right)}^{\perp}\right]_{\sigma}$ contains e_{-1}, e_{0} and all $y \in T_{g(\lambda)}$, for $\lambda \neq \lambda_{0}$. Suppose that $\left[T_{g\left(\lambda_{0}\right)}^{q}\right]_{\sigma} \neq R^{*}$. Then there exists $Z \in R^{*}$ which is orthogonal to $\left[T_{g\left(\lambda_{0}\right)}^{\perp}\right]_{\sigma}$. Since e_{-1} and e_{0} belong to $\left[T_{g\left(\lambda_{0}\right)}^{\perp}\right]_{\sigma}$, we have that $Z_{-1}=Z_{0}=0$, so that $Z \in N$.

Let $\lambda_{0} \neq \bar{a}_{j}$. Then, since all $g\left(\bar{a}_{j}\right) \in \Sigma$, we get that $\left(Z, y\left(\bar{a}_{j}\right)\right)=0$ for every a_{j}. Using (29) as above we obtain that $Z=0$ and, hence, that $\left[T_{g\left(\lambda_{0}\right)}^{\perp}\right]_{\sigma}=R^{*}$. Hence, by Theorem 3.5 (iii), $R_{(1)}^{g\left(\lambda_{0}\right)}=0$.

Now let $\lambda_{0}=\bar{a}_{j}$. Then $\left(Z, y\left(\bar{a}_{i}\right)\right)=0$ for every $a_{i} \neq a_{j}$. Using (29) we obtained by induction that

$$
Z_{i}=0, \quad \text { for } i=1, \ldots, j-1 ; \text { and that } Z_{i}=Z_{j} \prod_{K=j+1}^{i}\left(a_{j}-a_{K}\right)^{-1}, \text { for } i \geqq j+1
$$

Taking into account that $\sup _{i}\left|a_{i}\right| \leqq \frac{1}{2}$ we get that $\left|a_{j}-a_{k}\right| \leqq 1$ and therefore $\left|Z_{i}\right| \geqq\left|Z_{j}\right|$. Hence the element Z does not belong to N. Therefore $\left[T_{g\left(\bar{a}_{j}\right)}^{\perp}\right]_{\sigma}=R^{*}$ and, by Theorem 3.5 (iii), $R_{(1)}^{g\left(\bar{j}_{j}\right)}=0$.

Thus in the example $R_{(1)}^{g}=0$, for every $g \in \Sigma$, and, although $\operatorname{dim}\left(R / R_{(1)}\right)=2, \Sigma$ is infinite as was shown in (i). In the theorem below we shall consider the case when Σ is finite.

Theorem 3.6. Let $R \in \mathfrak{X}$ and let $\Sigma=\left\{g_{i}\right\}_{i=1}^{n}$ be a finite set. Then
(i) there exists a finite-dimensional commutative subalgebra Γ in R such that $\operatorname{dim} \Gamma \leqq n$ and that R is the direct sum of Γ and the nil-radical N;
(ii) N is the direct sum of $R_{(1)}$ and the centre Z, and $R_{(1)}$ is the direct sum of $R_{(1)}^{g_{i}}$, for $i=1, \ldots, n$.

Proof. Let $S_{g_{i}}$, for $i=1, \ldots, n$, be $\sigma\left(R^{*}, R\right)$-closed subspaces in $T_{g_{i}}$ of codimension 1 such that $T_{g_{j}}=S_{g_{i}}+\left\{g_{i}\right\}$. First we shall prove that if a directed set $f^{(\alpha)}+g^{(\alpha)}$, where $g^{(\alpha)} \in R_{(1)}^{0}, f^{(\alpha)}=\sum_{i=1}^{n} f_{i}^{(\alpha)}$ and $f_{i}^{(\alpha)} \in S_{g_{i}}$, converges to an element from R^{*} in $\sigma\left(R^{*}, R\right)$ topology, then the directed set $g^{(\alpha)}$ and all directed sets $\left(f_{i}^{(\alpha)}\right)_{i=1}^{n}$ converge to some elements from R^{*}.

Suppose that there exist directed sets $f^{(\alpha)}+g^{(\alpha)}$ which converge to elements from R^{*} but such that at least one of the corresponding directed sets $f_{i}^{(\alpha)}$ does not converge. For every such set let $p\left(f^{(\alpha)}, g^{(\alpha)}\right)$ be the number of the sets $f_{i}^{(\alpha)}$ which do not converge and let p be the smallest of all $p\left(f^{(\alpha)}, g^{(\alpha)}\right)$. Then $1 \leqq p \leqq n$. Suppose that $p>1$. Let us choose
one of the directed sets $f^{(\alpha)}+g^{(\alpha)}$ which converges to h with exactly p sets $\left(f_{i_{j}}^{(\alpha)}\right)_{j=1}^{p}$ which do not converge. Then for every $r \in R$, by Lemma 3.2 and by (14),

$$
A_{r}\left(f^{(\alpha)}+g^{(\alpha)}\right)=A_{r} f^{(\alpha)}=\sum_{j=1}^{p}\left(g_{i j}(r) f_{i_{j}}^{(\alpha)}-f_{i_{j}}^{(\alpha)}(r) g_{i_{j}}\right)
$$

converges to $A_{r} h$. Hence the directed set

$$
\begin{aligned}
g_{i_{p}}(r)\left(f^{(\alpha)}+g^{(\alpha)}\right) & -A_{r}\left(f^{(\alpha)}+g^{(\alpha)}\right)=g_{i_{p}}(r) g^{(\alpha)}+\sum_{j=1}^{p} f_{i_{j}}^{(\alpha)}(r) g_{i_{j}} \\
& +\sum_{j=1}^{p-1}\left(g_{i_{p}}(r)-g_{i_{j}}(r)\right) f_{i_{j}}^{(\alpha)}
\end{aligned}
$$

converges to $g_{i_{p}}(r) h-A_{r} h$. Put $f^{(\alpha)}=\sum_{j=1}^{p-1} \hat{f}_{i_{j}}^{(\alpha)}$ and

$$
\tilde{g}^{(\alpha)}=g_{i_{p}}(r) g^{(\alpha)}+\sum_{j=1}^{p} f_{i_{j}}^{(\alpha)}(r) g_{i j},
$$

where $\tilde{f}_{i_{j}}^{(\alpha)}=\left(g_{i_{p}}(r)-g_{i_{j}}(r)\right) f_{i_{j}}^{(\alpha)}$. Then $\tilde{g}^{(\alpha)} \in R_{(1)}^{0}$ and the directed set $\tilde{f}^{(\alpha)}+\tilde{g}^{(\alpha)}$ converges to $g_{i_{p}}(r) h-A_{r} h$. Since all functionals $\left(g_{i_{j}}\right)_{j=1}^{p}$ are different, we can choose such r that $g_{i_{p}}(r)-g_{i_{1}}(r) \neq 0$. Then at least the directed set $f_{i_{1}}^{(\alpha)}$ does not converge. Hence $1 \leqq p\left(\tilde{f}^{(\alpha)}, \tilde{g}^{(\alpha)}\right) \leqq p-1$ which contradicts the assumption that $p>1$ is the smallest of such numbers.

Now suppose that $p=1$. Then there exist directed sets $f_{i}^{(\alpha)} \in S_{g_{i}}$ and $g^{(\alpha)} \in R_{(1)}^{0}$ such that the directed set $f_{i}^{(\alpha)}+g^{(\alpha)}$ converges to an element $h \in R^{*}$ and that the directed set $f_{i}^{(\alpha)}$ does not converge. Since $S_{g_{i}}$ is $\sigma\left(R^{*}, R\right)$-closed in R^{*} and since $g_{i} \notin S_{g_{i}}$, there exists $r \in R$ such that $g_{i}(r)=1$ and that $f(r)=0$ for all $f \in S_{g_{i}}$. Then, since all $f_{i}^{(\alpha)} \in S_{g_{i}}$, we obtain from Lemma 3.2 and from (14) that the directed set

$$
A_{r}\left(f_{i}^{(\alpha)}+g^{(\alpha)}\right)=A_{r} f_{i}^{(\alpha)}=g_{i}(r) f_{i}^{(\alpha)}-f_{i}^{(\alpha)}(r) g_{i}=f_{i}^{(\alpha)}
$$

converges to $A_{r} h$. This contradiction shows that $p \neq 1$.
Thus from all these considerations we obtain that, if a directed set $\sum_{i=1}^{n} f_{i}^{(\alpha)}+g^{(\alpha)}$, where $f_{i}^{(\alpha)} \in S_{g_{i}}$ and $g^{(\alpha)} \in R_{(1)}^{0}$, converges to an element h in R^{*}, then all the directed sets $f_{i}^{(\alpha)}$ converge to elements $h_{i} \in S_{g_{i}}$ and, hence, the directed set $g^{(\alpha)}$ converges to an element g in $R_{(1)}^{0}$.

From this fact, from Lemma 3.4 and from Theorem 3.5(i) it follows that R^{*} is the direct sum of $R_{(1)}^{0}$ and $S_{g_{i}}$, for $i=1, \ldots, n$.

Put $S=S_{g_{1}} \dot{+} \cdots \dot{+} S_{g_{n^{*}}}$. Then S is $\sigma\left(R^{*}, R\right)$-closed, $S \cap R_{(1)}^{0}=0$ and $S \cap T_{g_{i}}=S_{g_{i}}$ has codimension 1 in $T_{g_{i}}$. Hence, by Theorem 3.5(ii), $G=S^{0}$ is a commutative subalgebra of R such that $G \cap R_{(1)}=0$ and that linear combinations of elements from G and $R_{(1)}$ are dense in R.

For every $i=1, \ldots, n$ we have that

$$
T_{g_{i}}^{\perp}=R_{(1)}^{0} \backslash\left\{g_{i}\right\} \dot{\substack{k \\ k \neq i}} \sum_{\substack{=1 \\ k \neq i}}^{n}+S_{g_{k^{\prime}}}
$$

Hence

$$
\begin{equation*}
\left[T_{g_{i}}^{1}\right]_{\sigma}=R_{(1)}^{0}+\sum_{\substack{k=1 \\ k \neq i}}^{n}+S_{g_{k}} \neq R^{*} \tag{30}
\end{equation*}
$$

Hence, by Theorem 3.5 (iii), $R_{(i)}^{g_{i}} \neq 0$. Let L be the closed linear span of all $R_{(i)}^{g_{i}}$, for $i=1, \ldots, n$, and let L^{0} be its polar in R^{*}. Since $R_{(i)}^{g_{i}}=\left(T_{g_{i}}^{\perp}\right)^{0}$, we have that

$$
L^{0}=\bigcap_{i=1}^{n}\left(R_{(\mathrm{i})}^{g_{i}}\right)^{0}=\bigcap_{i=1}^{n}\left(T_{g_{i}}^{\perp}\right)^{00}=\bigcap_{i=1}^{n}\left[T_{g_{i}}^{\perp}\right]_{\sigma} .
$$

It follows from (30) that $L^{0}=R_{(1)}^{0}$. Hence $L=R_{(1)}$. Thus $R_{(1)}$ is the closed linear span of $R_{(1)}^{g i}$, for $i=1, \ldots, n$.
Now suppose that there exist sequences $r^{(k)}=\sum_{i=1}^{n} r_{i}^{(k)}+s^{(k)}$, where $r_{i}^{(k)} \in R_{(1)}^{g_{1}}$ and $s^{(k)} \in G$, which converge to elements from R but some of the sequences $r_{i}^{(k)}$ do not converge. For every such sequence let $p\left(r^{(k)}\right)$ be the number of the sequences $r_{i}^{(k)}$ which do not converge and let p be the smallest of all $p\left(r^{(k)}\right)$.
Suppose $p>1$. Then there exists a sequence $r^{(k)}=\sum_{j=1}^{p} r_{i_{j}}^{(k)}+s^{(k)}$, where $r_{i j}^{(k)} \in R_{(1)}^{g_{i}}$, and $s^{(k)} \in G$, which converges to an element r and none of the sequences $r_{i_{j}}^{(k)}$, for $j=1, \ldots, p$, converge. Then, by (18), for every $r^{\prime} \in G$ the sequence

$$
\left[r^{\prime}, r^{(k)}\right]=\sum_{j=1}^{p} g_{i j}\left(r^{\prime}\right) r_{i_{j}}^{(k)}
$$

converges to $\left[r^{\prime}, r\right] \in R_{(1)}$. Hence the sequence

$$
\tilde{r}^{(k)}=\left[r^{\prime}, r^{(k)}\right]-g_{i_{p}}\left(r^{\prime}\right) r^{(k)}=\sum_{j=1}^{p-1}\left(g_{i_{j}}\left(r^{\prime}\right)-g_{i_{p}}\left(r^{\prime}\right)\right) r_{i_{j}}^{(k)}-g_{i_{p}}\left(r^{\prime}\right) s^{(k)}
$$

converges to $\left[r^{\prime}, r\right]-g_{i_{p}}\left(r^{\prime}\right) r$. Since all functionals $g_{i_{j}}$ are different, there exists $r^{\prime} \in G$ such that at least $g_{i_{1}}\left(r^{\prime}\right)-g_{i_{p}}\left(r^{\prime}\right) \neq 0$. Hence $1 \leqq p\left(\tilde{r}^{(k)}\right) \leqq p-1$ which contradicts the assumption that $p>1$ is the smallest of such numbers.

Let $p=1$ and let a sequence $r^{(k)}=r_{i}^{(k)}+s^{(k)}$, where $r_{i}^{(k)} \in R_{(i)}^{g_{i}}$ and $s^{(k)} \in G$, converges to $r \in R$ and let the sequence $r_{i}^{(k)}$ not converge. Then, by (18), for every $r^{\prime} \in G$ the sequence

$$
\left[r^{\prime}, r^{(k)}\right]=\left[r^{\prime}, r_{i}^{(k)}\right]=g_{i}\left(r^{\prime}\right) r_{i}^{(k)}
$$

converges to $\left[r^{\prime}, r\right]$. Choosing r^{\prime} such that $g_{i}\left(r^{\prime}\right) \neq 0$ we get that $r_{i}^{(k)}$ converges which contradicts the assumption that $r_{i}^{(k)}$ does not converge.

Therefore we obtain that, if a sequence $r^{(k)}=\sum_{i=1}^{n} r_{i}^{(k)}+s^{(k)}$, where $r_{i}^{(k)} \in R_{i j}^{g}$, and $s^{(k)} \in G$, converges, then all sequences $r_{i}^{(k)}$ converge to elements in $R_{(1)}^{g_{i}}$ and, hence, $s^{(k)}$ converges to an element in G. Hence R is the direct sum of $R_{(1)}$ and G, and $R_{(1)}$ is the direct sum of $R_{(i)}^{g_{i}}$, for $i=1, \ldots, n$.

Now let $Z=\left(\bigcap_{i=1}^{n} \operatorname{Ker} g_{i}\right) \cap G$. If $r=\sum_{i=1}^{n} r_{i}$, where $r_{i} \in R_{(i)}^{g_{i}}$, then for every $z \in Z$, by (18),

$$
[z, r]=\sum_{i=1}^{n} g_{i}(z) r_{i}=0
$$

Since $Z \subset G$ and since G is commutative, we obtain that Z is the centre of $R . Z$ is closed and has finite codimension in G. Therefore there exists a finite commutative subalgebra Γ in G such that $G=\Gamma \dot{+} Z$ and that $\operatorname{dim} \Gamma \leqq n$. It is easy to see that $Z \dot{+} R_{(1)}$ is the nilradical in R which concludes the proof of the theorem.

REFERENCES

1. R. K. Amayo, Quasi-ideals of Lie algebras II, Proc. London Math. Soc. (3) 33 (1976), 37-64.
2. D. W. Barnes, On the cohomology of soluble algebras, Math. Z. 101 (1967), 343-349.
3. J. Dixmier, Les C^{*}-algebras et leurs representations (Gauthier-Villars Editeur, Paris, 1969).
4. E. V. Kissin, On some reflexive algebras of operators and the operator Lie algebras of their derivations, Proc. London Math. Soc. (3) 49 (1984), 1-35.
5. D. Towers, Lie algebras all of whose maximal subalgebras have codimension one, Proc. Edinburgh Math. Soc. 24 (1981), 217-219.

Department of Mathematics Statistics and Computing
The Polytechnic of North London
Holloway,
London N7 8DB

