Contents

Preface to the first edition ix
Preface to the second edition xi
Preface to the third edition xiii

1 Physics and Fourier transforms 1
 1.1 The qualitative approach 1
 1.2 Fourier series 2
 1.3 The amplitudes of the harmonics 4
 1.4 Fourier transforms 8
 1.5 Conjugate variables 10
 1.6 Graphical representations 11
 1.7 Useful functions 11
 1.8 Worked examples 18

2 Useful properties and theorems 20
 2.1 The Dirichlet conditions 20
 2.2 Theorems 22
 2.3 Convolutions and the convolution theorem 22
 2.4 The algebra of convolutions 30
 2.5 Other theorems 31
 2.6 Aliasing 34
 2.7 Worked examples 36

3 Applications 1: Fraunhofer diffraction 40
 3.1 Fraunhofer diffraction 40
 3.2 Examples 44
 3.3 Babinet’s principle 54
 3.4 Dipole arrays 55
3.5 Polar diagrams 58
3.6 Phase and coherence 58
3.7 Fringe visibility 60
3.8 The Michelson stellar interferometer 61
3.9 The van Cittert–Zernike theorem 64

4 Applications 2: signal analysis and communication theory 66
4.1 Communication channels 66
4.2 Noise 68
4.3 Filters 69
4.4 The matched filter theorem 70
4.5 Modulations 71
4.6 Multiplex transmission along a channel 77
4.7 The passage of some signals through simple filters 77
4.8 The Gibbs phenomenon 81

5 Applications 3: interference spectroscopy and spectral line shapes 86
5.1 Interference spectrometry 86
5.2 The Michelson multiplex spectrometer 86
5.3 The shapes of spectrum lines 91

6 Two-dimensional Fourier transforms 97
6.1 Cartesian coordinates 97
6.2 Polar coordinates 98
6.3 Theorems 99
6.4 Examples of two-dimensional Fourier transforms with circular symmetry 100
6.5 Applications 101
6.6 Solutions without circular symmetry 103

7 Multi-dimensional Fourier transforms 105
7.1 The Dirac wall 105
7.2 Computerized axial tomography 108
7.3 A ‘spike’ or ‘nail’ 112
7.4 The Dirac fence 114
7.5 The ‘bed of nails’ 115
7.6 Parallel-plane delta-functions 116
7.7 Point arrays 118
7.8 Lattices 119

8 The formal complex Fourier transform 120
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Discrete and digital Fourier transforms</td>
<td>127</td>
</tr>
<tr>
<td>9.1 History</td>
<td>127</td>
</tr>
<tr>
<td>9.2 The discrete Fourier transform</td>
<td>128</td>
</tr>
<tr>
<td>9.3 The matrix form of the DFT</td>
<td>129</td>
</tr>
<tr>
<td>9.4 A BASIC FFT routine</td>
<td>133</td>
</tr>
<tr>
<td>Appendix</td>
<td>137</td>
</tr>
<tr>
<td>Bibliography</td>
<td>141</td>
</tr>
<tr>
<td>Index</td>
<td>143</td>
</tr>
</tbody>
</table>