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Remarks on Littlewood–Paley Analysis

Kwok-Pun Ho

Abstract. Littlewood–Paley analysis is generalized in this article. We show that the compactness of

the Fourier support imposed on the analyzing function can be removed. We also prove that the

Littlewood–Paley decomposition of tempered distributions converges under a topology stronger than

the weak-star topology, namely, the inductive limit topology. Finally, we construct a multiparameter

Littlewood–Paley analysis and obtain the corresponding “renormalization” for the convergence of this

multiparameter Littlewood–Paley analysis.

1 Introduction

Littlewood–Paley analysis was initially observed by Peetre [17, pp. 51–54]. It is of

fundamental importance to function theory. The formulation of Littlewood–Paley
analysis involves a function ϕ that satisfies

ϕ ∈ S(R
n),(1.1)

supp ϕ̂ ⊂ {ξ : 1/2 ≤ |ξ| ≤ 2},(1.2)

∞
∑

i=−∞

ϕ̂(2iξ) = 1, if ξ 6= 0,(1.3)

where S(R
n) denotes the space of Schwartz functions (rapidly decaying smooth func-

tions) and S ′(R
n) is its dual space, which is the space of tempered distributions

(Schwartz distributions). Let ϕ̂ denote the Fourier transform of ϕ. We call supp ϕ̂
the Fourier support of ϕ. Let 〈 · , · 〉 be the pairing between S ′(R

n) and S(R
n).

We call ϕ the analyzing function if it satisfies (1.3).
For any i ∈ Z and ϕ ∈ S(R

n), define ϕi(x) = 2niϕ(2ix). For any f ∈ S ′(R
n) and

ϕ ∈ S(R
n), let f ∗ ϕ denote the convolution of f and ϕ.

The following proposition is the main result of Littlewood–Paley analysis. It guar-

antees that any tempered distribution f can be represented as a series of smooth

functions and, with a sequence of “floating polynomials”, the series converges to f in
the weak-star topology of S ′(R

n).

Proposition 1.1 If f is a tempered distribution and ϕ satisfies (1.1)–(1.3), then there

exist an integer N and a sequence Pq(x) of polynomials of degrees less than or equal to

N such that

(1.4) f = lim
q→+∞

{

0
∑

j=−q

ϕ j ∗ f − Pq

}

+

∞
∑

j=1

ϕ j ∗ f .
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There are many proofs for the above result. One of the essential components for
proving (1.4) is condition (1.2). For instance, Meyer proved the above proposition

by using Bernstein’s inequality [16]. Bownik and Ho [1] generalized (1.4) by replac-
ing the dilation 2In×n (In×n is the identity matrix in R

n) by an “expansive matrix

dilation”. The idea behind proving the Littlewood–Paley analysis in [1] is based on

the compactness of the Fourier support of the analyzing function. Notice that in
[1, 16], the authors prove the convergence of the Littlewood–Paley analysis in S ′(R

n)

(1.4) under the weak-star topology. Recall that the weak-star topology of S ′(R
n) is

the finest topology in S
′(R

n) such that all mappings f → 〈 f , ψ〉, ψ ∈ S(R
n), are

continuous.

In this article, we present a new proof of the “classical” Littlewood–Paley analysis,
on one hand. On the other hand, our results generalize the Littlewood–Paley analy-

sis. We show that (1.2) can be removed and (1.1) can be relaxed. Note that wavelets

provide many examples of functions satisfying (1.3), but not (1.1) and (1.2). More-
over, we prove that the expansion (1.4) converges in a topology stronger than the

weak-star topology, namely, the inductive limit topology. We recall the definition of
the inductive limit topology for S ′(R

n) in Section 2 and briefly discuss some proper-

ties of this topology. In Theorem 3.1 we use a sufficiently smooth analyzing function

that only satisfies (1.3) to construct a Littlewood–Paley analysis on the distribution
space Sα(R

n)∗ (the definition of Sα(R
n)∗ is given in Section 2), while α depends on

the smoothness of the analyzing function.

For any ϕ ∈ S(R
n) satisfying (1.2), it is obvious that all moments of ϕ are zero.

More precisely, ϕ satisfies

(1.5)

∫

Rn

xλϕ(x) dx = 0, λ ∈ N
n.

The vanishing moment condition is a remarkable feature satisfied by the analyzing

functions used in [1, 16]. One of the novelties in this article is that our idea of prov-

ing the convergence of the Littlewood–Paley analysis does not require any “extra”
vanishing moment condition.

We clarify the meaning of the “extra” vanishing moment condition. If ϕ̂ is con-
tinuous at ξ = 0 and ϕ satisfies (1.3), then the convergence of the series (1.3) enables

us to conclude that for any fixed ξ 6= 0, limi→−∞ ϕ̂(2iξ) = 0. The continuity of ϕ̂ at

ξ = 0 forces ϕ̂(0) = 0. Thus, ϕ satisfies the zeroth-order vanishing moment,

(1.6)

∫

Rn

ϕ(x) dx = 0.

Therefore, the zeroth-order vanishing moment condition (1.6) comes with the iden-

tity (1.3). Hence, the “extra” vanishing moment condition is condition (1.5) with
|λ| 6= 0. In our main result, we do not impose any extra vanishing moment con-

ditions on our analyzing function, ϕ. Theorem 3.1, and its supporting theorem,

Theorem 2.3, only rely on the zeroth-order vanishing moment condition (1.6).

Furthermore, by using our idea, we obtain the other main result of this article,

Theorem 5.4. In this theorem, we construct the Littlewood–Paley analysis under a
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multiparameter setting. That is, the Euclidean space R
n is endowed with the dilations

(x1, . . . , xn) 7→ (2i1 x1, . . . , 2
in xn), (i1, . . . , in) ∈ Z

n.

Similar to the one parameter setting, the multiparameter Littlewood–Paley anal-
ysis provides an important tool on the study of multiparameter function spaces.

Thus, there is significant interest in a detailed investigation of the multiparameter

Littlewood–Paley analysis. One of the first studies on the multiparameter function
spaces was accomplished by Gundy and Stein [12]. They introduced and studied

the Hardy spaces on product domains. Chang and Fefferman [2–9] obtained the
atomic decomposition for the Hardy spaces on product domains and studied the

corresponding function spaces of bounded mean oscillation on product domains.

It is easy to see that the multiparameter Littlewood–Paley analysis cannot be ob-
tained by iterating the one parameter results if the analyzing function is not separable.

Here a function ϕ on R
2 is separable if ϕ(x1, x2) = ϕ1(x1)ϕ2(x2). The non-separable

analyzing function arises naturally on the study of function spaces. We provide an

example of non-separable analyzing function at the end of this article. Furthermore,

a further obstacle is found in the polynomials Pq in (1.4). In the multiparameter
setting, it should be replaced by a family of distributions where their Fourier sup-

ports are subsets of {(ξ1, . . . , ξn) ∈ R
n :

∏n
j=1 ξ j = 0}. Thus, the “renormalization”

is not a family of polynomials. Our method overcomes these difficulties by consid-
ering the convergence on smooth functions instead of distributions. In addition,

our method explicitly constructs the “renormalization” in Theorem 5.4. In order
to accomplish this, the analyzing function for the multiparameter Littlewood–Paley

analysis requires some extra smoothness compared to the one parameter analyzing

function. Moreover, the multiparameter Littlewood–Paley analysis also converges in
the inductive limit topology generated by the Schwartz functions.

This paper is organized as follows. We present some definitions and the support-

ing result Theorem 2.3 of Theorem 3.1 in Section 2. The statement and proof of
Theorem 3.1 is given in Section 3. In Section 4, we provide the proof for Theo-

rem 2.3. The multiparameter Littlewood–Paley analysis is presented and constructed
in Section 5.

2 Preliminary Results

Let ∂γϕ, γ ∈ N
n denote the γ-th partial derivative of ϕ.

Definition 2.1 Given a fixed ǫ > 0, for any α > 0, we denote by Cα(R
n) the class

of functions ϕ(x) satisfying

‖ϕ‖α∗ = sup
0≤|γ|≤[α]

sup
x∈Rn

|(1 + |x|)α+n+ǫ∂γϕ(x)| <∞,

where γ ∈ N
n and [α] is the integer part of α, and

‖ϕ‖α∗∗ = sup
|γ|=[α]

sup
x,y∈R

n

x 6=y
|z|≤|x−y|

(1 + |x − z|)α+n+ǫ |∂
γϕ(x) − ∂γϕ(y)|

|x − y|α−[α]
<∞
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if α > [α]. Let the norm on Cα(R
n) be ‖ϕ‖Cα = max{‖ϕ‖α∗, ‖ϕ‖α∗∗}. Let Sα(R

n)
consist of functions satisfying

‖ϕ‖α♯ = sup
0≤|γ|≤[α]

sup
x∈Rn

|(1 + |x|)α+n∂γϕ(x)| <∞,

where γ ∈ N
n and

‖ϕ‖α♯♯ = sup
|γ|=[α]

sup
x,y∈R

n

x 6=y
|z|≤|x−y|

(1 + |x − z|)α+n |∂
γϕ(x) − ∂γϕ(y)|

|x − y|α−[α]
<∞

if |γ| = [α]. Let the norm on Sα(R
n) be ‖ϕ‖Sα = max{‖ϕ‖α♯, ‖ϕ‖α♯♯}.

The function spaces Cα(R
n) and Sα(R

n) are Banach spaces. We have the continu-

ous embedding Cα(R
n) →֒ Cβ(R

n) if α ≥ β.

Let Sα(R
n)∗ and Cα(R

n)∗ denote the dual space of Sα(R
n) and Cα(R

n), respec-
tively. It is easy to see that we have

(2.1) S
′(R

n) =
⋃

α>0

Sα(R
n)∗ =

⋃

α>0

Cα(R
n)∗.

We define the order of f ∈ S
′(R

n), ω, to be the infimum of those α that satisfy
f ∈ Sα(R

n)∗. Thus, we have f ∈ Cα(R
n)∗ if α > ω.

With the decomposition (2.1) we can endow S ′(R
n) with the inductive limit topol-

ogy induced by the “inductive system” {Cα(R
n)∗}α>0 because for any fixed ǫ > 0,

{Cα(R
n)∗}α>0 are Banach spaces and they satisfy Cβ(R

n)∗ →֒ Cα(R
n)∗ if α ≥ β.

Therefore, we can define the inductive limit topology on S ′(R
n) to be the finest locally

convex topology on S ′(R
n) such that all inclusion mappings Cα(R

n)∗ →֒ S ′(R
n),

α > 0, are continuous. More precisely, the open base of the inductive limit topology

for S
′(R

n) consists of all convex subsets U ⊂ S
′(R

n) such that U ∩ Cα(R
n)∗ is an

open set in Cα(R
n)∗ for any α > 0. It is obvious that the inductive limit topology is

stronger than the weak-star topology.
Let κ > 0 and N > κ + n. We say that ϕ satisfies the smoothness condition of order

(κ,N) if there exists a constant C > 0 independent of x and y such that

(2.2) |∂γϕ(x)| ≤ C
( 1

1 + |x|

) N

,

for |γ| ≤ [κ], and

(2.3) |∂γϕ(x) − ∂γϕ(y)| ≤ C|x − y|κ−[κ] sup
|z|≤|x−y|

( 1

1 + |x − z|

)N

for |γ| = [κ].

Furthermore, ϕ is said to satisfy the vanishing moment condition of order κ if

(2.4)

∫

Rn

xλϕ(x) dx = 0 for λ ∈ N
n and 0 ≤ |λ| ≤ [κ].
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Lemma 2.2 Let κ > [κ] > 0 and N > κ + n. Let ϕ, ψ satisfy

|ϕ(x)|, |ψ(x)| ≤ C
( 1

1 + |x|

) N

,

for a constant C > 0.

(i) Let i ≥ 0. If ϕ satisfies the vanishing moment condition of order κ and ψ satisfies

the smoothness condition of order (κ,N), then we have a constant C, independent

of i, such that

(2.5) |(ϕi ∗ ψ)(x)| ≤ C2−iκ(1 + |x|)−N .

(ii) Let i < 0. If ϕ satisfies the smoothness condition of order (κ,N) and ψ satisfies

the vanishing moment condition of order κ, then there exists a constant C > 0,

independent of i, such that

(2.6) |(ϕi ∗ ψ)(x)| ≤ C2i(n+κ)(1 + 2i |x|)−N .

This is a straightforward result from [10, Lemma B.1]; therefore, we skip the proof.

Later, we will see that the vanishing moments satisfied by ϕ and ψ are important

in the proof of Theorem 2.3. Therefore, we would like to clarify the role of vanishing

moments in the above proof. Notice that we do not require that both functions ψ
and ϕi satisfy the vanishing moment conditions for all i ∈ Z. According to the proof

of [10, Lemma B.1], for (2.5), we only need the vanishing moments for ϕi ; and for

(2.6), we only need the vanishing moments for ψ.

The following result is the main supporting result for our main theorem. On

the other hand, Theorem 2.3 has its own independent interest. It shows that the

Littlewood–Paley analysis for ψ ∈ Cα(R
n) converges in Cβ(R

n), where α > β+ǫ (the
ǫ in Definition 2.1) and [α] = [β], if and only if the moments of ψ up to order [α]

are zero. The proof of Theorem 2.3 is given in Section 4.

Theorem 2.3 Let α, β, and ǫ (the ǫ in Definition 2.1) satisfy α > [α], α > β + ǫ and

[α] = [β]. Suppose that ϕ ∈ Cα(R
n) satisfies (1.3) and there exists a constant C > 0

such that
∞
∑

i=−∞

|ϕ̂(2iξ)| < C, ξ 6= 0.

Then for any ψ ∈ Cα(R
n), we have

ψ = lim
M,M ′→∞

M
∑

i=−M ′

(ϕi ∗ ψ)

in Cβ(R
n) if ψ satisfies

(2.7)

∫

Rn

xλψ(x) dx = 0 for λ ∈ N
n and 0 ≤ |λ| ≤ [α].
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Moreover, we have a constant C(α, β, ǫ) > 0, independent of M and M ′, such that

for any ψ satisfying (2.7),

(2.8)
∥

∥

∥
ψ−

M
∑

i=−M ′

(ϕi ∗ψ)
∥

∥

∥

Cβ

≤ C(α, β, ǫ)‖ψ‖Cα(2(−M ′+1)(α−β−ǫ) +2(−M−1)(α−β)).

3 Main Result of One parameter Littlewood–Paley Analysis

We now present and prove the main result for this paper. It states that the smooth-

ness of the analyzing function can be relaxed and the compactness assumption of the

Fourier support of the analyzing function in the Littlewood–Paley analysis is redun-
dant.

Theorem 3.1 Let τ > ω > 0 and ϕ ∈ Sτ (R
n) satisfy

(3.1)

∞
∑

i=−∞

ϕ̂(2iξ) = 1 if ξ 6= 0.

and there exists a constant C > 0 such that

(3.2)

∞
∑

i=−∞

|ϕ̂(2iξ)| < C, ξ 6= 0.

Then for any f ∈ S ′(R
n) of order ω, there exists a sequence of polynomials PM,M ′ of

degrees less than or equal to [ω] such that

(3.3) f = lim
M,M ′→∞

{

M
∑

i=−M ′

(ϕi ∗ f ) − PM,M ′

}

in the inductive limit topology of S ′(R
n). More specifically,

(3.4) PM,M ′(x) = −
∑

0≤|λ|≤[ω]

(

〈 f , θλ〉 −

M
∑

i=−M ′

〈ϕi ∗ f , θλ〉
)

xλ

where θλ ∈ S(R
n), λ ∈ N

n satisfies

∫

xγθλ(x) dx = δγλ =

{

1 γ = λ,

0 γ 6= λ.

Proof Without loss of generality, we assume that [ω] + 1 > τ . We consider the

family of function spaces Cα(R
n) with ǫ = (τ − ω)/4. Thus, ϕ ∈ Cη(R

n) where
η = τ − ǫ > ω + ǫ. Let β satisfy β > ω and η > β + ǫ.

For any ψ ∈ Cη(R
n), we define

ψ̃(x) = ψ(x) −
∑

0≤|λ|≤[ω]

cλθλ(x),
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where cλ = 〈xλ, ψ〉 =
∫

Rn xλψ(x) dx.

It is obvious that ψ̃ satisfies the vanishing moment condition (2.7) in Theorem 2.3

with α = ω. Since [τ] = [η] = [β], by applying Theorem 2.3, we find that there is a
constant C > 0 such that

(3.5)
∥

∥

∥
ψ̃ −

M
∑

i=−M ′

(ϕi ∗ ψ̃)
∥

∥

∥

Cβ

≤ C‖ψ‖Cη (2(−M ′+1)(η−β−ǫ) + 2(−M−1)(η−β)).

We consider ‖ f −
∑M

i=−M ′(ϕi ∗ f ) + PM,M ′‖C∗

η
, where

PM,M ′ (x) = −
∑

0≤|λ|≤[ω]

(

〈 f , θλ〉 −

M
∑

i=−M ′

〈ϕi ∗ f , θλ〉
)

xλ.

It is trivial that f −
∑M

i=−M ′(ϕi ∗ f ) + PM,M ′ ∈ Cη(R
n)∗ because f is of order

ω, (ϕi ∗ f ) is a bounded Lebesgue measurable function, and PM,M ′ ∈ C[ω](R
n)∗ →֒

Cη(R
n)∗.

We have

∥

∥

∥
f −

M
∑

i=−M ′

(ϕi ∗ f )+PM,M ′

∥

∥

∥

C∗

η

= sup
‖ψ‖Cη=1

∣

∣

∣

〈

f −

M
∑

i=−M ′

(ϕi ∗ f ) + PM,M ′ , ψ
〉∣

∣

∣

= sup
‖ψ‖Cη=1

∣

∣

∣
〈 f , ψ〉 −

M
∑

i=−M ′

〈(ϕi ∗ f ), ψ〉 + 〈PM,M ′ , ψ〉
∣

∣

∣
.

According to the definition of PM,M ′ (3.4) and the definition of ψ̃, we find that

∥

∥

∥
f −

M
∑

i=−M ′

(ϕi ∗ f ) + PM,M ′

∥

∥

∥

C∗

η

= sup
‖ψ‖Cη=1

∣

∣

∣
〈 f , ψ̃〉 −

M
∑

i=−M ′

〈(ϕi ∗ f ), ψ̃〉
∣

∣

∣
.

As f ∈ Cβ(R
n)∗, we are allowed to consider 〈 · , · 〉 as the pairing between Cβ(R

n)∗

and Cβ(R
n). We have

∥

∥

∥
f −

M
∑

i=−M ′

(ϕi ∗ f ) + PM,M ′

∥

∥

∥

C∗

η

≤ sup
‖ψ‖Cη=1

‖ f ‖C∗

β

∥

∥

∥
ψ̃ −

M
∑

i=−M ′

(ϕi ∗ ψ̃)
∥

∥

∥

Cβ

.

By (3.5), we obtain

∥

∥

∥
f −

M
∑

i=−M ′

(ϕi ∗ f ) + PM,M ′

∥

∥

∥

C∗

η

≤ C sup
‖ψ‖Cη=1

‖ f ‖C∗

β
‖ψ̃‖Cη (2(−M ′+1)(η−β−ǫ) + 2(−M−1)(η−β)).
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It is obvious that ‖ψ̃‖Cη ≤ C‖ψ‖Cη for some constant C > 0 independent of ψ.
Hence,

∥

∥

∥
f −

M
∑

i=−M ′

(ϕi ∗ f ) + PM,M ′

∥

∥

∥

C∗

η

≤ C‖ f ‖C∗

β
(2(−M ′+1)(η−β−ǫ) + 2(−M−1)(η−β)).

Therefore,
∑M

i=−M ′(ϕi ∗ f ) − PM,M ′ converges to f in Cη(R
n)∗. Due to the fact

that we have the continuous embedding Cη(R
n)∗ →֒ S ′(R

n) when S ′(R
n) is endowed

with the inductive limit topology, we obtain our desired result:
∑M

i=−M ′(ϕi ∗ f ) −
PM,M ′ converges to f in S ′(R

n) under the inductive limit topology.

Here are some remarks and discussions for the above results. There is a similar re-

sult in the Appendix of [11]. Frazier, Jawerth and Weiss prove the convergence of the

“continuous Calderón reproducing formula” for tempered distributions modulo a
polynomial. In fact, by using the argument for proving Theorem 3.1, [11, Appendix,

Theorem 3] can be further generalized. For instance, we can provide an explicit for-

mula for the floating polynomials in the convergence of the continuous Calderón
reproducing formula. Moreover, we can show that the continuous Calderón repro-

ducing formula converges under the inductive limit topology while the topology used
in [11] is the weak-star topology.

From the proof of Theorem 3.1, we observe that the degree of the floating poly-

nomials is determined by the integral part of the order of the distribution. Hence, it

is necessary to introduce the function spaces Cα(R
n) with non-integer order. Other-

wise, we cannot obtain the best result for the degree of the floating polynomials.

The condition τ > ω is almost the best possible condition as the convolution

f ∗ ϕi is not well defined if f ∈ S ′(R
n) is of an order greater than τ .

The degree of the floating polynomials PM.M ′ is also optimal. This fact can be

verified by a special case: if ϕ ∈ S(R
n) satisfies 0 /∈ supp ϕ̂ and f (x) = xγ , |γ| = [ω],

then f ∗ ϕi ≡ 0. Therefore, we need to have PM,M ′ (x) = −xγ in (3.3). Notice that

the distribution f (x) = xγ , |γ| = [ω] is of order [ω].

Our result includes some interesting examples of analyzing functions that cannot
be covered by the “classical” Littlewood–Paley analysis, Proposition 1.1. For instance,

if ϕ is a Daubechies wavelet and Φ̂ = |ϕ̂|2, then Φ satisfies condition (3.1), but

it does not belong to S(R
n). Therefore, Proposition 1.1 is useless when we take Φ

as the analyzing function. On the other hand, we can use Daubechies wavelets to

decompose functions and distributions. Thus, it is natural to expect that we have a

Littlewood–Paley type decomposition for distributions by using Φ as the analyzing
function, and Theorem 3.1 provides a positive answer.

4 Proof of Theorem 2.3

Sinceϕ ∈ Cα(R
n), ϕ is integrable and its Fourier transform is a continuous function.

Thus, the zeroth-order moment of ϕ is zero, that is, it satisfies (1.6). Without loss of

generality, we assume that ‖ψ‖Cα = 1.
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Given integers L > M > 0 and L ′ > M ′ > 0, for any ψ ∈ Cα(R
n) satisfying the

vanishing moment condition of order α (see (2.4)), we write

Ψ(x) =

L
∑

i=−L ′

(ϕi ∗ ψ)(x) −
M

∑

i=−M ′

(ϕi ∗ ψ)(x)

=

−M ′−1
∑

i=−L ′

(ϕi ∗ ψ)(x) +

L
∑

i=M+1

(ϕi ∗ ψ)(x) = Ψ1(x) + Ψ2(x).

By Lemma 2.2, for any |γ| ≤ [β], we have a constant C > 0 such that

|(∂γΨ)(x)| ≤

−M ′−1
∑

i=−L ′

2i|γ||((∂γϕ)i ∗ ψ)(x)| +

L
∑

i=M+1

|(ϕi ∗ ∂
γψ)(x)|

≤ C
(

−M ′−1
∑

i=−L ′

2i|γ|2i(n+α−|γ|)(1 + 2i|x|)−β−n−ǫ

+

L
∑

i=M+1

2−i(α−[β])(1 + |x|)−β−n−ǫ
)

.

(4.1)

For −L ′ ≤ i ≤ −M ′− 1, we take the partial derivative ∂γ on ϕi , since it produces

the optimal decay, 2i|γ|, for the summation on i when i < 0. After that, we use
Lemma 2.2 with κ = α − |γ| and N = n + β + ǫ. We can apply the second part

of Lemma 2.2 to conclude our result because we only need the vanishing moments
satisfied by ψ when i ≤ 0.

However, we take the partial derivative to the function ψ when M + 1 ≤ i ≤ L.

Notice that α − [β] < 1 and the zeroth-order moment of ϕ is zero. Therefore, we
can apply the first part of Lemma 2.2 with κ = α− [β] and N = n +β+ǫ. Moreover,

the κ we used in this case is the best possible condition since ϕ only satisfies (1.6).

We find that

|(∂γΨ)(x)|

≤ C
(

−M ′−1
∑

i=−L ′

2i(n+α)
( 2−i

2−i + |x|

) β+n+ǫ

+

L
∑

i=M+1

2−i(α−[β])(1 + |x|)−β−n−ǫ
)

≤ C
(

−M ′−1
∑

i=−L ′

2i(n+α)−i(β+n+ǫ)(1 + |x|)−β−n−ǫ +

L
∑

i=M+1

2−i(α−[β])(1 + |x|)−β−n−ǫ
)

as 2−i > 1 when −L ′ ≤ i ≤ −M ′ − 1 ≤ 0.

Observe that when i < 0, we need the decay 2i|γ| generated by the partial deriva-
tive on ϕi to balance the growth 2−i(β+n+ǫ) given by (1 + 2i|x|)−β−n−ǫ.

Using α > β + ǫ, we have

(4.2) |(∂γΨ)(x)| ≤ C(2(−M ′−1)(α−β−ǫ) + 2(−M−1)(α−[β]))(1 + |x|)−β−n−ǫ.
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For |γ| = [β] = [α], in order to estimate |(∂γΨ)(x) − (∂γΨ)(y)|, we write

|(∂γΨ)(x) − (∂γΨ)(y)| ≤ |(∂γΨ1)(x) − (∂γΨ1)(y)| + |(∂γΨ2)(x) − (∂γΨ2)(y)|.

Moreover, we assume that |x − y| ≤ 1. Otherwise, this is a straightforward conse-

quence of (4.2). We find that there exists a constant C > 0 such that

|(∂γΨ1)(x) − (∂γΨ1)(y)| ≤

−M ′−1
∑

i=−L ′

2i[β]|((∂γϕ)i ∗ ψ)(x) − ((∂γϕ)i ∗ ψ)(y)|

≤ C

−M ′−1
∑

i=−L ′

2i(n+α)|x − y|β−[β]
(

1 + 2i |x|
)−β−n−ǫ

≤ C2(−M ′−1)(α−β−ǫ)|x − y|β−[β]
(

1 + |x|
)−β−n−ǫ

.

(4.3)

Note that in this case we represent ((∂γϕ)i ∗ ψ)(x) − ((∂γϕ)i ∗ ψ)(y) by

(4.4)

∫

(∂γϕ)i(z)[ψ(x − z) − ψ(y − z)] dz.

The second inequality in (4.3) is established by applying the second part of Lem-
ma 2.2 with the facts that ∂γϕ satisfies conditions (2.2) and (2.3) with N = n +α + ǫ
and κ = α − [α]. The zeroth-order moment of the function ψ(x − · ) − ψ(y − · )

is equal to zero and

(4.5) |ψ(x − z) − ψ(y − z)| ≤ C|x − y|β−[β](1 + |x − z|)−α−n−ǫ.

To prove inequality (4.5), we apply the mean value theorem to ψ if α ≥ 1 or use

the Lipschitz condition satisfied by ψ if 0 < α < 1. Hence, we obtain a constant
C > 0 such that for |γ| = [β] = [α] and any fixed x, y ∈ R

n satisfying |x − y| ≤ 1,

|ψ(x − z) − ψ(y − z)| ≤ ‖ψ‖Cα |x − y|α−[α] sup
|u|≤|x−y|

( 1

1 + |x − z − u|

)α+n+ǫ

≤ C|x − y|β−[β]
( 1

1 + |x − z|

)α+n+ǫ

.

(4.6)

We have the last inequality because |u| ≤ |x − y| ≤ 1.
Let l ∈ N satisfy 2−l ≤ |x − y| < 2−l+1. For the estimate of ∂γΨ2, we write

|(∂γΨ2)(x) − (∂γΨ2)(y)| ≤

L
∑

i=max(M+1,l)

|(ϕi ∗ ∂
γψ)(x)| + |(ϕi ∗ ∂

γψ)(y)|

+

max(M+1,l)−1
∑

i=M+1

|(ϕi ∗ ∂
γψ)(x) − (ϕi ∗ ∂

γψ)(y)| = I + II .
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We write (ϕi ∗ ∂
γψ)(x) − (ϕi ∗ ∂

γψ)(y) as

(4.7)

∫

[ϕi(x − z) − ϕi(y − z)]∂γψ(z) dz.

Notice that II vanishes when max(M + 1, l) = M + 1. Therefore, we have |x− y| ≤
2−l+1 ≤ 2−i when we deal with II. Similar to (4.6), we find that

|ϕi(x − z) − ϕi(y − z)| ≤ C2i(n+β−[β])|x − y|β−[β]
( 1

1 + 2i |x − z|

)α+n+ǫ

.

Since ψ ∈ Cα(R
n) and ϕ(x − z) − ϕ(y − z), as a function of z, satisfies the zeroth-

order vanishing moment condition, and observing that [α] = [β], we can use the
first part of Lemma 2.2 with κ = α− [α], N = α + n + ǫ. We assert that

II ≤ 2(−M−1)(α−β)|x − y|β−[β]
( 1

1 + |x|

) β+n+ǫ

.

For I, by an estimate similar to the estimate of ∂γΨ2 on (4.1), we obtain a constant
C > 0 such that

I ≤

L
∑

i=max(M+1,l)

2−i(α−[β])
[

(1 + |x|)−β−n−ǫ + (1 + |y|)−β−n−ǫ
]

≤ C

L
∑

i=max(M+1,l)

2−i(α−[β]) sup
|z|≤|x−y|

1

(1 + |x − z|)β+n+ǫ
.

By the Cauchy–Schwartz inequality, we have

L
∑

i=max(M+1,l)

2−i(α−[β]) ≤
(

∑

i=M+1

2−2i(α−β)
) 1/2(∑

i=l

2−2i(β−[β])
) 1/2

≤ C2−(M+1)(α−β)|x − y|β−[β].

Hence, for I, we obtain

I ≤ C2−(M+1)(α−β)|x − y|β−[β] sup
|z|≤|x−y|

1

(1 + |x − z|)β+n+ǫ
.

Therefore, by the estimates of I and II, we find that

(4.8)

|(∂γΨ2)(x) − (∂γΨ2)(y)| ≤ 2(−M−1)(α−β)|x − y|β−[β] sup
|z|≤|x−y|

1

(1 + |x − z|)β+n+ǫ
.

By combining (4.2), (4.3) and (4.8), we assert that

(4.9)
∥

∥

∥

L
∑

i=−L ′

(ϕi ∗ ψ) −

M
∑

i=−M ′

(ϕi ∗ ψ)
∥

∥

∥

Cβ

≤ C(2(−M ′+1)(α−β−ǫ) + 2(−M−1)(α−β)),
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and hence,
∑M

i=−M ′(ϕi ∗ ψ)(x) is a Cauchy sequence in Cβ(R
n). Thus, the limit

lim
M,M ′→∞

M
∑

i=−M ′

(ϕi ∗ ψ),

exists in Cβ(R
n) and the limit function must be equal to the limit function in L2(R

n).

Hence, with condition (3.2), the limit function equals to ψ(x).
The estimate (2.8) is obtained by taking L, L ′ → ∞ in (4.9).

Remark 4.1. We see that for i ≤ 0 and i > 0, we use the representations (4.4) and

(4.7), respectively. With these representations, the smoothness requirement is trans-

ferred to the “single function” (that is, the function (∂γϕ)i in (4.4)) and the vanishing
moment is assigned to the “difference function” (the function ψ(x − z) − ψ(y − z)

in (4.4)). Without these representations, we need to have an extra smoothness con-
dition on ϕ.

Finally, the above proof also shows that inequality (2.8) is still valid without the

assumption [α] = [β] if ϕ satisfies

∫

Rn

xλϕ(x) dx = 0 for λ ∈ N
n and 0 ≤ |λ| ≤ [α] − [β].

5 Multiparameter Littlewood–Paley Analysis

Chang and Fefferman studied the Hardy spaces and the function space of bounded
mean oscillation under the multiparameter setting (the product domains) [2–9].

Littlewood–Paley analysis in the multiparameter setting (no matter whether it is the

“continuous” or the “discrete” version) is a fundamental tool for multiparameter
function spaces. Multiparameter Littlewood–Paley analysis (MP Littlewood–Paley

analysis) can be easily constructed if we use a separable analyzing function, that is,

ϕ(x1, x2) = ϕ1(x1)ϕ2(x2). For non-separable analyzing functions, it is clear that we
can construct the corresponding MP Littlewood–Paley analysis by using our ideas in

the previous sections. Specifically, we study the convergence of

(5.1)
∑

I∈Zn

ϕI ∗ f , f ∈ S
′(R

n),

where I = (i1, . . . , in) ∈ Z
n and

(5.2) ϕI(x1, . . . , xn) = 2i1+···+inϕ(2i1 x1, . . . , 2
in xn).

In order to obtain the multiparameter version of Lemma 2.2, we need to introduce
the combined Lipschitz condition (see (5.5)) to the non-separable analyzing function.

The formulation and the use of this condition are presented in Definition 5.1 and
Lemma 5.2.

For simplicity, we only consider the multiparameter setting on R
2. The general

case, (5.1) and (5.2), follows easily. For the multiparameter setting on R
2, we have
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ϕi, j(x1, x2) = 2i+ jϕ(2ix1, 2
jx2), (i, j) ∈ Z

2. Under this setting, the condition (3.1) is
replaced by

(5.3)
∑

i, j∈Z

ϕ̂(2iξ1, 2
jξ2) = 1, if ξ1ξ2 6= 0.

Let ∂1 and ∂2 denote the partial derivative with respect to the first and the second
variables, respectively, and let us denote ∂γ1

1 ∂
γ2

2 by ∂γ when γ = (γ1, γ2) ∈ N
2. The

following is the corresponding generalization of Definition 2.1 under the multipa-
rameter setting.

Definition 5.1 Given a fixed ǫ > 0, for any α1, α2 > 0, Cα1 ,α2
(R

2) consists of the

function ϕ(x) that satisfies, for any (x1, x2) ∈ R
2, 0 ≤ |γ1| ≤ [α1] and 0 ≤ |γ2| ≤

[α2],

(5.4) ‖(∂γ1

1 ϕ)(x1, · )‖Cα2(R)
≤ C, and ‖(∂γ2

2 ϕ)(·, x2)‖Cα1(R)
≤ C,

where the constant C > 0 is independent of (x1, x2) and (γ1, γ2), and the combined

Lipschitz condition:

∣

∣∂γϕ(x1, x2) − ∂γϕ(x1, y2) − ∂γϕ(y1, x2) + ∂γϕ(y1, y2)
∣

∣

≤ C|x1 − y1|
α1−[α1]|x2 − y2|

α2−[α2] ×

sup
|z1|≤|x1−y1|
|z2|≤|x2−y2|

1

(1 + |x1 − z1|)α1+1+ǫ(1 + |x2 − z2|)α2+1+ǫ
,

(5.5)

where γ1 = [α1] and γ2 = [α2].

Define the norm on Cα1,α2
(R

2) by the infimum of the constant C > 0 that satisfies

(5.4) and (5.5).

Similarly, we can define Sα1,α2
(R

2) by modifying the definition of Sα(R
n) in Defi-

nition 2.1. Moreover, we also have

S(R
2) =

⋂

α1 ,α2>0

Sα1,α2
(R

2) and S
′(R

2) =

⋃

α1,α2>0

Sα1,α2
(R

2)∗,

where Sα1 ,α2
(R

2)∗ is the dual space of Sα1,α2
(R

2). We call the order pair (α1, α2),

the multiparameter order (MP order) of f ∈ S ′(R
2) if f ∈ Sα1,α2

(R
2)∗. Notice that

the MP order can be uniquely defined if we endow R
2 with a well order structure.

Whether or not the multiparameter is uniquely defined is not crucial for our results.

We therefore do not go into detail about the unique definition.

A Schwartz distribution f of MP order (α1, α2) is called separable if there exist
f1, f2 ∈ S ′(R) of order α1 and α2, respectively, such that f equals the tensor product

of f1 and f2, that is, f = f1 ⊗ f2. At the end of this section, we discuss the reason why

we abandon the notion of order and use the MP order.

https://doi.org/10.4153/CJM-2008-055-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-055-x


1296 K.-P. Ho

The formulation of the MP Littlewood–Paley analysis follows from the idea of
constructing the “ordinary” Littlewood–Paley analysis. We prove the multiparameter

versions of Lemma 2.2 and Theorem 2.3 and use them to construct our Littlewood–
Paley analysis under the multiparameter setting. We begin with the multiparameter

version of Lemma 2.2.

For α = (α1, α2), α1, α2 > 0 and ϕ ∈ Cα1 ,α2
(R

2), define △α by

(△αϕ)(u, v) = ∂[α]ϕ(u1, u2) − ∂[α]ϕ(u1, v2) − ∂[α]ϕ(v1, u2) + ∂[α]ϕ(v1, v2),

where [α] = ([α1], [α2]), u = (u1, u2) ∈ R
2, and v = (v1, v2) ∈ R

2.

Lemma 5.2 Let κi ,Ni > 0 satisfy Ni > 1 + κi and κi > [κi], for i = 1, 2. Suppose

that there exists a constant C > 0 such that for any 0 ≤ γi ≤ [κi], i = 1, 2, ϕ(x1, x2)

and ψ(x1, x2) satisfy

|∂γϕ(x1, x2)|, |∂γψ(x1, x2)| ≤ C
( 1

1 + |x1|

) N1
( 1

1 + |x2|

)N2

.

For γ1 = [κ1], ϕ and ψ satisfy

|(∂γ1

1 ϕ)(x1, x2) − (∂γ1

1 ϕ)(y1, x2)|, |(∂γ1

1 ψ)(x1, x2) − (∂γ1

1 ψ)(y1, x2)|

≤ C|x1 − y1|
κ1−[κ1] sup

|z1|≤|x1−y1|

( 1

1 + |x1 − z1|

)N1
( 1

1 + |x2|

) N2

.

(5.6)

For γ2 = [κ2], they satisfy

|(∂γ2

2 ϕ)(x1, x2) − (∂γ2

2 ϕ)(x1, y2)|, |(∂γ2

2 ψ)(x1, x2) − (∂γ2

2 ψ)(x1, y2)|

≤ C|x2 − y2|
κ2−[κ2]

( 1

1 + |x1|

)N1

sup
|z2|≤|x2−y2|

( 1

1 + |x2 − z2|

) N2

.

(5.7)

For κ = (κ1, κ2), they satisfy the combined Lipschitz condition,

|(△κϕ)(x, y)|, |(△κψ)(x, y)| ≤ C|x1 − y1|
κ1−[κ1]|x2 − y2|

κ2−[κ2]

× sup
|z1|≤|x1−y1|
|z2|≤|x2−y2|

( 1

1 + |x1 − z1|

) N1
( 1

1 + |x2 − z2|

) N2

.

(5.8)

Furthermore, suppose that ϕ and ψ satisfy the vanishing moment conditions,

∫

R

xλ1

1 ψ(x1, x2) dx1 =

∫

R

xλ1

1 ϕ(x1, x2) dx1 = 0, ∀x2 ∈ R,(5.9)

∫

R

xλ2

2 ψ(x1, x2) dx2 =

∫

R

xλ2

2 ϕ(x1, x2) dx2 = 0, ∀x1 ∈ R,(5.10)
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for λi ∈ N and 0 ≤ λi ≤ [κi], i = 1, 2. Then there exists a constant C > 0,

independent of i and j, such that

(5.11) |(ϕi, j ∗ ψ)(x1, x2)| ≤ C min(2i(1+κ1), 2−iκ1 ) min(2 j(1+κ2), 2− jκ2 )

×
(

1 +
|x1|

max(1, 2−i)

)−N1
(

1 +
|x2|

max(1, 2− j)

)−N2

.

Proof The proof is an “iteration” of the result in Lemma 2.2; therefore, we will not
present the details of the proof. On the other hand, there are some crucial modifi-

cations. Furthermore, our sketch of the proof will illustrate the use of the Lipschitz

conditions (5.6)–(5.8), and the use of the vanishing moment conditions (5.9) and
(5.10).

If i ≥ 0 and j ≤ 0, we have

|(ϕi, j ∗ ψ)(x1, x2)| = 2i
∣

∣

∣

∫

R2

ϕ(2i(x1 − y1), y2)ψ(y1, x2 − 2− j y2) dy1dy2

∣

∣

∣
.

For any fixed but arbitrary y1 and x1, let ϕ̆(y2) = ϕ(2i(x1 − y1), y2) be a function of

y2. Similarly, for any fixed but arbitrary y2 and x2, define ψ̆(y1) = ψ(y1, x2 −2− j y2).

Let ϕ̆(r) and ψ̆(s), r, s ∈ N, denote the ordinary derivatives of the single variable
functions ϕ̆ and ψ̆, respectively. We assert that

|(ϕi, j ∗ ψ)(x1, x2)| = 2i

∣

∣

∣

∣

∫

R2

[

ϕ̆(y2) −
∑

0≤r≤[κ2]

ϕ̆(r)(2 jx2)

r!
(y2 − 2 jx2)r

]

×
[

ψ̆(y1) −
∑

0≤s≤[κ1]

ψ̆(s)(x1)

s!
(y1 − x1)s

]

dy1dy2

∣

∣

∣

∣

.

The above identity is valid because of the vanishing moment conditions (5.9) and
(5.10). For example, we find that

∫

R2

ϕ̆(r)(2 jx2)(y2 − 2 jx2)rψ̆(s)(x1)(y1 − x1)sdy1dy2

=

(

∂r
2

∫

R

ϕ(2i(x1 − y1), z2)(y1 − x1)s dy1

) ∣

∣

∣

z2=2 j x2

×
(

∂s
1

∫

R

ψ(z1, x2 − 2− j y2)(y2 − 2 jx2)r dy2

) ∣

∣

∣

z1=x1

= 0.

Let δ2 = 2 j , δ1 = 1, and

Dν,1 = {yν ∈ R : |yν − δνxν | ≤ 3},

Dν,2 = {yν ∈ R : |yν − δνxν | > 3| and yν | ≤ |δνxν |/2},

Dν,3 = {yν ∈ R : |yν − δνxν | > 3 and |yν | > |δνxν |/2}.
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We have |(ϕi, j ∗ ψ)(x1, x2)| ≤
∑

1≤l,m≤3 Il,m, where

Il,m = 2i

∫

D1,l×D2,m

∣

∣

∣
ϕ̆(y2) −

∑

0≤r≤[κ2]

ϕ̆(r)(2 jx2)

r!
(y2 − 2 jx2)r

∣

∣

∣

×
∣

∣

∣
ψ̆(y1) −

∑

0≤s≤[κ1]

ψ̆(s)(x1)

s!
(y1 − x1)s

∣

∣

∣
dy1dy2.

When y1 ∈ D1,1 and y2 ∈ D2,1, by (5.6), (5.7) and using the idea from [10, Lemma

B.1], we obtain

I1,1 ≤ C2−iκ1 2(1+κ2) j
( 1

1 + |x1|

) N1
( 1

1 + |2 jx2|

) N2

.

In fact, when (x1, x2) ∈ D1,1 × D2,1, we estimate I1,1 by iterating the estimate for
∫

A

in [10, Lemma B.1]. If (x1, x2) belongs to the other domains D1,l × D2,m, we use the

corresponding results for
∫

A
,
∫

B
and

∫

C
in [10, Lemma B.1]. Thus, when i ≥ 0 and

0 ≥ j, we assert that

|(ϕi, j ∗ ψ)(x1, x2)| ≤ C2−iκ1 2(1+κ2) j
( 1

1 + |x1|

)N1
( 1

1 + |2 jx2|

) N2

.

For i ≤ 0 and j ≤ 0, by (5.9), we find that

|(ϕi, j∗ψ)(x1, x2)| =

∣

∣

∣

∣

∫

R2

[

ϕ(y1, y2)−
∑

0≤γ1≤[κ1]

(∂γ1

1 ϕ)(2ix1, y2)

γ1!
(y1−2ix1)γ1

]

× ψ(x1 − 2−i y1, x2 − 2− j y2) dy1dy2

∣

∣

∣

∣

.

For any fixed but arbitrary x1, let

R(y1, y2) =
1

([κ1] − 1)!

∫ y1

2i x1

(y1 − t)[κ1]−1(∂[κ1]
1 ϕ)(t, y2) dt

−
(∂[κ1]

1 ϕ)(2ix1, y2)

[κ1]!
(y1 − 2ix1)[κ1].

The first term on the right-hand side of the above identity is the remainder term of
the Taylor expansion of ϕ(y1, y2) on the first variable, y1, in integral form. After the

proof, we expand why we use the integral form of the remainder instead of following

common practice, using the differential form of the remainder term.
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We have

(5.12)

|(ϕi, j ∗ψ)(x1, x2)| =

∣

∣

∣

∣

∫

R2

[

R(y1, y2)−
∑

0≤γ2≤[κ2]

(∂γ2

2 R)(y1, 2
jx2)

γ2!
(y2−2 jx2)γ2

]

× ψ(x1 − 2−i y1, x2 − 2− j y2) dy1dy2

∣

∣

∣

∣

because of Fubini’s theorem and the vanishing moment condition (5.10).
By applying the differential form of the remainder term for the Taylor expansion

and the mean-value theorem for the integral, we find that there exist u = (u1, u2) ∈
R

2 satisfying |u1 − y1| ≤ |2ix1 − y1|, |u2 − y2| ≤ |2 jx2 − y2|, and a constant C > 0

such that

(5.13)
∣

∣

∣
R(y1, y2) −

∑

0≤γ2≤[κ2]

(∂γ2

2 R)(y1, 2
jx2)

γ2!
(y2 − 2 jx2)γ2

∣

∣

∣

≤ C|y1 − 2ix1|
[κ1]|y2 − 2 jx2|

[κ2]|(△κϕ)(u1, u2, x1, x2)|, x = (x1, x2).

By using (5.8), (5.12), and (5.13), we obtain

|(ϕi, j ∗ ψ)(x1, x2)| ≤ C2i(κ1+1)2 j(κ2+1)
( 1

1 + 2i|x1|

)N1
( 1

1 + 2 j |x2|

) N2

.

The estimates for the other cases, namely, i ≤ 0, j > 0, and i ≥ 0, j ≥ 0, follow

similarly.

We use the integral form of the remainder term to define R(y1, y2) instead of using

the differential form

R̃(y1, y2) =
(∂[κ1]

1 ϕ)(w, y2) − (∂[κ1]
1 ϕ)(2ix1, y2)

[κ1]!
(y1 − 2ix1)[κ1]

for some |w−y1| ≤ |2ix1−y1|, because, in general, w depends on y2. The existence of
∂γ2

2 R̃ relies on the differentiability of w as a function of y2. Since w is not necessarily

a smooth function of y2, we cannot use the Taylor expansion of R̃(y1, y2) to establish

(5.12).
The above sketch of the proof shows us why we cannot directly quote the result

from [10]. Although the results are similar, there are some major modifications on

the multiparameter setting.
One of the main differences between the multiparameter setting and the one pa-

rameter setting is the use of the combined Lipschitz condition (5.8). On the other
hand, if ϕ is separable, that is, ϕ(x1, x2) = ϕ1(x1)ϕ2(x2), we find that

(△κϕ)(x, y) =
[

(∂[κ1]ϕ1)(x1) − (∂[κ1]ϕ1)(y1)
][

(∂[κ2]ϕ2)(x2) − (∂[κ2]ϕ2)(y2)
]

,
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where x = (x1, x2) and y = (y1, y2). Thus, the combined Lipschitz condition (5.8)
for separable analyzing functions reduces to the “ordinary” Lipschitz conditions (5.6)

and (5.7).
The reader may have the wrong impression that the assumptions in Lemma 5.2

can be simplified. For example, it seems that we can develop our MP Littlewood–

Paley analysis by imposing the same order of smoothness on the first and the second
variables in Lemma 5.2, that is, κ1 = κ2. The proof of the following theorem shows

us why we need to have Lemma 5.2 in the most general form.

With Lemma 5.2, we can obtain the multiparameter version of Theorem 2.3. The
proof of the following theorem is similar to the proof of Theorem 2.3. For the sake

of brevity, we only provide an outline of the proof.

Theorem 5.3 Let (α1, α2), (β1, β2), and ǫ > 0 satisfy αi > [αi], [αi] = [βi], and

αi > βi + ǫ, i = 1, 2. Suppose that ϕ ∈ S(R
2) satisfies (5.3), and there exists a constant

C > 0 such that

(5.14)
∑

i, j∈Z

|ϕ̂(2iξ1, 2
jξ2)| < C, if ξ1ξ2 6= 0.

Then for any ψ ∈ S(R
2) satisfying

(5.15)

∫

R

xλ1

1 ψ(x1, x2) dx1 =

∫

R

xλ2

2 ψ(x1, x2) dx2 = 0, i = 1, 2,

with λi ∈ N, 0 ≤ λi ≤ [αi], we have

(5.16) ψ = lim
M,M ′ ,N,N ′→∞

M
∑

i=−M ′

N
∑

j=−N ′

(ϕi, j ∗ ψ)

in Cβ1,β2
(R

2).

Moreover, we have a constant C(α, β, ǫ) > 0, independent of M, M ′, N, and N ′,

such that for any ψ satisfying (5.15),

(5.17)
∥

∥

∥
ψ −

M
∑

i=−M ′

N
∑

j=−N ′

(ϕi, j ∗ ψ)
∥

∥

∥

Cβ1 ,β2

≤ C(α, β, ǫ)‖ψ‖Cα1,α2

×
(

2(−M ′+1)(α1−β1−ǫ) + 2(−M−1)(α1−β1) + 2(−N ′+1)(α2−β2−ǫ) + 2(−N−1)(α2−β2)
)

.

Proof Condition (5.14) guarantees the absolute convergence of (5.3) and, hence, the

absolute convergence of (5.3) enables us to conclude that for any (ξ1, ξ2) ∈ R
2 with

ξ1ξ2 6= 0, we have

ϕ̂(0, ξ2) = lim
i→−∞

ϕ̂(2iξ1, ξ2) = 0, and ϕ̂(ξ1, 0) = lim
j→−∞

ϕ̂(ξ1, 2
jξ2) = 0.

That is, ϕ satisfies

(5.18)

∫

R

ϕ(x1, x2), dx1 = 0, and

∫

R

ϕ(x1, x2) dx2 = 0.
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With these vanishing moment conditions for ϕ, the proof of Theorem 5.3 is similar
to the proof of Theorem 2.3. For instance, given integers L > M, L ′ > M ′, K > N,

and K ′ > N ′, if we consider the γ = (γ1, γ2)-order partial derivative of

Ψ =

L
∑

i=−L ′

K
∑

j=−K ′

(ϕi, j ∗ ψ) −

M
∑

i=−M ′

N
∑

j=−N ′

(ϕi, j ∗ ψ),

we have

|∂γΨ| ≤
(

L
∑

i=M

K
∑

j=0

+

M
∑

i=0

K
∑

j=N

)

|(ϕi, j ∗ ∂
γψ)|(5.19a)

+
(

L
∑

i=M

0
∑

j=−K ′

+

M
∑

i=0

−N ′

∑

j=−K ′

)

2 jγ2 |(∂γ2

2 ϕ)i, j ∗ (∂γ1

1 ψ)|(5.19b)

+
(

−M ′

∑

i=−L ′

K
∑

j=0

+

0
∑

i=−M ′

K
∑

j=N

)

2iγ1 |(∂γ1

1 ϕ)i, j ∗ (∂γ2

2 ψ)|(5.19c)

+
(

−M ′

∑

i=−L ′

0
∑

j=−K ′

+

0
∑

i=−M ′

−N ′

∑

j=−K ′

)

2iγ1+ jγ2 |(∂γϕ)i, j ∗ ψ)|.(5.19d)

The first row (5.19a) contains those ϕi, j with i ≥ 0 and j ≥ 0, and the partial

derivative is taken on ψ. We estimate (5.19a) by Lemma 5.2 with Ni = 1 + βi + ǫ
and κi = αi − [βi], i = 1, 2. Expression (5.19b) includes those ϕi, j such that i ≥ 0

and j ≤ 0. We take the partial derivative of the second variable on ϕ and the partial
derivative of the first variable onψ and apply Lemma 5.2 with Ni = 1+βi +ǫ, i = 1, 2,

κ2 = α2 − γ2, and κ1 = α1 − [β1]. On (5.19c) and (5.19d), the roles of ϕ and ψ
are interchanged with respect to (5.19b) and (5.19a), respectively. In view of (5.11),
we can obtain the required estimate of |∂γΨ|. Similarly, we have the corresponding

estimates for the Lipschitz continuities of ∂γΨ. We leave the details to the reader.

As ϕ only satisfies the zeroth-order moment condition (5.18), we see that when

i j < 0, we need to have Lemma 5.2 with independent smoothness assumptions for
the first and the second variables.

The above conditions for ϕ can be further relaxed, we will briefly discuss the pos-

sible relaxation at the end of this section.

We can now construct the MP Littlewood–Paley analysis from our previous re-
sults.

Theorem 5.4 Suppose that ϕ ∈ S(R
2) satisfy (5.3) and (5.14). Then for any f ∈

S ′(R
2) of MP order ω = (ω1, ω2), there exist two sequences of distributions

FM,M ′N,N ′,λ1
, SM,M ′N,N ′,λ2

∈ S
′(R)
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such that

(5.20) f (x1, x2) = lim
M,M ′→∞
N,N ′→∞

M
∑

i=−M ′

N
∑

j=−N ′

{

(ϕi, j ∗ f )(x1, x2)

−
∑

|λ1|≤[ω1]

xλ1

1 ⊗ FM,M ′N,N ′,λ1
(x2) −

∑

|λ2|≤[ω2]

SM,M ′N,N ′,λ2
(x1) ⊗ xλ2

2

}

in the inductive limit topology of S ′(R
2), i.e., the one induced by the inductive system,

{Cα1,α2
(R

2)∗}.

Proof We consider the family of function spaces, Cα1,α2
(R

2), with

ǫ = min
i=1,2

([ωi] + 1 − ωi)/4.

Let β = (β1, β2) satisfy βi > ωi and [ωi] + 1 > βi + 2ǫ, i = 1, 2.

For any λ ∈ N, let θ1,λ(x) ∈ S(R
2) and θ2,λ(x) ∈ S(R

2) satisfy

∫

R

x
γ
2θ1,λ(x1, x2) dx2 = 0 and

∫

R

x
γ
1θ1,λ(x1, x2) dx1 = δγλ

∫

R

x
γ
1θ2,λ(x1, x2) dx1 = 0 and

∫

R

x
γ
2θ2,λ(x1, x2) dx2 = δγλ.

Let (η1, η2) = (β1 + 2ǫ, β2 + 2ǫ). For any ψ ∈ S(R
2), we define

ψ̃(x1, x2) = ψ(x1, x2) −
∑

0≤|λ1|≤[ω1]

c1,λ1
(x2)θ1,λ1

(x1, x2)

−
∑

0≤|λ2|≤[ω2]

c2,λ2
(x1)θ2,λ2

(x1, x2),

where c1,λ1
(x2) =

∫

R
xλ1

1 ψ(x1, x2) dx1 and c2,λ2
(x1) =

∫

R
xλ2

2 ψ(x1, x2) dx2.

With α replaced by ω, ψ̃ ∈ S(R
2) satisfies the vanishing moment condition (5.15)

in Theorem 5.3. By applying Theorem 5.3, we obtain

(5.21)
∥

∥

∥
ψ̃ −

M
∑

i=−M ′

N
∑

j=−N ′

(ϕi, j ∗ ψ̃)
∥

∥

∥

Cβ1 ,β2

≤ C(β, ǫ)‖ψ‖Cη1,η2

(

2(−M ′+1)ǫ + 2(−M−1)2ǫ + 2(−N ′+1)ǫ + 2(−N−1)2ǫ
)

.

For f ∈ S ′(R
2) of MP order (ω1, ω2) and ψ ∈ S(R

2), define the Schwartz dis-
tribution with independent variable x2, 〈 · , · 〉1, and the Schwartz distribution with

independent variable x1, 〈 · , · 〉2, by

〈 f , ψ〉1(x2) = 〈 f , ψ( · , x2)〉 and 〈 f , ψ〉2(x1) = 〈 f , ψ(x1, · )〉,

https://doi.org/10.4153/CJM-2008-055-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-055-x


Remarks on Littlewood–Paley Analysis 1303

respectively. In other words, 〈 · , · 〉1 is the pairing of f and ψ with respect to the first
variable and 〈 · , · 〉2 is the pairing of f and ψ with respect to the second variable.

Obviously, 〈 f , ψ〉1 is of order ω2 and 〈 f , ψ〉2 is of order ω1.

Define

FM,M ′ ,N,N ′,λ1
= −〈 f , θ1,λ1

〉1 +

M
∑

i=−M ′

N
∑

j=−N ′

〈ϕi, j ∗ f , θ1,λ1
〉1(5.22)

SM,M ′ ,N,N ′,λ2
= −〈 f , θ2,λ2

〉2 +

M
∑

i=−M ′

N
∑

j=−N ′

〈ϕi, j ∗ f , θ2,λ2
〉2.(5.23)

Because of βi > ωi , we find that f ∈ Cβ1,β2
(R

2)∗ and hence,

∣

∣

∣

〈(

f −

M
∑

i=−M ′

N
∑

j=−N ′

(ϕi ∗ f )(x1, x2) +
∑

|λ1|≤[ω1]

xλ1

1 ⊗ FM,M ′N,N ′,λ1
(x2)

+
∑

|λ2|≤[ω2]

SM,M ′N,N ′,λ2
(x1) ⊗ xλ2

2

)

, ψ
〉∣

∣

∣

≤ ‖ f ‖C∗

β1 ,β2

∥

∥

∥
ψ̃ −

M
∑

i=−M ′

N
∑

j=−N ′

(ϕi, j ∗ ψ̃)
∥

∥

∥

Cβ1 ,β2

.

Similar to the proof of Theorem 3.1, our desired result follows from the above in-
equality and (5.21).

We call

RM,M ′N,N ′(x1, x2) =

∑

|λ1|≤[ω1]

xλ1

1 ⊗ FM,M ′N,N ′,λ1
(x2) +

∑

|λ2|≤[ω2]

SM,M ′N,N ′,λ2
(x1) ⊗ xλ2

2

the renormalization of f . The distribution FM,N ′N,N ′,λ1
given by (5.22) is of order ω2,

and the distribution SM,N ′N,N ′,λ1
given by (5.23) is of order ω1. Therefore, RM,N ′N,N ′

is of MP order (ω1, ω2).

From the above result, we see that Lemma 2.2 and the order of the Schwartz dis-

tributions defined in Section 2 are insensitive with respect to the multiparameter
setting. For instance, suppose f1 ∈ S ′(R) and f2 ∈ S ′(R) are of orders ω1 and ω2,

respectively. Then their tensor product f = f1⊗ f2 ∈ S ′(R
2) is of order max(ω1, ω2).

On the other hand, f is of MP order (ω1, ω2). Thus, if we construct the renormal-
ization, RM,N ′N,N ′ , by using the notion of order instead of the MP order, the highest

degree for the monomials xλ1

1 and xλ2

2 in (5.20) is [max(ω1, ω2)] and this is definitely
not the optimal result. Furthermore, in Theorem 5.4, we obtain the best result for

the degrees of the monomials xλ1

1 and xλ2

2 . This fact can be proved by considering

the MP Littlewood–Paley analysis of the separable Schwartz distributions, xk1

1 ⊗ xk2

2 ,

k1, k2 ∈ N.
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For Theorem 5.4, there are some interesting examples that cannot be covered by
the assumption ϕ ∈ S(R

2). For instance, let ϕ be a Daubechies wavelet in R. We are

allowed to use the function Θ(x1, x2) = Φ(x1)Φ(x2) as the analyzing function for the
MP Littlewood–Paley analysis where Φ̂ = |ϕ̂|2, because it satisfies (5.3). However, it

does not belong to S(R
2). Similar to the one parameter case, the conditionϕ ∈ S(R

2)

can be relaxed if we are interested in the MP Littlewood–Paley analysis for f ∈ S ′(R
2)

with MP order (ω1, ω2). It is sufficient to assume that ϕ ∈ Cη1,η2
(R

2) with ηi > ωi + ǫ
and [ηi] = [ωi] satisfies

‖ϕ(x1 − · , x2) − ϕ(y1 − · , x2)‖Cη1,η2
≤ C|x1 − y1|

η1−[η1],

‖ϕ(x1, x2 − · ) − ϕ(x1, y2 − · )‖Cη1,η2
≤ C|x2 − y2|

η2−[η2],

‖ϕ((x1, x2) − · ) − ϕ((x1, y2) − · ) − ϕ((y1, x2) − · ) + ϕ((y1, y2) − · )‖Cη1,η2

≤ C|x1 − x2|
η1−[η1]|y1 − y2|

η2−[η2],

where the constant C > 0 is independent of xi and yi , i = 1, 2. It is clear that the
above conditions also guarantee the convergence (5.16) and the inequality (5.17) in

Theorem 5.3, if α and β are replaced by η and ω, respectively. Compared to the

corresponding results for the one parameter Littlewood–Paley analysis, we impose a
stronger condition on ϕ. The main obstacle for the multiparameter version is that

we cannot estimate ((∂γϕ)i, j ∗ψ)(x)− ((∂γϕ)i, j ∗ψ)(y) and (ϕi, j ∗∂
γψ)(x)− (ϕi, j ∗

∂γψ)(y) by using different representations as (4.4) and (4.7), respectively, in the cases
i ≥ 0, j < 0 and i < 0, j ≥ 0. (See Remark 4.1).

Finally, note that the non-separable analyzing function arises naturally from the
separable analyzing function. Let Θ(x1, x2) define as above and B(x1, x2) be a smooth

non-separable function satisfying |B̂(ξ1, ξ2)| = 1 almost everywhere. Then the func-

tion (Θ ∗ B)(x1, x2) is a non-separable analyzing function.
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