Proceedings of the Edinburgh Mathematical Society (2007) **50**, 263–276 © DOI:10.1017/S0013091505000945 Printed in the United Kingdom

SETS OF RANGE UNIQUENESS IN *p*-ADIC FIELDS

K. BOUSSAF, A. BOUTABAA AND A. ESCASSUT

Laboratoire de Mathématiques UMR 6620, Université Blaise Pascal, Les Cézeaux, 63177 Aubiere Cedex, France (kamal.boussaf@math.univ-bpclermont.fr; abdelbaki.boutabaa@math.univ-bpclermont.fr; alain.escassut@math.univ-bpclermont.fr)

(Received 24 June 2005)

Abstract We study sets of range uniqueness (SRUs) for analytic functions inside a disc of an algebraically closed field K complete with respect to an ultrametric absolute value. The SRUs we obtain are converging sequences. We first obtain results that look like those known in \mathbb{C} but involve a weaker hypothesis than in \mathbb{C} : let (a_n) be a sequence of limit a in a disc $d(a, r^-)$ such that $|a_n - a|$ is a strictly decreasing sequence. If the sequence (a_n) does not make an SRU for the set $\mathcal{A}(d(a, r^-))$ of analytic functions inside $d(a, r^-)$, then, for a certain integer $k \in \mathbb{Z}$, the sequence

$$\left(\frac{a_{n+k}-a}{a_n-a}\right)$$

has a finite limit in K and the sequence

$$\left(\frac{\log|a_{n+k}-a|}{\log|a_n-a|}\right)$$

hat if the sequence

has a finite rational limit. Next, we show that if the sequence

$$\frac{\log(a_{n+1}-a)}{\log(a_n-a)}$$

converges to a limit $b \ge 1$ in such a way that $-b \log |a_n - a| < -b \log |a_{n+1} - a|$ and if $\log |a_n - a| - b \log |a_{n+1} - a|$ has limit 0 or $+\infty$ and if $b^k \notin \mathbb{Q}$ whenever b > 1 and $k \in \mathbb{N}^*$, then the sequence (a_n) is an SRU for $\mathcal{A}(d(a, r^-))$. In particular, for every $\gamma \in]0, 1[\cup]1, +\infty[$, $L \in \mathbb{Q} \cap]0, +\infty[$ and $b \ge 1$, there exist SRUs for $\mathcal{A}(d(a, r^-))$ of the form $\{a_n \mid n \in \mathbb{N}\}$ such that

$$\lim_{n \to +\infty} \frac{-\log|a_n - a|}{b^n n^{\gamma}} = L.$$

For example, if $\gamma \in \mathbb{N}$ with $\gamma \neq 0, 1$, there exist SRUs of the form $\{a_n \mid n \in \mathbb{N}\}$ such that $-\log |a_n - a| = Ln^{\gamma}$ for all $n \in \mathbb{N}^*$. The latter result ceases to hold when $\gamma = 1$. Many examples and counterexamples are provided.

Keywords: sets of range uniqueness (SRUs); uniqueness; p-adic functions

2000 Mathematics subject classification: Primary 12J25; 46S10

1. Introduction and results

The concept of sets of range uniqueness (SRUs) was introduced by Diamond et al. [3] for complex analytic functions. It is a generalization of the identity theorem. Several other papers on this topic have appeared over the last 20 years [1, 5, 7].

Definition 1.1. Consider a family of functions \mathcal{F} defined in a set D. A subset S of D is called *a set of range uniqueness* for \mathcal{F} if, given any two functions $f, g \in \mathcal{F}$ such that f(S) = g(S), we have f = g.

In this paper, we will examine the problem in an ultrametric field and we will essentially state some sufficient conditions for a bounded subset to be an SRU or not to be an SRU. We will also give some examples. (Characterization of the SRUs seems to be a very difficult problem.) The proofs that are not very short are given in the second part of the paper.

Notation. We shall denote by F an algebraically closed field of characteristic 0 and by K an algebraically closed field complete for a non-trivial ultrametric absolute value denoted by $|\cdot|$. For all sets S in F or in K, we put $S^* = S \setminus \{0\}$.

We shall denote by 'log' a real logarithm function of base p > 1 and by v the valuation function of K defined as $x \mapsto v(x) = -\log |x|$. We put $v(K) = \{v(x) \mid x \in K^*\}$.

Given r > 0, we denote by $d(a, r^-)$ the disc $\{x \in K \mid |x - a| < r\}$ and by K[x] the K-algebra of polynomials in one variable, with coefficients in K. We denote by $\mathcal{A}(K)$ (respectively, $\mathcal{A}(d(a, r^-))$) the ring of entire functions in K (respectively, analytic functions in $d(a, r^-)$, i.e. power series converging in $d(a, r^-)$ [4]).

Remark 1.2. A subset A of K is an SRU for $\mathcal{A}(K)$ if and only if, for every nonconstant affine application σ , the subset $\sigma(A)$ is an SRU for $\mathcal{A}(K)$.

Remark 1.3. A subset S of $d(a, r^{-})$ is an SRU for $\mathcal{A}(d(a, r^{-}))$ if and only if, for every bianalytic bijection Φ from $d(a, r^{-})$ onto $d(a, r^{-})$, the subset $\Phi(S)$ is an SRU for $\mathcal{A}(d(a, r^{-}))$.

Example 1.4. The set of zeros S of a function $f \in \mathcal{A}(d(a, r^{-}))$ is not an SRU for $\mathcal{A}(d(a, r^{-}))$ because $f(S) = \lambda f(S)$. For example, let $(a_n)_{n \in \mathbb{N}}$ be a sequence in K satisfying $\lim_{n\to\infty} |a_n| = \infty$. The set $S = \{a_n \mid n \in \mathbb{N}\}$ is not an SRU for $\mathcal{A}(K)$ because there exists

$$f(x) = \prod_{n=0}^{\infty} \left(1 - \frac{x}{a_n}\right)$$

satisfying $f(a_n) = 0$ for all $n \in \mathbb{N}$ [6].

Example 1.5. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence inside a disc $d(a, r^-)$ satisfying

$$\lim_{n \to \infty} |a_n - a| = r.$$

According to [6] there exists $f \in \mathcal{A}(d(a, r^{-}))$ such that $f(a_n) = 0$ for all $n \in \mathbb{N}$. Hence, the set $S = \{a_n \mid n \in \mathbb{N}\}$ is not an SRU for $\mathcal{A}(d(a, r^{-}))$.

Remark 1.6. Given a family of functions \mathcal{F} such that $K\mathcal{F} \subset \mathcal{F}$ or $\mathcal{FF} \subset \mathcal{F}$, if a set S is included in the set of zeros of a function $f \in \mathcal{F}$, it is not an SRU for \mathcal{F} . As a consequence, if $K[x] \subset \mathcal{F}$, an SRU for \mathcal{F} is always infinite.

Remark 1.7. In the same way, given a set $S \subset K$ and a K-algebra of functions \mathcal{F} , if there exists $f \in \mathcal{F}$ such that f(S) is a finite set, then S is not an SRU for \mathcal{F} because there exists a polynomial P (whose zeros are the points of f(S)) such that $P \circ f(S) = \{0\}$.

We observe that this property is shown in [3].

Proposition 1.8. Let a subset S of $d(a, r^-)$ be an SRU for $\mathcal{A}(d(a, r^-))$ and let $b \in d(a, r^-)$. Then the subsets $S \cup \{b\}$ and $S \setminus \{b\}$ are also SRUs for $\mathcal{A}(d(a, r^-))$.

Remark 1.9. Adding or removing a finite number of points to or from a set does not change the property that this set is an SRU or a non-SRU.

Remark 1.10. On the contrary, adding or removing infinitely many points can deteriorate the property of range uniqueness (see Examples 1.18 and 1.19 below).

Remark 1.11. A set S that is preserved by an affine mapping ϕ is not an SRU for polynomials (and therefore for any family of function containing polynomials) because any polynomial P satisfies $P(S) = P \circ \phi(S)$. For instance, if Z is included in K, it is not an SRU for polynomials.

Example 1.12. Let A be a subset of K and let σ be a non-constant affine application different from the identity. For an integer $n \ge 1$ we put $\sigma^{[n]} = \sigma \circ \cdots \circ \sigma$ (n times). If n < 0, we put $\sigma^{[n]} = \sigma^{-1} \circ \cdots \circ \sigma^{-1}$ (-n times) and $\sigma^{[0]} =$ identity. Then it is easy to see that $A_{\sigma} = \bigcup_{n \in \mathbb{Z}} \sigma^{[n]}(A)$ is not an SRU for K[x].

In particular, let A be a subset of K, let $n \in \mathbb{N}$ and let $\zeta \in K$, $\zeta \neq 1$, be such that $\zeta^n = 1$. Then the set $A_{\zeta} = \bigcup_{i=0}^{n-1} \zeta^i A$ is not an SRU for K[x].

Proposition 1.13. Let p be a prime integer, consider that \mathbb{Q} is a subfield of F and let $S \subset \mathbb{Q}$ be a set included in a disc $d(a, r^{-})$ in \mathbb{C}_p that is an SRU for the \mathbb{C}_p -algebra $\mathcal{A}(d(a, r^{-}))$. Then S is an SRU for F[x].

Proof. Let $f, g \in F[x]$ satisfy f(S) = g(S) and let E be a finite extension of \mathbb{Q} containing all coefficients of f and g. There exists a \mathbb{Q} -isomorphism from E into \mathbb{C}_p ; hence, f and g belong to $\mathbb{C}_p[x]$, and therefore f = g.

Proposition 1.13 will be applied in Examples 1.19, 1.25 and 1.29. Now, Proposition 1.14 lets us obtain a bounded sequence that is not an SRU for polynomials, and therefore not an SRU for every class of functions containing them.

Proposition 1.14. Let $q \in \mathbb{N}$, $q \ge 3$. Then the subset $S = \{\zeta \in F \setminus \{1\} \mid \exists j \in \mathbb{N}^*, \zeta^{q^j} = 1\}$ is not an SRU for F[X].

Remark 1.15. In particular, Proposition 1.14 applies to $\mathbb{C}[x]$.

Following the same kind of method as in [3], but using specific ultrametric properties of analytic functions, we can obtain the following theorem, which looks like [3, Theorem 3], but is a little more general.

Theorem 1.16. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of limit a in the disc $d(a, r^-)$ satisfying $|a_{n+1} - a| < |a_n - a|$ for all $n \in \mathbb{N}$ and suppose that the set $\{a_n \mid n \ge 0\}$ is not an SRU for $\mathcal{A}(d(a, r^-))$. There then exist $k \in \mathbb{Z}^*$ and $d \in \mathbb{N}^*$ such that the sequence

$$\left(\frac{a_{n+k}-a}{a_n-a}\right)^d$$

has a limit in K and the sequence

$$\left(\frac{\log|a_{n+k}-a|}{\log|a_n-a|}\right)$$

converges to a limit in \mathbb{Q} .

Corollary 1.17. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of limit a in $d(a, r^-)$ satisfying $|a_{n+1}-a| < |a_n - a|$ for all $n \in \mathbb{N}$, such that the sequence

$$\left|\frac{a_{n+k}-a}{a_n-a}\right|$$

has no limit, for any fixed $k \in \mathbb{N}^*$. Then $\{a_n \mid n \in \mathbb{N}\}$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Example 1.18. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C}_p such that

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{1}{p}$$

when n is not of the form p^s and

$$\left.\frac{a_{n+1}}{a_n}\right| = \frac{1}{p^2}$$

when n is of the form p^s .

Let k be fixed in \mathbb{N}^* and let n > k + 2. As $p^s > k + 1$ and $p \ge 2$, we have

$$\left|\frac{a_{n+k}}{a_n}\right| = \left|\frac{a_{n+1}}{a_n}\right| \left|\frac{a_{n+2}}{a_{n+1}}\right| \cdots \left|\frac{a_{n+k}}{a_{n+k-1}}\right|.$$

First let $n = p^s + 1$. For every j = 0, ..., k - 1 we have $p^s + 1 \leq n + j < p^{s+1}$. Indeed, as $p^s > k + 1$ and $p \ge 2$, we can check that

$$n+j < n+k = p^s + 1 + k < p^s + p^s = 2p^s \leq p^{s+1}.$$

Hence,

$$\left|\frac{a_{n+j+1}}{a_{n+j}}\right| = \frac{1}{p}$$

for each $j = 0, \ldots, k - 1$ and, consequently,

$$\left|\frac{a_{n+k}}{a_n}\right| = \frac{1}{p^k}.$$

Now, let $n = p^s$. We see that $n + 1 = p^s + 1$ and then

$$\left|\frac{a_{n+2}}{a_{n+1}}\right| \left|\frac{a_{n+3}}{a_{n+2}}\right| \cdots \left|\frac{a_{n+k}}{a_{n+k-1}}\right| = \frac{1}{p^{k-1}}.$$

Since

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{1}{p^2},$$

we have

$$\left|\frac{a_{n+k}}{a_n}\right| = \frac{1}{p^{k+1}}.$$

Thus, the sequence $|(a_{n+k})/a_n|$ has no limit. Hence, by Theorem 1.16, the set $S = \{a_n \mid n \ge 0\}$ is an SRU for $\mathcal{A}(d(0, r^-))$ with $r > |a_0|$.

In particular, let r be > 1 and

$$S = \{p^n \mid n \in \mathbb{N} \setminus (p\mathbb{N}^*)\} = \{1, p, p^2, \dots, p^{2p-1}, p^{2p+1}, p^{2p+2}, \dots\}.$$

Then S is an SRU for $\mathcal{A}(d(0, r^{-}))$.

Now, owing to Proposition 1.13, we obtain the following example.

Example 1.19. For every prime integer p, the set $S = \{p^n \mid n \in \mathbb{N} \setminus (p\mathbb{N}^*)\} = \{1, p, p^2, \dots, p^{2p-1}, p^{2p+1}, p^{2p+2}, \dots\}$ is an SRU for F[x]. Now, considering S as a subset of \mathbb{C} , we observe that it is an SRU for $\mathbb{C}[x]$.

Remark 1.20. It is natural to ask whether an SRU for polynomials is also an SRU for analytic functions either in \mathbb{C} or in a *p*-adic field. The set *S* of Example 1.19 shows that it is not an SRU for the algebra of complex entire functions $\mathcal{A}(\mathbb{C})$ because there do exist non-zero $f \in \mathcal{A}(\mathbb{C})$ satisfying $f(S) = \{0\}$.

Also, given a prime number p, consider the set

$$T_p = \left\{ \frac{1}{p^{(n!)}}, \ n \in \mathbb{N}^* \right\}.$$

By [3, Theorem 3] we can check that T_p is an SRU for the \mathbb{C} -algebra of analytic functions in a neighbourhood of zero and, therefore, that it is an SRU for $\mathbb{C}_p[x]$. But, in the field \mathbb{C}_p , we have

$$\lim_{n \to \infty} \left| \frac{1}{p^{n!}} \right| = +\infty$$

Hence, there exist non-zero functions $f \in \mathcal{A}(\mathbb{C}_p)$ such that $f(T_p) = \{0\}$ and therefore T_p is not an SRU for $\mathcal{A}(\mathbb{C}_p)$.

Corollary 1.21. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of limit a in $d(a, r^-)$ satisfying $|a_{n+1}-a| < |a_n - a|$ for all $n \in \mathbb{N}$ such that the sequence

$$\frac{\log|a_{n+1}-a|}{\log|a_n-a|}$$

admits a limit l that is transcendental over \mathbb{Q} . Then the set $\{a_n \mid n \in \mathbb{N}\}$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Proof. For all $k \in \mathbb{N}^*$,

$$\lim_{n \to \infty} \frac{\log |a_{n+k} - a|}{\log |a_n - a|} = l^k.$$

Since $l^k \notin \mathbb{Q}$, by Theorem 1.16, $\{a_n \mid n \ge 0\}$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Example 1.22. Let $(u_n)_{n \in \mathbb{N}}$ be the sequence of decimal approximations of $1/\pi$. After choosing $a_0 \in \mathbb{C}_p$, with $|a_0| < 1$, we can define a sequence $(a_n)_{n \in \mathbb{N}}$ in \mathbb{C}_p such that $v(a_{n+1}) = u_n v(a_n)$. Therefore, all terms a_n lie in the disc $d(0, 1^-)$ of \mathbb{C}_p and satisfy $\log |a_{n+1}|/\log |a_n| = u_n$. Hence,

$$\lim_{n \to \infty} \frac{\log |a_{n+1}|}{\log |a_n|} = \frac{1}{\pi},$$

and therefore $\{a_n \mid n \ge 0\}$ is an SRU.

Corollary 1.23. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of limit a in $d(a, r^-)$ satisfying $|a_{n+1}-a| < |a_n - a|$ for all $n \in \mathbb{N}$, such that the sequence $\log |a_{n+1} - a| / \log |a_n - a|$ is unbounded. Then $\{a_n \mid n \ge 0\}$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Example 1.24. Let $(a_n)_{n \ge 0}$ be a sequence of $d(0, r^-)$ such that, for all n, $|a_{n+1}| < |a_n|$ and $\lim_{n \to +\infty} a_n = 0$. Suppose that $(\lambda_n)_{n \ge 0}$ is a sequence of \mathbb{R} such that $\lim_{n \to +\infty} \lambda_n = +\infty$ and, for all n, $|a_{n+1}| < |a_n|^{\lambda_n}$. Then the subset $S = \{a_n \mid n \ge 0\}$ of $d(0, r^-)$ is an SRU for $\mathcal{A}(d(0, r^-))$.

In particular, when $K = \mathbb{C}_p$, for every $q \in \mathbb{N} \setminus \{0, 1\}$, the set $S_q = \{p^{p^{n^q}} \mid n \ge 0\}$ is an SRU for any K-algebra $\mathcal{A}(d(0, r^-))$.

Example 1.25. Let p be a prime integer and let q be an integer greater than or equal to 2. Then the set $S_q = \{p^{p^{n^q}} \mid n \ge 0\}$ is an SRU for F[x].

Example 1.26. Let (a_n) be a sequence of limit a in a disc $d(a, r^-)$ with r < 1, such that $|a_{n+1} - a| = |a_n - a|^2$ whenever n is of the form q^d , with $q, d \in \mathbb{N}^*$ and $|a_{n+1} - a| = |a_n - a|^3$, otherwise. Then the set $S = \{a_n \mid n \in \mathbb{N}\}$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Indeed, suppose S is not an SRU for $\mathcal{A}(d(a, r^{-}))$. There exists $k \in \mathbb{Z}^{*}$ such that the sequence $(\log |a_{n+k} - a|/\log |a_n - a|)$ has a rational limit l. Let $d \in \mathbb{N}$ be such that $q^d > |k|$. Suppose first that k > 0. Let n be of the form q^m with m > d. Since all integers $n + 1, \ldots, n + k$ lie in $]q^m, q^{m+1}[$, we have $\log |a_{n+k} - a|/\log |a_n - a| = 2.3^{k-1}$ and, hence, $l = 2.3^{k-1}$. Now, however, we check that all integers $n + 1, \ldots, n + k + 1$ also lie in $]q^m, q^{m+1}[$; hence,

$$\frac{\log|a_{n+k+1} - a|}{\log|a_{n+1} - a|} = 3^k,$$

and $l = 3^k$, which is a contradiction. A similar proof applies when k < 0.

Theorem 1.16 suggests that a converging sequence (a_n) of limit a which is an SRU for analytic functions inside a disc $d(a, r^-)$ should be such that $(\log |a_{n+k} - a|/\log |a_n - a|)$ admits no rational limit. Actually, this sufficient condition is far from necessary, as is shown in Theorem 1.27. Recall that the values group of K is a Q-vector space.

Theorem 1.27. Let $b \in [1, +\infty[$ and let $(\lambda_n)_{n \in \mathbb{N}}$ be a sequence of positive numbers satisfying the following conditions.

- (i) $\lambda_n \in v(K)$ for all $n \in \mathbb{N}$.
- (ii) $\lim_{n \to +\infty} (\lambda_n) = +\infty$.

- (iii) There exists an integer $m \in \mathbb{N}$ such that $\lambda_{n+1} > b\lambda_n$ for all n > m.
- (iv) $\lim_{n\to+\infty} (\lambda_{n+1} b\lambda_n) = \Omega$, where $\Omega = 0$ or $\Omega = +\infty$. Moreover, if $\Omega = +\infty$, then either b = 1 or $b^k \notin \mathbb{Q}$ for all $k \in \mathbb{N}^*$.
- (v) $\lim_{n \to +\infty} (\lambda_{n+1}/\lambda_n) = b.$

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of $d(a, r^-)$ such that $\log |a_n - a| = -\lambda_n$ for every n > m. Then the subset $S = \{a_n \mid n \in \mathbb{N}\}$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Corollary 1.28. Let $L \in v(K)$ be such that L > 0 and let $(a_n)_{n \ge 0}$ be a sequence of $d(a, r^-)$ such that, for all n, $\log |a_n - a| = -Ln^{\gamma}$, with γ an integer greater than or equal to 2. Then the subset $S = \{a_n \mid n \ge 0\}$ of $d(a, r^-)$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Example 1.29. Let r > 0 and $c \in d(0, r^-)$ such that |c| < 1. For all integers $q \ge 2$, the sets $S_q(c) = \{c^{n^q} \mid n \ge 1\}$ are SRUs for $\mathcal{A}(d(0, r^-))$. In particular, if $K = \mathbb{C}_p$, we can take c = p (with r > 1/p).

Example 1.30. As an application of Proposition 1.13 and Corollary 1.28, assuming that the characteristic of the field F is zero, we can see that in F, for every prime integer p and for every integer $q \ge 2$, the set $\{p^{n^q} \mid n \in \mathbb{N}\}$ is an SRU for F[x].

In the same way, the same set in \mathbb{C}_p is an SRU for any K-algebra $\mathcal{A}(d(0, r^-))$ with r > 1/p.

The following proposition shows how to construct a sequence $(\lambda_n)_{n \in \mathbb{N}}$ satisfying the hypotheses of Theorem 1.27.

Proposition 1.31. Let $\gamma \in [0,1[\cup]], +\infty[$. Let L be > 0 and, furthermore, let $b \in [1,+\infty[$ satisfy $b^k \notin \mathbb{Q}$ for all $k \in \mathbb{N}^*$ whenever $\gamma > 1$ and b > 1. For every $n \in \mathbb{N}$, let

$$\lambda_n \in v(K) \cap \left[b^n L n^{\gamma}, \ b^n L n^{\gamma} + \frac{1}{n+1} \right].$$

Then the sequence λ_n satisfies the hypotheses of Theorem 1.27.

Corollary 1.32. Let $a \in K$, $r \in [0, +\infty[, \gamma \in]0, 1[\cup]1, +\infty[$ and $L \in \mathbb{R}^*_+$. Let $b \in [1, +\infty[$ satisfy $b^k \notin \mathbb{Q}$ for all $k \in \mathbb{N}^*$ whenever b > 1.

There exist sequences $(a_n)_{n\in\mathbb{N}}$ in $d(a,r^-)$ such that $\{a_n \mid n \in \mathbb{N}\}$ is an SRU for $\mathcal{A}(d(a,r^-))$, satisfying

$$\lim_{n \to \infty} \frac{v(a_n - a)}{b^n n^{\gamma}} = L.$$

Remark 1.33. We note that, in the hypothesis of Corollary 1.32, for every fixed $k \in \mathbb{N}$, we have

$$\lim_{n \to \infty} \frac{\log |a_{n+k} - a|}{\log |a_n - a|} = 1$$

Remark 1.34. In Proposition 1.31, when the valuation group of K is equal to \mathbb{R} , we can take $\lambda_n = n^{\gamma}$ whenever $n \in \mathbb{N}$. But in the most usual case when the valuation group is isomorphic to \mathbb{Q} , as it is when $K = \mathbb{C}_p$, if γ is not an integer, we have to choose

the λ_n different from n^{γ} , and, more precisely, such that we can find points a_n satisfying $v(a_n - a) = \lambda_n$. Thus, we can take for λ_n a suitable upper rational approximation of Ln^{γ} and then define a sequence (a_n) .

Remark 1.35. In Proposition 1.31 and Corollaries 1.28 and 1.32, the hypothesis $\gamma \neq 1$ is necessary, as shown in the following example.

Example 1.36. Let $a \in K$. Then the set $S_1(a) = \{a^n \mid n \ge 0\}$ is not an SRU for K[X]. Indeed, if we consider the f(x) = (1-x)(a-x) and g(x) = f(ax) = a(1-x)(1-ax), we have f(1) = f(a) = 0, $f(a^n) = a(1-a^{n-1})(1-a^n)$, $n \ge 2$ and g(1) = 0, $g(a^n) = a(1-a^n)(1-a^n)(1-a^{n+1})$, $n \ge 1$. Hence, $f(S_1(a)) = g(S_1(a)) = \{0, a(1-a^{n-1})(1-a^n) \mid n \ge 2\}$.

In particular, in the field \mathbb{C}_p , the subset $S_1(p) = \{p^n \mid n \ge 0\}$ is not an SRU for $\mathbb{C}_p[X]$.

Now, we can ask whether a closed open set might be an SRU. Without answering the question, we give some immediate remarks.

1.1. Definitions and notation

Given $A, B \subset K$, we denote by $\delta(A, B)$ the distance from A to B.

Let D be an infinite set in K and let $a \in D$. If D is bounded of diameter r, we denote by \tilde{D} the disc $d(a, r) = \{x \in K \mid |x-a| \leq r\}$ and, if D is not bounded, we set $\tilde{D} = K$. It is known that $\tilde{D} \setminus \bar{D}$ admits a unique partition of the form $(d(a_i, r_i^-))_{i \in I}$, with $r_i = \delta(a_i, D)$ for each $i \in I$. The discs $d(a_i, r_i^-)$, for all $i \in I$ are called the holes of D [4].

Let D be a subset of K. We call the number $\delta(D, K \setminus D)$ the *codiameter* of D (denoted by codiam(D)).

We can now describe a large class of sets D that are not SRUs for K[X] and therefore are not SRUs for any larger class of functions.

Theorem 1.37. Let D be a set such that $\operatorname{codiam}(D) > 0$. Then D is not an SRU for K[X].

Remark 1.38. If $\operatorname{codiam}(D) > 0$, then D is a closed and open set. The converse is not true: there exist closed open subsets of K with a codiameter equal to 0.

Corollary 1.39. An affinoid set of K is not an SRU for K[X]. In particular, a disc or an annulus is not an SRU for K[X].

Among the questions which remain, we can consider the following.

- (1) Having shown that a set D of codiameter greater than 0 cannot be an SRU for K[X], is it possible to show this for other sets by considering the family R(D) of rational functions $h \in K(x)$ with no pole in D (respectively, the family H(D) of analytic elements on D [4])?
- (2) All SRUs we have found are countable sets. This leads us to wonder whether an SRU might be uncountable.
- (3) Might an SRU for $\mathcal{A}(K)$ included inside a disc $d(a, r^{-})$ be a non-SRU for $\mathcal{A}(d(a, r^{-}))$?

2. The proofs

Proof of Proposition 1.14. Consider an integer $\ell \ge 2$ prime to q. Let us show that the function $f_{\ell}: x \mapsto x^{\ell}$ is a permutation of S. Indeed, if x and y are two distinct elements of S such that $x^{\ell} = y^{\ell}$, then $x = \xi y$, with $\xi \ne 1$ and $\xi^{\ell} = 1$. But then there exist $i, j \in \mathbb{N}^*$ such that $x^{q^i} = y^{q^j} = 1$. Without loss of generality we can suppose that $j \le i$. Then $x^{q^j} = y^{q^j} = 1$ and, thus, $\xi^{q^j} = 1$: a contradiction to the fact that $(q^j, \ell) = 1$ and $\xi^{\ell} = 1$. Thus, f_{ℓ} is injective. On the other hand, if ζ is an element of E, there exists $j \in \mathbb{N}^*$ such that $\zeta^{q^j} = 1$. Let $u, v \in \mathbb{Z}$ be such that $u\ell + vq^j = 1$. Then we have $\zeta^{1-vq^j} = (\zeta^u)^{\ell}$. If we set $\eta = \zeta^u$, we can easily check that $\eta \in E$ and $\zeta = f_{\ell}(\eta)$. Hence, f_{ℓ} is surjective and is therefore bijective. Thus, we see that, if ℓ and ℓ' are two distinct integers both prime to q, then f_{ℓ} and $f_{\ell'}$ are two distinct polynomials satisfying $f_{\ell}(S) = f_{\ell'}(S) = S$. This means that S is not an SRU for F[x].

Notation. Let $f \in \mathcal{A}(d(a, r^{-}))$ be such that $f(x) = \sum_{n \ge 0} \alpha_n (x - a)^n$. For every $\rho \in]0, r[$ we set $|f|_a(\rho) = \sup_{n \ge 0} |\alpha_n|\rho^n$. In order to write this relation additively, we set $v_a(f, \mu) = \inf_{n \ge 0} (v(\alpha_n) + n\mu)$, where $\mu = -\log \rho$.

To learn more about the properties of the functions $\rho \mapsto |f|_a(\rho)$ and $\mu \mapsto v_a(f,\mu)$, see [2,4].

We shall need the following lemma, whose proof is based on the classical properties of analytic functions over ultrametric fields [4].

Lemma 2.1. Let $f(x) = \sum_{m=d}^{\infty} \alpha_m x^m \in \mathcal{A}(d(0, r^-))$ with $\alpha_d \neq 0$ and let $(a_n)_{n \in \mathbb{N}}$ be a sequence in $d(0, r^-)$ such that $\lim_{n \to \infty} a_n = 0$. There then exists $q \in \mathbb{N}$ such that $|f(a_n)| = |\alpha_d| |a_n|^d$ for all $n \ge q$.

The next lemma is the main tool to use when starting the proofs of Theorems 1.16 and 1.27.

Lemma 2.2. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence in $d(0, r^-)$ of limit 0 and such that $|a_{n+1}| < |a_n|$ for all $n \in \mathbb{N}$. Let $f, g \in \mathcal{A}(d(0, r^-))$, $f \neq g$, satisfy $\{f(a_n)\} = \{g(a_n)\}$ and f(0) = g(0). There then exist $k \in \mathbb{Z}^*$ and $q \in \mathbb{N}$ such that $f(a_n) = g(a_{n+k})$ for all $n \geq q$.

Proof. For every $n \in \mathbb{N}$ we denote by $k(n) \in \mathbb{Z}$ an integer such that $f(a_n) = g(a_{n+k(n)})$. Let $f(x) = \sum_{m=c}^{\infty} \alpha_m x^m$ and let $g(x) = \sum_{m=d}^{\infty} \beta_m x^m$ with $\alpha_c \beta_d \neq 0$ and $c, d \in \mathbb{N}^*$. Without loss of generality we may obviously assume that f(0) = g(0) = 0. Consequently, we have $cd \neq 0$.

We first note that $\lim_{n\to\infty}(n+k(n)) = +\infty$. However, suppose this is not true. There then exist A > 0 and a strictly increasing sequence $(n_s)_{s\in\mathbb{N}}$ of \mathbb{N} such that $n_s + k(n_s) < A$ for all $s \in \mathbb{N}$. Since the set of integers $n_s + k(n_s)$ such that $n_s + k(n_s) < A$ is finite, we see that $\{f(a_{n_s}), s \in \mathbb{N}\}$ is a finite set. Since $\lim_{s\to\infty} a_{n_s} = 0$ and since f(0) = 0, we see that $f(a_{n_s}) = 0$ has an infinity of solutions converging to zero: a contradiction to the properties of analytic functions stating that zeros are isolated. Consequently, we have $\lim_{n\to\infty} n + k(n) = +\infty$. Therefore, by Lemma 2.1, there exists $t \in \mathbb{N}$ such that $|f(a_n)| = |\alpha_c| |a_n|^c$ and $|g(a_n)| = |\beta_d| |a_n|^d$ for all $n \ge t$.

Consequently, since c, d > 0, the sequences $(|f(a_n)|)_{n \ge t}$ and $(|g(a_n)|)_{n \ge t}$ are strictly decreasing. Also, we can find $s \ge t$ with the following property: if $m, l \in \mathbb{N}$ are such that m < t and $l \ge s$, then $f(a_m) \ne g(a_l)$. Moreover, since $\lim_{n \to \infty} n + k(n) = +\infty$, there exists $q \ge t$ such that $n + k(n) \ge s$ for all $n \ge q$.

Now, take $n \ge q$. We have $|g(a_{n+1+k(n+1)})| = |f(a_{n+1})| < |f(a_n)| = |g(a_{n+k(n)})|$. Since $n + k(n) \ge s \ge t$ and $n + 1 + k(n+1) \ge s \ge t$, this implies that $|a_{n+1+k(n)}| < |a_{n+k(n)}|$, and hence n + 1 + k(n+1) > n + k(n).

On the other hand, by hypothesis there exists $j \in \mathbb{N}$ such that $f(a_j) = g(a_{n+1+k(n)})$. Taking into account the definition of s, this j must satisfy $j \ge t$ because $n+1+k(n) \ge s$. Now, since

$$|f(a_j)| = |g(a_{n+1+k(n)})| < |g(a_{n+k(n)})| = |f(a_n)|$$

and since $(|f(a_n)|)_{n \ge t}$ is strictly decreasing, we must have j > n. Hence, we obtain

$$|f(a_j)| \leq |f(a_{n+1})| = |g(a_{n+1+k(n+1)})| \leq |g(a_{n+1+k(n)})| = |f(a_j)|.$$

Thus, the above inequality is actually an equality. Consequently, n + 1 + k(n + 1) = n + 1 + k(n), which proves that $k(n + 1) = k(n) = k \in \mathbb{Z}$ for every $n \ge q$. Obviously, $k \ne 0$ because otherwise we would have $f(a_n) = g(a_n)$ for all $n \ge q$ and then f = g. \Box

Proof of Theorem 1.16. Without loss of generality, we can obviously assume that a = 0. Suppose that $\{(a_n) \mid n \in \mathbb{N}\}$ is not an SRU for $\mathcal{A}(d(0, r^-))$ and let $f, g \in \mathcal{A}(d(0, r^-))$ satisfy $f \neq g$ and $\{f(a_n)\} = \{g(a_n)\}$. By extracting subsequences of $\{(a_n)\}$, we can see that f(0) = g(0). Hence, we can also assume that f(0) = g(0) = 0.

Let

$$f(x) = \sum_{j=c}^{\infty} \alpha_j x^j, \qquad g(x) = \sum_{j=d}^{\infty} \beta_j x^j$$

with $\alpha_c \beta_d \neq 0$ and c, d > 0.

By Lemmas 2.1 and 2.2 there exist $q \in \mathbb{N}$ and $k \in \mathbb{Z}^*$ such that $|f(a_n)| = |\alpha_c| |a_n|^c$, $|g(a_n)| = |\beta_d| |a_n|^d$ and $f(a_n) = g(a_{n+k})$ for all $n \ge q$. Moreover, without loss of generality we can assume that k > 0 because f and g play the same role. Thus, we have

$$|\alpha_c| |a_n|^c = |\beta_d| |a_{n+k}|^d \quad \text{for all } n \ge q.$$

$$(2.1)$$

Consequently, by (2.1) we obtain

$$\frac{\log|a_{n+k}|}{\log|a_n|} = \frac{\log|\alpha_c| - \log|\beta_d|}{d\log|a_n|} + \frac{c}{d}$$

and, since $\lim_{n\to\infty} a_n = 0$, we see that

$$\lim_{n \to \infty} \frac{\log |a_{n+k}|}{\log |a_n|} = \frac{c}{d}$$

Next, we can write $f(x) = x^c(\alpha_c + \varepsilon(x)), g(x) = x^d(\beta_d + \mu(x))$ with $\lim_{x\to 0} \varepsilon(x) = \lim_{x\to 0} \mu(x) = 0$. Take $n \ge q$. We have

$$f(a_n) = a_n^c(\alpha_c + \varepsilon(a_n)), \qquad g(a_{n+k}) = (a_{n+k})^d(\beta_d + \mu(a_{n+k})),$$

Since $f(a_n) = g(a_{n+k})$, we see that $a_n^c(\alpha_c + \varepsilon(a_n)) = (a_{n+k})^d(\beta_d + \mu(a_{n+k}))$. Therefore, we obtain

$$\left(\frac{a_{n+k}}{a_n}\right)^d = (a_n)^{c-d} \left(\frac{\alpha_c + \varepsilon(a_n)}{\beta_d + \mu(a_{n+k})}\right).$$
(2.2)

On the other hand, since $\lim_{n\to\infty} \varepsilon(a_n) = \lim_{n\to\infty} \mu(a_n) = \lim_{n\to\infty} a_n = 0$ and since $|a_{n+k}/a_n| < 1$, we have $c \ge d$. If d < c, then, by (2.2), $a_{n+k}/a_n \to 0$. And if c = d, then

$$\lim_{n \to \infty} \left(\frac{a_{n+k}}{a_n} \right)^d = \frac{\alpha_c}{\beta_d}.$$

This completes the proof of Theorem 1.16.

Proof of Theorem 1.27. By hypothesis (iv) we first observe that

$$\lim_{n \to \infty} (\lambda_{n+k} - b^k \lambda_n) = \left(\sum_{j=0}^{k-1} b^j\right) \Omega.$$
 (2.3)

Without loss of generality, we may assume that a = 0. Let $f, g \in \mathcal{A}(d(0, r^{-}))$ be two nonconstant functions such that f(S) = g(S). By property (ii), obviously $\lim_{n\to\infty} a_n = 0$, so we may also assume that f(0) = g(0) = 0. Since $\lambda_{n+1} > b\lambda_n$ for n > m, we may observe that the sequence $(|a_n|)_{n>m}$ is strictly decreasing. Let

$$f(x) = \sum_{j=c}^{\infty} \alpha_j x^j, \qquad g(x) = \sum_{j=d}^{\infty} \beta_j x^j, \qquad \alpha_c \beta_d \neq 0.$$

By Lemma 2.2, there exists an integer $q \ge m$ and there exists $k \in \mathbb{Z}$ such that $f(a_n) = g(a_{n+k})$ for all $n \ge q$. Since f and g play the same role, we may assume that $k \ge 0$ without loss of generality. We want to show that k = 0, and hence f = g.

There exists $s \in [0, r[$ such that f and g have no zero inside d(0, s) except 0. Therefore, by Lemma 2.1, we have $|f(x)| = |\alpha_c| |x|^c$, $|g(x)| = |\beta_d| |x|^d$ for all $x \in d(0, s)$. Consequently, there exists $t \in \mathbb{N}$ such that $t \ge q + k$ and

$$|f(a_n)| = |\alpha_c| |a_n|^c, \qquad |g(a_n)| = |\beta_d| |a_n|^d \text{ for all } n > t.$$

Thus, we obtain $|\alpha_c| |a_n|^c = |\beta_d| |a_{n+k}|^d$, and hence $c \log |a_n| = d \log |a_{n+k}| - h$ for all n > t, with $h = \log |\alpha_c| - \log |\beta_d|$. Now, by hypothesis we have $\log |a_n| = -\lambda_n$ for all n > m. Hence,

$$c\lambda_n = d\lambda_{n+k} + h$$
 for all $n > t$. (2.4)

Suppose that k > 0. Assume first that $c \neq d$. By (v) we can check that each sequence $(u_{n,j})_{n \in \mathbb{N}}, j = 0, \ldots, k-1$, defined as

$$u_{n,j} = \left(\frac{\lambda_{n+j}}{\lambda_n}\right),\,$$

has limit b^j and, therefore, by (v) again, each sequence $(\theta_{n,j})_{n \in \mathbb{N}}, j = 0, \ldots, k-1$, defined as

$$\theta_{n,j} = b^{k-j-1} \left(\frac{\lambda_{n+j+1} - b\lambda_{n+j}}{\lambda_{n+j}} \right) \left(\frac{\lambda_{n+j}}{\lambda_n} \right), \quad j = 0, \dots, k-1,$$

has limit 0. Consequently, we can check that

$$\lim_{n \to \infty} \left[\frac{\lambda_{n+k} - b^k \lambda_n}{\lambda_n} \right] = 0$$

and therefore

$$\lim_{n \to \infty} \frac{c(\lambda_n - b^{-k}\lambda_{n+k})}{\lambda_{n+k}} = 0.$$
(2.5)

We will show that

$$\lim_{n \to \infty} |c\lambda_n - d\lambda_{n+k} - h| = +\infty.$$
(2.6)

Let us write

$$|c\lambda_n - d\lambda_{n+k} - h| = |c(\lambda_n - b^{-k}\lambda_{n+k}) + \lambda_{n+k}(cb^{-k} - d) - h|.$$

$$(2.7)$$

Suppose first that $cb^{-k} \neq d$. By (2.5) and (ii), we have

$$\lim_{n \to \infty} |c(\lambda_n - b^{-k}\lambda_{n+k}) + \lambda_{n+k}(cb^{-k} - d) - h| = +\infty,$$

which shows that (2.6) holds.

Suppose now that $cb^{-k} = d$. By (2.7) we see that

$$|c\lambda_n - d\lambda_{n+k} - h| = |c(\lambda_n - b^{-k}\lambda_{n+k}) - h|.$$
(2.8)

However, since we have supposed that $c \neq d$, we then have $b \neq 1$. Hence, by (iv) we have $\Omega = +\infty$. So, by (2.1), we see that relation (2.6) is clearly satisfied again. Thus, (2.6) is satisfied anyway: a contradiction to (2.4). Consequently, c = d.

Thus, by (2.4), we arrive at

$$c(\lambda_n - \lambda_{n+k}) = h. \tag{2.9}$$

But $\lambda_{n+k} > b^k \lambda_n$, and hence $c(\lambda_{n+k} - \lambda_n) > c\lambda_n(b^k - 1)$. If b > 1, by (ii) we see that $\lim_{n\to\infty} \lambda_{n+k} - \lambda_n = +\infty$: a contradiction to (2.9). Consequently, we are now led to assume that b = 1.

By (2.3) we have $\lim_{n\to\infty} [\lambda_{n+k} - \lambda_n] = k\Omega$. But since $\Omega = 0$ or $+\infty$, and h is finite, by (2.8) we actually see that $\Omega = h = 0$.

Consequently, $\lambda_n = \lambda_{n+k}$ for all n > t: a contradiction of (iii). Therefore, we have k = 0 in every case, and hence f = g. This finishes the proof that $\{a_n \mid n \in \mathbb{N}\}$ is an SRU for $\mathcal{A}(d(a, r^-))$.

Proof of Proposition 1.31. Without loss of generality, we may clearly assume that L = 1. First, (i) and (ii) are obviously satisfied. In order to check the three last conditions, we first observe the following inequalities:

$$\lambda_{n+1} - b\lambda_n \ge b^{n+1}((n+1)^{\gamma} - n^{\gamma}) - \frac{b}{n+1},$$
(2.10 a)

$$\lambda_{n+1} - b\lambda_n \leqslant b^{n+1}((n+1)^{\gamma} - n^{\gamma}).$$
(2.10b)

Suppose that $\gamma \in [0, 1[$. With the help of the finite increasing theorem, by (2.10), we obtain

$$\lambda_{n+1} - b\lambda_n \ge \gamma b^{n+1} (n+1)^{\gamma-1} - \frac{b}{n+1}, \qquad (2.11a)$$

$$\lambda_{n+1} - b\lambda_n \leqslant \gamma b^{n+1} n^{\gamma-1}, \tag{2.11b}$$

respectively.

Thus, by (2.11 a), (iii) may easily be checked when n is sufficiently large. Moreover, if b > 1, then by (2.11 a) we can see that

$$\lim_{n \to \infty} b^{n+1} ((n+1)^{\gamma} - n^{\gamma}) - \frac{b}{n+1} = +\infty,$$

so (iv) is satisfied. Conversely, if b = 1, by (2.11 b) we see that

$$\lim_{n \to \infty} ((n+1)^{\gamma} - n^{\gamma}) - \frac{1}{n+1} = 0,$$

which shows (iv) again.

Finally, for all $b \ge 1$, we have

$$\frac{\lambda_{n+1} - b\lambda_n}{\lambda_n} \leqslant \frac{b\gamma((n+1)^{\gamma} - n^{\gamma})}{n^{\gamma}}.$$

Hence by (2.11 b) we obtain

$$\frac{\lambda_{n+1} - b\lambda_n}{\lambda_n} \leqslant \frac{b\gamma((n+1)^{\gamma-1})}{n^{\gamma}}$$

which shows (v).

Now suppose $\gamma > 1$. By (2.10) we have

$$\lambda_{n+1} - b\lambda_n \ge \gamma b^{n+1} n^{\gamma-1} - \frac{b}{n+1}, \qquad (2.12a)$$

$$\lambda_{n+1} - b\lambda_n \leqslant \gamma b^{n+1} (n+1)^{\gamma-1}. \tag{2.12}$$

By (2.12 *a*), (iii) is obviously satisfied and so is (iv) because $\lim_{n\to\infty} \lambda_{n+1} - b\lambda_n = +\infty$, whereas we have assumed that $b^k \notin \mathbb{Q}$ for all $k \in \mathbb{N}$ whenever b > 1. And by (2.12 *b*) we can also check that

$$\frac{\lambda_{n+1} - b\lambda_n}{\lambda_n} \leqslant \frac{b\gamma n^{\gamma-1}}{n^{\gamma}},$$

which shows (v) again.

Proof of Theorem 1.37. Let r = codiam(D) and $\lambda \in d(0, r^-) \setminus \{0\}$. Let f(x) = xand $g(x) = x + \lambda$. Since |g(x) - f(x)| < r for all $x \in D$, we check that g(x) lies in D for every $x \in D$, and hence $g(D) \subset D = f(D)$. Conversely, given $x \in D$, we see that $x - \lambda$ lies in D and satisfies $g(x - \lambda) = x$. Hence, g(D) = D.

Acknowledgements. We are very grateful to the referee for proposing a new and much more general statement of Theorem 1.27 and pointing out to us misprints and an omission. We also thank Marie-Claude Sarmant.

References

- 1. M.-T. ALZUGARAY, On sets of range uniqueness for entire functions, in Advances in Analysis, Proc. 4th ISAAC Congress, Toronto, 16–21 August 2003 (World Scientific, 2005).
- 2. Y. AMICE, Les nombres p-adiques (Presses Universitaires de France, Paris, 1975).
- 3. H. G. DIAMOND, C. POMERANCE AND L. RUBEL, Sets on which an entire function is determined by its range, *Math. Z.* **176** (1981), 383–398.
- 4. A. ESCASSUT, Analytic elements in p-adic analysis (World Scientific, 1995).
- 5. E. H. JOHNSTON, On sets of range uniqueness, Math. Z. 184 (1984), 533-547.
- 6. M. LAZARD, Les zéros d'une fonction analytique d'une variable sur un corps valué complet, *Publ. Math. IHES* **14** (1962), 47–75.
- 7. E. THOMAS, Two examples of sets of range uniqueness, *Illinois J. Math.* **27** (1983), 110–114.