SETS OF RANGE UNIQUENESS IN p-ADIC FIELDS

K. BOUSSAF, A. BOUTABAA AND A. ESCASSUT
Laboratoire de Mathématiques UMR 6620, Université Blaise Pascal, Les Cézeaux, 63177 Aubiere Cedex, France (kamal.boussaf@math.univ-bpclermont.fr;
abdelbaki.boutabaa@math.univ-bpclermont.fr; alain.escassut@math.univ-bpclermont.fr)

(Received 24 June 2005)

Abstract We study sets of range uniqueness (SRUs) for analytic functions inside a disc of an algebraically closed field K complete with respect to an ultrametric absolute value. The SRUs we obtain are converging sequences. We first obtain results that look like those known in \mathbb{C} but involve a weaker hypothesis than in \mathbb{C} : let $\left(a_{n}\right)$ be a sequence of limit a in a disc $d\left(a, r^{-}\right)$such that $\left|a_{n}-a\right|$ is a strictly decreasing sequence. If the sequence $\left(a_{n}\right)$ does not make an SRU for the set $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$of analytic functions inside $d\left(a, r^{-}\right)$, then, for a certain integer $k \in \mathbb{Z}$, the sequence

$$
\left(\frac{a_{n+k}-a}{a_{n}-a}\right)
$$

has a finite limit in K and the sequence

$$
\left(\frac{\log \left|a_{n+k}-a\right|}{\log \left|a_{n}-a\right|}\right)
$$

has a finite rational limit. Next, we show that if the sequence

$$
\frac{\log \left(a_{n+1}-a\right)}{\log \left(a_{n}-a\right)}
$$

converges to a limit $b \geqslant 1$ in such a way that $-b \log \left|a_{n}-a\right|<-b \log \left|a_{n+1}-a\right|$ and if $\log \left|a_{n}-a\right|-$ $b \log \left|a_{n+1}-a\right|$ has limit 0 or $+\infty$ and if $b^{k} \notin \mathbb{Q}$ whenever $b>1$ and $k \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$. In particular, for every $\left.\gamma \in\right] 0,1[\cup] 1,+\infty[, L \in \mathbb{Q} \cap] 0,+\infty[$ and $b \geqslant 1$, there exist SRUs for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$of the form $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ such that

$$
\lim _{n \rightarrow+\infty} \frac{-\log \left|a_{n}-a\right|}{b^{n} n^{\gamma}}=L
$$

For example, if $\gamma \in \mathbb{N}$ with $\gamma \neq 0,1$, there exist SRUs of the form $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ such that $-\log \left|a_{n}-a\right|=$ $L n^{\gamma}$ for all $n \in \mathbb{N}^{*}$. The latter result ceases to hold when $\gamma=1$. Many examples and counterexamples are provided.

Keywords: sets of range uniqueness (SRUs); uniqueness; p-adic functions
2000 Mathematics subject classification: Primary 12J25; 46S10

1. Introduction and results

The concept of sets of range uniqueness (SRUs) was introduced by Diamond et al. [3] for complex analytic functions. It is a generalization of the identity theorem. Several other papers on this topic have appeared over the last 20 years $[\mathbf{1}, \mathbf{5}, \mathbf{7}]$.

Definition 1.1. Consider a family of functions \mathcal{F} defined in a set D. A subset S of D is called a set of range uniqueness for \mathcal{F} if, given any two functions $f, g \in \mathcal{F}$ such that $f(S)=g(S)$, we have $f=g$.

In this paper, we will examine the problem in an ultrametric field and we will essentially state some sufficient conditions for a bounded subset to be an SRU or not to be an SRU. We will also give some examples. (Characterization of the SRUs seems to be a very difficult problem.) The proofs that are not very short are given in the second part of the paper.

Notation. We shall denote by F an algebraically closed field of characteristic 0 and by K an algebraically closed field complete for a non-trivial ultrametric absolute value denoted by $|\cdot|$. For all sets S in F or in K, we put $S^{*}=S \backslash\{0\}$.

We shall denote by 'log' a real logarithm function of base $p>1$ and by v the valuation function of K defined as $x \mapsto v(x)=-\log |x|$. We put $v(K)=\left\{v(x) \mid x \in K^{*}\right\}$.

Given $r>0$, we denote by $d\left(a, r^{-}\right)$the disc $\{x \in K||x-a|<r\}$ and by $K[x]$ the K-algebra of polynomials in one variable, with coefficients in K. We denote by $\mathcal{A}(K)$ (respectively, $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$) the ring of entire functions in K (respectively, analytic functions in $d\left(a, r^{-}\right)$, i.e. power series converging in $\left.d\left(a, r^{-}\right)[4]\right)$.

Remark 1.2. A subset A of K is an SRU for $\mathcal{A}(K)$ if and only if, for every nonconstant affine application σ, the subset $\sigma(A)$ is an SRU for $\mathcal{A}(K)$.

Remark 1.3. A subset S of $d\left(a, r^{-}\right)$is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$if and only if, for every bianalytic bijection Φ from $d\left(a, r^{-}\right)$onto $d\left(a, r^{-}\right)$, the subset $\Phi(S)$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Example 1.4. The set of zeros S of a function $f \in \mathcal{A}\left(d\left(a, r^{-}\right)\right)$is not an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$because $f(S)=\lambda f(S)$. For example, let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in K satisfying $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$. The set $S=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is not an SRU for $\mathcal{A}(K)$ because there exists

$$
f(x)=\prod_{n=0}^{\infty}\left(1-\frac{x}{a_{n}}\right)
$$

satisfying $f\left(a_{n}\right)=0$ for all $n \in \mathbb{N}[\mathbf{6}]$.
Example 1.5. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence inside a disc $d\left(a, r^{-}\right)$satisfying

$$
\lim _{n \rightarrow \infty}\left|a_{n}-a\right|=r
$$

According to [6] there exists $f \in \mathcal{A}\left(d\left(a, r^{-}\right)\right)$such that $f\left(a_{n}\right)=0$ for all $n \in \mathbb{N}$. Hence, the set $S=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is not an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Remark 1.6. Given a family of functions \mathcal{F} such that $K \mathcal{F} \subset \mathcal{F}$ or $\mathcal{F} \mathcal{F} \subset \mathcal{F}$, if a set S is included in the set of zeros of a function $f \in \mathcal{F}$, it is not an SRU for \mathcal{F}. As a consequence, if $K[x] \subset \mathcal{F}$, an SRU for \mathcal{F} is always infinite.

Remark 1.7. In the same way, given a set $S \subset K$ and a K-algebra of functions \mathcal{F}, if there exists $f \in \mathcal{F}$ such that $f(S)$ is a finite set, then S is not an SRU for \mathcal{F} because there exists a polynomial P (whose zeros are the points of $f(S)$) such that $P \circ f(S)=\{0\}$.

We observe that this property is shown in [3].
Proposition 1.8. Let a subset S of $d\left(a, r^{-}\right)$be an $S R U$ for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$and let $b \in d\left(a, r^{-}\right)$. Then the subsets $S \cup\{b\}$ and $S \backslash\{b\}$ are also $S R U$ for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Remark 1.9. Adding or removing a finite number of points to or from a set does not change the property that this set is an SRU or a non-SRU.

Remark 1.10. On the contrary, adding or removing infinitely many points can deteriorate the property of range uniqueness (see Examples 1.18 and 1.19 below).

Remark 1.11. A set S that is preserved by an affine mapping ϕ is not an SRU for polynomials (and therefore for any family of function containing polynomials) because any polynomial P satisfies $P(S)=P \circ \phi(S)$. For instance, if \mathbb{Z} is included in K, it is not an SRU for polynomials.

Example 1.12. Let A be a subset of K and let σ be a non-constant affine application different from the identity. For an integer $n \geqslant 1$ we put $\sigma^{[n]}=\sigma \circ \cdots \circ \sigma$ (n times). If $n<0$, we put $\sigma^{[n]}=\sigma^{-1} \circ \cdots \circ \sigma^{-1}(-n$ times $)$ and $\sigma^{[0]}=$ identity. Then it is easy to see that $A_{\sigma}=\bigcup_{n \in \mathbb{Z}} \sigma^{[n]}(A)$ is not an SRU for $K[x]$.

In particular, let A be a subset of K, let $n \in \mathbb{N}$ and let $\zeta \in K, \zeta \neq 1$, be such that $\zeta^{n}=1$. Then the set $A_{\zeta}=\bigcup_{i=0}^{n-1} \zeta^{i} A$ is not an SRU for $K[x]$.

Proposition 1.13. Let p be a prime integer, consider that \mathbb{Q} is a subfield of F and let $S \subset \mathbb{Q}$ be a set included in a disc $d\left(a, r^{-}\right)$in \mathbb{C}_{p} that is an $S R U$ for the \mathbb{C}_{p}-algebra $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$. Then S is an $S R U$ for $F[x]$.

Proof. Let $f, g \in F[x]$ satisfy $f(S)=g(S)$ and let E be a finite extension of \mathbb{Q} containing all coefficients of f and g. There exists a \mathbb{Q}-isomorphism from E into \mathbb{C}_{p}; hence, f and g belong to $\mathbb{C}_{p}[x]$, and therefore $f=g$.

Proposition 1.13 will be applied in Examples 1.19, 1.25 and 1.29. Now, Proposition 1.14 lets us obtain a bounded sequence that is not an SRU for polynomials, and therefore not an SRU for every class of functions containing them.

Proposition 1.14. Let $q \in \mathbb{N}, q \geqslant 3$. Then the subset $S=\{\zeta \in F \backslash\{1\} \mid \exists j \in$ $\left.\mathbb{N}^{*}, \zeta^{q^{j}}=1\right\}$ is not an $S R U$ for $F[X]$.

Remark 1.15. In particular, Proposition 1.14 applies to $\mathbb{C}[x]$.
Following the same kind of method as in [3], but using specific ultrametric properties of analytic functions, we can obtain the following theorem, which looks like [3, Theorem 3], but is a little more general.

Theorem 1.16. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of limit a in the disc $d\left(a, r^{-}\right)$satisfying $\left|a_{n+1}-a\right|<\left|a_{n}-a\right|$ for all $n \in \mathbb{N}$ and suppose that the set $\left\{a_{n} \mid n \geqslant 0\right\}$ is not an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$. There then exist $k \in \mathbb{Z}^{*}$ and $d \in \mathbb{N}^{*}$ such that the sequence

$$
\left(\frac{a_{n+k}-a}{a_{n}-a}\right)^{d}
$$

has a limit in K and the sequence

$$
\left(\frac{\log \left|a_{n+k}-a\right|}{\log \left|a_{n}-a\right|}\right)
$$

converges to a limit in \mathbb{Q}.
Corollary 1.17. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of limit a in $d\left(a, r^{-}\right)$satisfying $\left|a_{n+1}-a\right|<$ $\left|a_{n}-a\right|$ for all $n \in \mathbb{N}$, such that the sequence

$$
\left|\frac{a_{n+k}-a}{a_{n}-a}\right|
$$

has no limit, for any fixed $k \in \mathbb{N}^{*}$. Then $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is an $S R U$ for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.
Example 1.18. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C}_{p} such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{p}
$$

when n is not of the form p^{s} and

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{p^{2}}
$$

when n is of the form p^{s}.
Let k be fixed in \mathbb{N}^{*} and let $n>k+2$. As $p^{s}>k+1$ and $p \geqslant 2$, we have

$$
\left|\frac{a_{n+k}}{a_{n}}\right|=\left|\frac{a_{n+1}}{a_{n}}\right|\left|\frac{a_{n+2}}{a_{n+1}}\right| \cdots\left|\frac{a_{n+k}}{a_{n+k-1}}\right|
$$

First let $n=p^{s}+1$. For every $j=0, \ldots, k-1$ we have $p^{s}+1 \leqslant n+j<p^{s+1}$. Indeed, as $p^{s}>k+1$ and $p \geqslant 2$, we can check that

$$
n+j<n+k=p^{s}+1+k<p^{s}+p^{s}=2 p^{s} \leqslant p^{s+1}
$$

Hence,

$$
\left|\frac{a_{n+j+1}}{a_{n+j}}\right|=\frac{1}{p}
$$

for each $j=0, \ldots, k-1$ and, consequently,

$$
\left|\frac{a_{n+k}}{a_{n}}\right|=\frac{1}{p^{k}}
$$

Now, let $n=p^{s}$. We see that $n+1=p^{s}+1$ and then

$$
\left|\frac{a_{n+2}}{a_{n+1}}\right|\left|\frac{a_{n+3}}{a_{n+2}}\right| \cdots\left|\frac{a_{n+k}}{a_{n+k-1}}\right|=\frac{1}{p^{k-1}}
$$

Since

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{p^{2}}
$$

we have

$$
\left|\frac{a_{n+k}}{a_{n}}\right|=\frac{1}{p^{k+1}}
$$

Thus, the sequence $\left|\left(a_{n+k}\right) / a_{n}\right|$ has no limit. Hence, by Theorem 1.16, the set $S=\left\{a_{n} \mid\right.$ $n \geqslant 0\}$ is an SRU for $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$with $r>\left|a_{0}\right|$.

In particular, let r be >1 and

$$
S=\left\{p^{n} \mid n \in \mathbb{N} \backslash\left(p \mathbb{N}^{*}\right)\right\}=\left\{1, p, p^{2}, \ldots, p^{2 p-1}, p^{2 p+1}, p^{2 p+2}, \ldots\right\}
$$

Then S is an SRU for $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$.
Now, owing to Proposition 1.13, we obtain the following example.
Example 1.19. For every prime integer p, the set $S=\left\{p^{n} \mid n \in \mathbb{N} \backslash\left(p \mathbb{N}^{*}\right)\right\}=$ $\left\{1, p, p^{2}, \ldots, p^{2 p-1}, p^{2 p+1}, p^{2 p+2}, \ldots\right\}$ is an SRU for $F[x]$. Now, considering S as a subset of \mathbb{C}, we observe that it is an SRU for $\mathbb{C}[x]$.

Remark 1.20. It is natural to ask whether an SRU for polynomials is also an SRU for analytic functions either in \mathbb{C} or in a p-adic field. The set S of Example 1.19 shows that it is not an SRU for the algebra of complex entire functions $\mathcal{A}(\mathbb{C})$ because there do exist non-zero $f \in \mathcal{A}(\mathbb{C})$ satisfying $f(S)=\{0\}$.

Also, given a prime number p, consider the set

$$
T_{p}=\left\{\frac{1}{p^{(n!)}}, n \in \mathbb{N}^{*}\right\}
$$

By [3, Theorem 3] we can check that T_{p} is an SRU for the \mathbb{C}-algebra of analytic functions in a neighbourhood of zero and, therefore, that it is an SRU for $\mathbb{C}_{p}[x]$. But, in the field \mathbb{C}_{p}, we have

$$
\lim _{n \rightarrow \infty}\left|\frac{1}{p^{n!}}\right|=+\infty
$$

Hence, there exist non-zero functions $f \in \mathcal{A}\left(\mathbb{C}_{p}\right)$ such that $f\left(T_{p}\right)=\{0\}$ and therefore T_{p} is not an SRU for $\mathcal{A}\left(\mathbb{C}_{p}\right)$.

Corollary 1.21. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of limit a in $d\left(a, r^{-}\right)$satisfying $\left|a_{n+1}-a\right|<$ $\left|a_{n}-a\right|$ for all $n \in \mathbb{N}$ such that the sequence

$$
\frac{\log \left|a_{n+1}-a\right|}{\log \left|a_{n}-a\right|}
$$

admits a limit l that is transcendental over \mathbb{Q}. Then the set $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Proof. For all $k \in \mathbb{N}^{*}$,

$$
\lim _{n \rightarrow \infty} \frac{\log \left|a_{n+k}-a\right|}{\log \left|a_{n}-a\right|}=l^{k}
$$

Since $l^{k} \notin \mathbb{Q}$, by Theorem 1.16, $\left\{a_{n} \mid n \geqslant 0\right\}$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Example 1.22. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be the sequence of decimal approximations of $1 / \pi$. After choosing $a_{0} \in \mathbb{C}_{p}$, with $\left|a_{0}\right|<1$, we can define a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{C}_{p} such that $v\left(a_{n+1}\right)=u_{n} v\left(a_{n}\right)$. Therefore, all terms a_{n} lie in the disc $d\left(0,1^{-}\right)$of \mathbb{C}_{p} and satisfy $\log \left|a_{n+1}\right| / \log \left|a_{n}\right|=u_{n}$. Hence,

$$
\lim _{n \rightarrow \infty} \frac{\log \left|a_{n+1}\right|}{\log \left|a_{n}\right|}=\frac{1}{\pi}
$$

and therefore $\left\{a_{n} \mid n \geqslant 0\right\}$ is an SRU.
Corollary 1.23. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of limit a in $d\left(a, r^{-}\right)$satisfying $\left|a_{n+1}-a\right|<$ $\left|a_{n}-a\right|$ for all $n \in \mathbb{N}$, such that the sequence $\log \left|a_{n+1}-a\right| / \log \left|a_{n}-a\right|$ is unbounded. Then $\left\{a_{n} \mid n \geqslant 0\right\}$ is an $S R U$ for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Example 1.24. Let $\left(a_{n}\right)_{n \geqslant 0}$ be a sequence of $d\left(0, r^{-}\right)$such that, for all n, $\left|a_{n+1}\right|<\left|a_{n}\right|$ and $\lim _{n \rightarrow+\infty} a_{n}=0$. Suppose that $\left(\lambda_{n}\right)_{n \geqslant 0}$ is a sequence of \mathbb{R} such that $\lim _{n \rightarrow+\infty} \lambda_{n}=+\infty$ and, for all $n,\left|a_{n+1}\right|<\left|a_{n}\right|^{\lambda_{n}}$. Then the subset $S=\left\{a_{n} \mid n \geqslant 0\right\}$ of $d\left(0, r^{-}\right)$is an SRU for $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$.

In particular, when $K=\mathbb{C}_{p}$, for every $q \in \mathbb{N} \backslash\{0 ; 1\}$, the set $S_{q}=\left\{p^{p^{n^{q}}} \mid n \geqslant 0\right\}$ is an SRU for any K-algebra $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$.

Example 1.25. Let p be a prime integer and let q be an integer greater than or equal to 2. Then the set $S_{q}=\left\{p^{{p^{q^{q}}}} \mid n \geqslant 0\right\}$ is an SRU for $F[x]$.

Example 1.26. Let $\left(a_{n}\right)$ be a sequence of limit a in a disc $d\left(a, r^{-}\right)$with $r<1$, such that $\left|a_{n+1}-a\right|=\left|a_{n}-a\right|^{2}$ whenever n is of the form q^{d}, with $q, d \in \mathbb{N}^{*}$ and $\left|a_{n+1}-a\right|=\left|a_{n}-a\right|^{3}$, otherwise. Then the set $S=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Indeed, suppose S is not an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$. There exists $k \in \mathbb{Z}^{*}$ such that the sequence $\left(\log \left|a_{n+k}-a\right| / \log \left|a_{n}-a\right|\right)$ has a rational limit l. Let $d \in \mathbb{N}$ be such that $q^{d}>|k|$. Suppose first that $k>0$. Let n be of the form q^{m} with $m>d$. Since all integers $n+1, \ldots, n+k$ lie in $] q^{m}, q^{m+1}\left[\right.$, we have $\log \left|a_{n+k}-a\right| / \log \left|a_{n}-a\right|=2.3^{k-1}$ and, hence, $l=2.3^{k-1}$. Now, however, we check that all integers $n+1, \ldots, n+k+1$ also lie in $] q^{m}, q^{m+1}[$; hence,

$$
\frac{\log \left|a_{n+k+1}-a\right|}{\log \left|a_{n+1}-a\right|}=3^{k}
$$

and $l=3^{k}$, which is a contradiction. A similar proof applies when $k<0$.
Theorem 1.16 suggests that a converging sequence $\left(a_{n}\right)$ of limit a which is an SRU for analytic functions inside a disc $d\left(a, r^{-}\right)$should be such that $\left(\log \left|a_{n+k}-a\right| / \log \left|a_{n}-a\right|\right)$ admits no rational limit. Actually, this sufficient condition is far from necessary, as is shown in Theorem 1.27. Recall that the values group of K is a \mathbb{Q}-vector space.

Theorem 1.27. Let $b \in\left[1,+\infty\left[\right.\right.$ and let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be a sequence of positive numbers satisfying the following conditions.
(i) $\lambda_{n} \in v(K)$ for all $n \in \mathbb{N}$.
(ii) $\lim _{n \rightarrow+\infty}\left(\lambda_{n}\right)=+\infty$.
(iii) There exists an integer $m \in \mathbb{N}$ such that $\lambda_{n+1}>b \lambda_{n}$ for all $n>m$.
(iv) $\lim _{n \rightarrow+\infty}\left(\lambda_{n+1}-b \lambda_{n}\right)=\Omega$, where $\Omega=0$ or $\Omega=+\infty$. Moreover, if $\Omega=+\infty$, then either $b=1$ or $b^{k} \notin \mathbb{Q}$ for all $k \in \mathbb{N}^{*}$.
(v) $\lim _{n \rightarrow+\infty}\left(\lambda_{n+1} / \lambda_{n}\right)=b$.

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $d\left(a, r^{-}\right)$such that $\log \left|a_{n}-a\right|=-\lambda_{n}$ for every $n>m$. Then the subset $S=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.
Corollary 1.28. Let $L \in v(K)$ be such that $L>0$ and let $\left(a_{n}\right)_{n \geqslant 0}$ be a sequence of $d\left(a, r^{-}\right)$such that, for all $n, \log \left|a_{n}-a\right|=-L n^{\gamma}$, with γ an integer greater than or equal to 2. Then the subset $S=\left\{a_{n} \mid n \geqslant 0\right\}$ of $d\left(a, r^{-}\right)$is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.
Example 1.29. Let $r>0$ and $c \in d\left(0, r^{-}\right)$such that $|c|<1$. For all integers $q \geqslant 2$, the sets $S_{q}(c)=\left\{c^{n^{q}} \mid n \geqslant 1\right\}$ are SRUs for $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$. In particular, if $K=\mathbb{C}_{p}$, we can take $c=p$ (with $r>1 / p)$.

Example 1.30. As an application of Proposition 1.13 and Corollary 1.28, assuming that the characteristic of the field F is zero, we can see that in F, for every prime integer p and for every integer $q \geqslant 2$, the set $\left\{p^{n^{q}} \mid n \in \mathbb{N}\right\}$ is an SRU for $F[x]$.
In the same way, the same set in \mathbb{C}_{p} is an SRU for any K-algebra $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$with $r>1 / p$.
The following proposition shows how to construct a sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ satisfying the hypotheses of Theorem 1.27.
Proposition 1.31. Let $\gamma \in] 0,1[\cup] 1,+\infty[$. Let L be >0 and, furthermore, let $b \in\left[1,+\infty\left[\right.\right.$ satisfy $b^{k} \notin \mathbb{Q}$ for all $k \in \mathbb{N}^{*}$ whenever $\gamma>1$ and $b>1$. For every $n \in \mathbb{N}$, let

$$
\lambda_{n} \in v(K) \cap\left[b^{n} L n^{\gamma}, b^{n} L n^{\gamma}+\frac{1}{n+1}\right] .
$$

Then the sequence λ_{n} satisfies the hypotheses of Theorem 1.27.
Corollary 1.32. Let $a \in K, r \in] 0,+\infty[, \gamma \in] 0,1[\cup] 1,+\infty\left[\right.$ and $L \in \mathbb{R}_{+}^{*}$. Let $b \in\left[1,+\infty\left[\right.\right.$ satisfy $b^{k} \notin \mathbb{Q}$ for all $k \in \mathbb{N}^{*}$ whenever $b>1$.
There exist sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ in $d\left(a, r^{-}\right)$such that $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$, satisfying

$$
\lim _{n \rightarrow \infty} \frac{v\left(a_{n}-a\right)}{b^{n} n^{\gamma}}=L .
$$

Remark 1.33. We note that, in the hypothesis of Corollary 1.32, for every fixed $k \in \mathbb{N}$, we have

$$
\lim _{n \rightarrow \infty} \frac{\log \left|a_{n+k}-a\right|}{\log \left|a_{n}-a\right|}=1 .
$$

Remark 1.34. In Proposition 1.31, when the valuation group of K is equal to \mathbb{R}, we can take $\lambda_{n}=n^{\gamma}$ whenever $n \in \mathbb{N}$. But in the most usual case when the valuation group is isomorphic to \mathbb{Q}, as it is when $K=\mathbb{C}_{p}$, if γ is not an integer, we have to choose
the λ_{n} different from n^{γ}, and, more precisely, such that we can find points a_{n} satisfying $v\left(a_{n}-a\right)=\lambda_{n}$. Thus, we can take for λ_{n} a suitable upper rational approximation of $L n^{\gamma}$ and then define a sequence $\left(a_{n}\right)$.

Remark 1.35. In Proposition 1.31 and Corollaries 1.28 and 1.32 , the hypothesis $\gamma \neq 1$ is necessary, as shown in the following example.

Example 1.36. Let $a \in K$. Then the set $S_{1}(a)=\left\{a^{n} \mid n \geqslant 0\right\}$ is not an SRU for $K[X]$. Indeed, if we consider the $f(x)=(1-x)(a-x)$ and $g(x)=f(a x)=a(1-x)(1-a x)$, we have $f(1)=f(a)=0, f\left(a^{n}\right)=a\left(1-a^{n-1}\right)\left(1-a^{n}\right), n \geqslant 2$ and $g(1)=0, g\left(a^{n}\right)=a(1-$ $\left.a^{n}\right)\left(1-a^{n+1}\right), n \geqslant 1$. Hence, $f\left(S_{1}(a)\right)=g\left(S_{1}(a)\right)=\left\{0, a\left(1-a^{n-1}\right)\left(1-a^{n}\right) \mid n \geqslant 2\right\}$.

In particular, in the field \mathbb{C}_{p}, the subset $S_{1}(p)=\left\{p^{n} \mid n \geqslant 0\right\}$ is not an SRU for $\mathbb{C}_{p}[X]$.
Now, we can ask whether a closed open set might be an SRU. Without answering the question, we give some immediate remarks.

1.1. Definitions and notation

Given $A, B \subset K$, we denote by $\delta(A, B)$ the distance from A to B.
Let D be an infinite set in K and let $a \in D$. If D is bounded of diameter r, we denote by \tilde{D} the $\operatorname{disc} d(a, r)=\{x \in K| | x-a \mid \leqslant r\}$ and, if D is not bounded, we set $\tilde{D}=K$. It is known that $\tilde{D} \backslash \bar{D}$ admits a unique partition of the form $\left(d\left(a_{i}, r_{i}^{-}\right)\right)_{i \in I}$, with $r_{i}=\delta\left(a_{i}, D\right)$ for each $i \in I$. The discs $d\left(a_{i}, r_{i}^{-}\right)$, for all $i \in I$ are called the holes of $D[\mathbf{4}]$.

Let D be a subset of K. We call the number $\delta(D, K \backslash D)$ the codiameter of D (denoted by codiam (D)).

We can now describe a large class of sets D that are not SRUs for $K[X]$ and therefore are not SRUs for any larger class of functions.

Theorem 1.37. Let D be a set such that $\operatorname{codiam}(D)>0$. Then D is not an $S R U$ for $K[X]$.

Remark 1.38. If codiam $(D)>0$, then D is a closed and open set. The converse is not true: there exist closed open subsets of K with a codiameter equal to 0 .

Corollary 1.39. An affinoid set of K is not an $S R U$ for $K[X]$. In particular, a disc or an annulus is not an SRU for $K[X]$.

Among the questions which remain, we can consider the following.
(1) Having shown that a set D of codiameter greater than 0 cannot be an SRU for $K[X]$, is it possible to show this for other sets by considering the family $R(D)$ of rational functions $h \in K(x)$ with no pole in D (respectively, the family $H(D)$ of analytic elements on $D[4])$?
(2) All SRUs we have found are countable sets. This leads us to wonder whether an SRU might be uncountable.
(3) Might an SRU for $\mathcal{A}(K)$ included inside a disc $d\left(a, r^{-}\right)$be a non-SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$?

2. The proofs

Proof of Proposition 1.14. Consider an integer $\ell \geqslant 2$ prime to q. Let us show that the function $f_{\ell}: x \mapsto x^{\ell}$ is a permutation of S. Indeed, if x and y are two distinct elements of S such that $x^{\ell}=y^{\ell}$, then $x=\xi y$, with $\xi \neq 1$ and $\xi^{\ell}=1$. But then there exist $i, j \in \mathbb{N}^{*}$ such that $x^{q^{i}}=y^{q^{j}}=1$. Without loss of generality we can suppose that $j \leqslant i$. Then $x^{q^{j}}=y^{q^{j}}=1$ and, thus, $\xi^{q^{j}}=1$: a contradiction to the fact that $\left(q^{j}, \ell\right)=1$ and $\xi^{\ell}=1$. Thus, f_{ℓ} is injective. On the other hand, if ζ is an element of E, there exists $j \in \mathbb{N}^{*}$ such that $\zeta^{q^{j}}=1$. Let $u, v \in \mathbb{Z}$ be such that $u \ell+v q^{j}=1$. Then we have $\zeta^{1-v q^{j}}=\left(\zeta^{u}\right)^{\ell}$. If we set $\eta=\zeta^{u}$, we can easily check that $\eta \in E$ and $\zeta=f_{\ell}(\eta)$. Hence, f_{ℓ} is surjective and is therefore bijective. Thus, we see that, if ℓ and ℓ^{\prime} are two distinct integers both prime to q, then f_{ℓ} and $f_{\ell^{\prime}}$ are two distinct polynomials satisfying $f_{\ell}(S)=f_{\ell^{\prime}}(S)=S$. This means that S is not an SRU for $F[x]$.

Notation. Let $f \in \mathcal{A}\left(d\left(a, r^{-}\right)\right)$be such that $f(x)=\sum_{n \geqslant 0} \alpha_{n}(x-a)^{n}$. For every $\rho \in] 0, r$ [we set $|f|_{a}(\rho)=\sup _{n \geqslant 0}\left|\alpha_{n}\right| \rho^{n}$. In order to write this relation additively, we set $v_{a}(f, \mu)=\inf _{n \geqslant 0}\left(v\left(\alpha_{n}\right)+n \mu\right)$, where $\mu=-\log \rho$.

To learn more about the properties of the functions $\rho \mapsto|f|_{a}(\rho)$ and $\mu \mapsto v_{a}(f, \mu)$, see $[\mathbf{2}, \mathbf{4}]$.

We shall need the following lemma, whose proof is based on the classical properties of analytic functions over ultrametric fields [4].

Lemma 2.1. Let $f(x)=\sum_{m=d}^{\infty} \alpha_{m} x^{m} \in \mathcal{A}\left(d\left(0, r^{-}\right)\right)$with $\alpha_{d} \neq 0$ and let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $d\left(0, r^{-}\right)$such that $\lim _{n \rightarrow \infty} a_{n}=0$. There then exists $q \in \mathbb{N}$ such that $\left|f\left(a_{n}\right)\right|=\left|\alpha_{d}\right|\left|a_{n}\right|^{d}$ for all $n \geqslant q$.

The next lemma is the main tool to use when starting the proofs of Theorems 1.16 and 1.27 .

Lemma 2.2. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $d\left(0, r^{-}\right)$of limit 0 and such that $\left|a_{n+1}\right|<$ $\left|a_{n}\right|$ for all $n \in \mathbb{N}$. Let $f, g \in \mathcal{A}\left(d\left(0, r^{-}\right)\right), f \neq g$, satisfy $\left\{f\left(a_{n}\right)\right\}=\left\{g\left(a_{n}\right)\right\}$ and $f(0)=$ $g(0)$. There then exist $k \in \mathbb{Z}^{*}$ and $q \in \mathbb{N}$ such that $f\left(a_{n}\right)=g\left(a_{n+k}\right)$ for all $n \geqslant q$.

Proof. For every $n \in \mathbb{N}$ we denote by $k(n) \in \mathbb{Z}$ an integer such that $f\left(a_{n}\right)=$ $g\left(a_{n+k(n)}\right)$. Let $f(x)=\sum_{m=c}^{\infty} \alpha_{m} x^{m}$ and let $g(x)=\sum_{m=d}^{\infty} \beta_{m} x^{m}$ with $\alpha_{c} \beta_{d} \neq 0$ and $c, d \in \mathbb{N}^{*}$. Without loss of generality we may obviously assume that $f(0)=g(0)=0$. Consequently, we have $c d \neq 0$.

We first note that $\lim _{n \rightarrow \infty}(n+k(n))=+\infty$. However, suppose this is not true. There then exist $A>0$ and a strictly increasing sequence $\left(n_{s}\right)_{s \in \mathbb{N}}$ of \mathbb{N} such that $n_{s}+k\left(n_{s}\right)<A$ for all $s \in \mathbb{N}$. Since the set of integers $n_{s}+k\left(n_{s}\right)$ such that $n_{s}+k\left(n_{s}\right)<A$ is finite, we see that $\left\{f\left(a_{n_{s}}\right), s \in \mathbb{N}\right\}$ is a finite set. Since $\lim _{s \rightarrow \infty} a_{n_{s}}=0$ and since $f(0)=0$, we see that $f\left(a_{n_{s}}\right)=0$ has an infinity of solutions converging to zero: a contradiction to the properties of analytic functions stating that zeros are isolated. Consequently, we have $\lim _{n \rightarrow \infty} n+k(n)=+\infty$. Therefore, by Lemma 2.1, there exists $t \in \mathbb{N}$ such that $\left|f\left(a_{n}\right)\right|=\left|\alpha_{c}\right|\left|a_{n}\right|^{c}$ and $\left|g\left(a_{n}\right)\right|=\left|\beta_{d}\right|\left|a_{n}\right|^{d}$ for all $n \geqslant t$.

Consequently, since $c, d>0$, the sequences $\left(\left|f\left(a_{n}\right)\right|\right)_{n \geqslant t}$ and $\left(\left|g\left(a_{n}\right)\right|\right)_{n \geqslant t}$ are strictly decreasing. Also, we can find $s \geqslant t$ with the following property: if $m, l \in \mathbb{N}$ are such that $m<t$ and $l \geqslant s$, then $f\left(a_{m}\right) \neq g\left(a_{l}\right)$. Moreover, since $\lim _{n \rightarrow \infty} n+k(n)=+\infty$, there exists $q \geqslant t$ such that $n+k(n) \geqslant s$ for all $n \geqslant q$.

Now, take $n \geqslant q$. We have $\left|g\left(a_{n+1+k(n+1)}\right)\right|=\left|f\left(a_{n+1}\right)\right|<\left|f\left(a_{n}\right)\right|=\left|g\left(a_{n+k(n)}\right)\right|$. Since $n+k(n) \geqslant s \geqslant t$ and $n+1+k(n+1) \geqslant s \geqslant t$, this implies that $\left|a_{n+1+k(n)}\right|<\left|a_{n+k(n)}\right|$, and hence $n+1+k(n+1)>n+k(n)$.

On the other hand, by hypothesis there exists $j \in \mathbb{N}$ such that $f\left(a_{j}\right)=g\left(a_{n+1+k(n)}\right)$. Taking into account the definition of s, this j must satisfy $j \geqslant t$ because $n+1+k(n) \geqslant s$. Now, since

$$
\left|f\left(a_{j}\right)\right|=\left|g\left(a_{n+1+k(n)}\right)\right|<\left|g\left(a_{n+k(n)}\right)\right|=\left|f\left(a_{n}\right)\right|
$$

and since $\left(\left|f\left(a_{n}\right)\right|\right)_{n \geqslant t}$ is strictly decreasing, we must have $j>n$. Hence, we obtain

$$
\left|f\left(a_{j}\right)\right| \leqslant\left|f\left(a_{n+1}\right)\right|=\left|g\left(a_{n+1+k(n+1)}\right)\right| \leqslant\left|g\left(a_{n+1+k(n)}\right)\right|=\left|f\left(a_{j}\right)\right| .
$$

Thus, the above inequality is actually an equality. Consequently, $n+1+k(n+1)=$ $n+1+k(n)$, which proves that $k(n+1)=k(n)=k \in \mathbb{Z}$ for every $n \geqslant q$. Obviously, $k \neq 0$ because otherwise we would have $f\left(a_{n}\right)=g\left(a_{n}\right)$ for all $n \geqslant q$ and then $f=g$.

Proof of Theorem 1.16. Without loss of generality, we can obviously assume that $a=0$. Suppose that $\left\{\left(a_{n}\right) \mid n \in \mathbb{N}\right\}$ is not an SRU for $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$and let $f, g \in$ $\mathcal{A}\left(d\left(0, r^{-}\right)\right)$satisfy $f \neq g$ and $\left\{f\left(a_{n}\right)\right\}=\left\{g\left(a_{n}\right)\right\}$. By extracting subsequences of $\left\{\left(a_{n}\right)\right\}$, we can see that $f(0)=g(0)$. Hence, we can also assume that $f(0)=g(0)=0$.

Let

$$
f(x)=\sum_{j=c}^{\infty} \alpha_{j} x^{j}, \quad g(x)=\sum_{j=d}^{\infty} \beta_{j} x^{j}
$$

with $\alpha_{c} \beta_{d} \neq 0$ and $c, d>0$.
By Lemmas 2.1 and 2.2 there exist $q \in \mathbb{N}$ and $k \in \mathbb{Z}^{*}$ such that $\left|f\left(a_{n}\right)\right|=\left|\alpha_{c}\right|\left|a_{n}\right|^{c}$, $\left|g\left(a_{n}\right)\right|=\left|\beta_{d}\right|\left|a_{n}\right|^{d}$ and $f\left(a_{n}\right)=g\left(a_{n+k}\right)$ for all $n \geqslant q$. Moreover, without loss of generality we can assume that $k>0$ because f and g play the same role. Thus, we have

$$
\begin{equation*}
\left|\alpha_{c}\right|\left|a_{n}\right|^{c}=\left|\beta_{d}\right|\left|a_{n+k}\right|^{d} \quad \text { for all } n \geqslant q \text {. } \tag{2.1}
\end{equation*}
$$

Consequently, by (2.1) we obtain

$$
\frac{\log \left|a_{n+k}\right|}{\log \left|a_{n}\right|}=\frac{\log \left|\alpha_{c}\right|-\log \left|\beta_{d}\right|}{d \log \left|a_{n}\right|}+\frac{c}{d}
$$

and, since $\lim _{n \rightarrow \infty} a_{n}=0$, we see that

$$
\lim _{n \rightarrow \infty} \frac{\log \left|a_{n+k}\right|}{\log \left|a_{n}\right|}=\frac{c}{d} .
$$

Next, we can write $f(x)=x^{c}\left(\alpha_{c}+\varepsilon(x)\right), g(x)=x^{d}\left(\beta_{d}+\mu(x)\right)$ with $\lim _{x \rightarrow 0} \varepsilon(x)=$ $\lim _{x \rightarrow 0} \mu(x)=0$. Take $n \geqslant q$. We have

$$
f\left(a_{n}\right)=a_{n}^{c}\left(\alpha_{c}+\varepsilon\left(a_{n}\right)\right), \quad g\left(a_{n+k}\right)=\left(a_{n+k}\right)^{d}\left(\beta_{d}+\mu\left(a_{n+k}\right)\right) .
$$

Since $f\left(a_{n}\right)=g\left(a_{n+k}\right)$, we see that $a_{n}^{c}\left(\alpha_{c}+\varepsilon\left(a_{n}\right)\right)=\left(a_{n+k}\right)^{d}\left(\beta_{d}+\mu\left(a_{n+k}\right)\right)$. Therefore, we obtain

$$
\begin{equation*}
\left(\frac{a_{n+k}}{a_{n}}\right)^{d}=\left(a_{n}\right)^{c-d}\left(\frac{\alpha_{c}+\varepsilon\left(a_{n}\right)}{\beta_{d}+\mu\left(a_{n+k}\right)}\right) \tag{2.2}
\end{equation*}
$$

On the other hand, since $\lim _{n \rightarrow \infty} \varepsilon\left(a_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(a_{n}\right)=\lim _{n \rightarrow \infty} a_{n}=0$ and since $\left|a_{n+k} / a_{n}\right|<1$, we have $c \geqslant d$. If $d<c$, then, by (2.2), $a_{n+k} / a_{n} \rightarrow 0$. And if $c=d$, then

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n+k}}{a_{n}}\right)^{d}=\frac{\alpha_{c}}{\beta_{d}}
$$

This completes the proof of Theorem 1.16.
Proof of Theorem 1.27. By hypothesis (iv) we first observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\lambda_{n+k}-b^{k} \lambda_{n}\right)=\left(\sum_{j=0}^{k-1} b^{j}\right) \Omega \tag{2.3}
\end{equation*}
$$

Without loss of generality, we may assume that $a=0$. Let $f, g \in \mathcal{A}\left(d\left(0, r^{-}\right)\right)$be two nonconstant functions such that $f(S)=g(S)$. By property (ii), obviously $\lim _{n \rightarrow \infty} a_{n}=0$, so we may also assume that $f(0)=g(0)=0$. Since $\lambda_{n+1}>b \lambda_{n}$ for $n>m$, we may observe that the sequence $\left(\left|a_{n}\right|\right)_{n>m}$ is strictly decreasing. Let

$$
f(x)=\sum_{j=c}^{\infty} \alpha_{j} x^{j}, \quad g(x)=\sum_{j=d}^{\infty} \beta_{j} x^{j}, \quad \alpha_{c} \beta_{d} \neq 0
$$

By Lemma 2.2, there exists an integer $q \geqslant m$ and there exists $k \in \mathbb{Z}$ such that $f\left(a_{n}\right)=$ $g\left(a_{n+k}\right)$ for all $n \geqslant q$. Since f and g play the same role, we may assume that $k \geqslant 0$ without loss of generality. We want to show that $k=0$, and hence $f=g$.
There exists $s \in] 0, r[$ such that f and g have no zero inside $d(0, s)$ except 0 . Therefore, by Lemma 2.1, we have $|f(x)|=\left|\alpha_{c}\right||x|^{c},|g(x)|=\left|\beta_{d}\right||x|^{d}$ for all $x \in d(0, s)$. Consequently, there exists $t \in \mathbb{N}$ such that $t \geqslant q+k$ and

$$
\left|f\left(a_{n}\right)\right|=\left|\alpha_{c}\right|\left|a_{n}\right|^{c}, \quad\left|g\left(a_{n}\right)\right|=\left|\beta_{d}\right|\left|a_{n}\right|^{d} \quad \text { for all } n>t
$$

Thus, we obtain $\left|\alpha_{c}\right|\left|a_{n}\right|^{c}=\left|\beta_{d}\right|\left|a_{n+k}\right|^{d}$, and hence $c \log \left|a_{n}\right|=d \log \left|a_{n+k}\right|-h$ for all $n>t$, with $h=\log \left|\alpha_{c}\right|-\log \left|\beta_{d}\right|$. Now, by hypothesis we have $\log \left|a_{n}\right|=-\lambda_{n}$ for all $n>m$. Hence,

$$
\begin{equation*}
c \lambda_{n}=d \lambda_{n+k}+h \quad \text { for all } n>t \tag{2.4}
\end{equation*}
$$

Suppose that $k>0$. Assume first that $c \neq d$. By (v) we can check that each sequence $\left(u_{n, j}\right)_{n \in \mathbb{N}}, j=0, \ldots, k-1$, defined as

$$
u_{n, j}=\left(\frac{\lambda_{n+j}}{\lambda_{n}}\right)
$$

has limit b^{j} and, therefore, by (v) again, each sequence $\left(\theta_{n, j}\right)_{n \in \mathbb{N}}, j=0, \ldots, k-1$, defined as

$$
\theta_{n, j}=b^{k-j-1}\left(\frac{\lambda_{n+j+1}-b \lambda_{n+j}}{\lambda_{n+j}}\right)\left(\frac{\lambda_{n+j}}{\lambda_{n}}\right), \quad j=0, \ldots, k-1
$$

has limit 0 . Consequently, we can check that

$$
\lim _{n \rightarrow \infty}\left[\frac{\lambda_{n+k}-b^{k} \lambda_{n}}{\lambda_{n}}\right]=0
$$

and therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{c\left(\lambda_{n}-b^{-k} \lambda_{n+k}\right)}{\lambda_{n+k}}=0 \tag{2.5}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|c \lambda_{n}-d \lambda_{n+k}-h\right|=+\infty \tag{2.6}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
\left|c \lambda_{n}-d \lambda_{n+k}-h\right|=\left|c\left(\lambda_{n}-b^{-k} \lambda_{n+k}\right)+\lambda_{n+k}\left(c b^{-k}-d\right)-h\right| \tag{2.7}
\end{equation*}
$$

Suppose first that $c b^{-k} \neq d$. By (2.5) and (ii), we have

$$
\lim _{n \rightarrow \infty}\left|c\left(\lambda_{n}-b^{-k} \lambda_{n+k}\right)+\lambda_{n+k}\left(c b^{-k}-d\right)-h\right|=+\infty
$$

which shows that (2.6) holds.
Suppose now that $c b^{-k}=d$. By (2.7) we see that

$$
\begin{equation*}
\left|c \lambda_{n}-d \lambda_{n+k}-h\right|=\left|c\left(\lambda_{n}-b^{-k} \lambda_{n+k}\right)-h\right| \tag{2.8}
\end{equation*}
$$

However, since we have supposed that $c \neq d$, we then have $b \neq 1$. Hence, by (iv) we have $\Omega=+\infty$. So, by (2.1), we see that relation (2.6) is clearly satisfied again. Thus, (2.6) is satisfied anyway: a contradiction to (2.4). Consequently, $c=d$.

Thus, by (2.4), we arrive at

$$
\begin{equation*}
c\left(\lambda_{n}-\lambda_{n+k}\right)=h \tag{2.9}
\end{equation*}
$$

But $\lambda_{n+k}>b^{k} \lambda_{n}$, and hence $c\left(\lambda_{n+k}-\lambda_{n}\right)>c \lambda_{n}\left(b^{k}-1\right)$. If $b>1$, by (ii) we see that $\lim _{n \rightarrow \infty} \lambda_{n+k}-\lambda_{n}=+\infty$: a contradiction to (2.9). Consequently, we are now led to assume that $b=1$.

By (2.3) we have $\lim _{n \rightarrow \infty}\left[\lambda_{n+k}-\lambda_{n}\right]=k \Omega$. But since $\Omega=0$ or $+\infty$, and h is finite, by (2.8) we actually see that $\Omega=h=0$.

Consequently, $\lambda_{n}=\lambda_{n+k}$ for all $n>t$: a contradiction of (iii). Therefore, we have $k=0$ in every case, and hence $f=g$. This finishes the proof that $\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is an SRU for $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$.

Proof of Proposition 1.31. Without loss of generality, we may clearly assume that $L=1$. First, (i) and (ii) are obviously satisfied. In order to check the three last conditions, we first observe the following inequalities:

$$
\begin{align*}
& \lambda_{n+1}-b \lambda_{n} \geqslant b^{n+1}\left((n+1)^{\gamma}-n^{\gamma}\right)-\frac{b}{n+1} \tag{2.10a}\\
& \lambda_{n+1}-b \lambda_{n} \leqslant b^{n+1}\left((n+1)^{\gamma}-n^{\gamma}\right) \tag{2.10b}
\end{align*}
$$

Suppose that $\gamma \in] 0,1[$. With the help of the finite increasing theorem, by (2.10), we obtain

$$
\begin{align*}
& \lambda_{n+1}-b \lambda_{n} \geqslant \gamma b^{n+1}(n+1)^{\gamma-1}-\frac{b}{n+1} \tag{2.11a}\\
& \lambda_{n+1}-b \lambda_{n} \leqslant \gamma b^{n+1} n^{\gamma-1} \tag{2.11b}
\end{align*}
$$

respectively.
Thus, by $(2.11 a)$, (iii) may easily be checked when n is sufficiently large. Moreover, if $b>1$, then by $(2.11 a)$ we can see that

$$
\lim _{n \rightarrow \infty} b^{n+1}\left((n+1)^{\gamma}-n^{\gamma}\right)-\frac{b}{n+1}=+\infty
$$

so (iv) is satisfied. Conversely, if $b=1$, by $(2.11 b)$ we see that

$$
\lim _{n \rightarrow \infty}\left((n+1)^{\gamma}-n^{\gamma}\right)-\frac{1}{n+1}=0
$$

which shows (iv) again.
Finally, for all $b \geqslant 1$, we have

$$
\frac{\lambda_{n+1}-b \lambda_{n}}{\lambda_{n}} \leqslant \frac{b \gamma\left((n+1)^{\gamma}-n^{\gamma}\right)}{n^{\gamma}} .
$$

Hence by $(2.11 b)$ we obtain

$$
\frac{\lambda_{n+1}-b \lambda_{n}}{\lambda_{n}} \leqslant \frac{b \gamma\left((n+1)^{\gamma-1}\right)}{n^{\gamma}}
$$

which shows (v).
Now suppose $\gamma>1$. By (2.10) we have

$$
\begin{align*}
& \lambda_{n+1}-b \lambda_{n} \geqslant \gamma b^{n+1} n^{\gamma-1}-\frac{b}{n+1} \tag{2.12a}\\
& \lambda_{n+1}-b \lambda_{n} \leqslant \gamma b^{n+1}(n+1)^{\gamma-1} \tag{2.12b}
\end{align*}
$$

By (2.12a), (iii) is obviously satisfied and so is (iv) because $\lim _{n \rightarrow \infty} \lambda_{n+1}-b \lambda_{n}=+\infty$, whereas we have assumed that $b^{k} \notin \mathbb{Q}$ for all $k \in \mathbb{N}$ whenever $b>1$. And by $(2.12 b)$ we can also check that

$$
\frac{\lambda_{n+1}-b \lambda_{n}}{\lambda_{n}} \leqslant \frac{b \gamma n^{\gamma-1}}{n^{\gamma}}
$$

which shows (v) again.

Proof of Theorem 1.37. Let $r=\operatorname{codiam}(D)$ and $\lambda \in d\left(0, r^{-}\right) \backslash\{0\}$. Let $f(x)=x$ and $g(x)=x+\lambda$. Since $|g(x)-f(x)|<r$ for all $x \in D$, we check that $g(x)$ lies in D for every $x \in D$, and hence $g(D) \subset D=f(D)$. Conversely, given $x \in D$, we see that $x-\lambda$ lies in D and satisfies $g(x-\lambda)=x$. Hence, $g(D)=D$.

Acknowledgements. We are very grateful to the referee for proposing a new and much more general statement of Theorem 1.27 and pointing out to us misprints and an omission. We also thank Marie-Claude Sarmant.

References

1. M.-T. Alzugaray, On sets of range uniqueness for entire functions, in Advances in Analysis, Proc. 4 th ISAAC Congress, Toronto, 16-21 August 2003 (World Scientific, 2005).
2. Y. Amice, Les nombres p-adiques (Presses Universitaires de France, Paris, 1975).
3. H. G. Diamond, C. Pomerance and L. Rubel, Sets on which an entire function is determined by its range, Math. Z. 176 (1981), 383-398.
4. A. Escassut, Analytic elements in p-adic analysis (World Scientific, 1995).
5. E. H. Johnston, On sets of range uniqueness, Math. Z. 184 (1984), 533-547.
6. M. LAZARD, Les zéros d'une fonction analytique d'une variable sur un corps valué complet, Publ. Math. IHES 14 (1962), 47-75.
7. E. Thomas, Two examples of sets of range uniqueness, Illinois J. Math. 27 (1983), 110114.
