UNIQUE FACTORIZATION IN RINGS WITH RIGHT ACC,

by H. H. BRUNGS
(Received 2 May, 1977)

If R is an integral domain with maximum condition for principal right ideals—right
ACC;—every nonzero non-unit in R has irreducible factors, but is not necessarily a
product of such factors. Using additional basic factors—called infinite primes in [1}—
results about unique factorization in principal right ideal domains have been obtained in
[1], [2], and [5].

In this paper we will define generalized atoms, more exactly a —atoms, « an ordinal,
for any integral domain R with right ACC,. The 1-atoms are just the irreducible
elements. Every nonzero non-unit in R can be written as a finite product of generalized
atoms. If R is a domain with modular factor lattice, i.e. V{a)={bR :a € bR} is a modular
lattice with respect to inclusion for every nonzero element a in R, any two factorizations
of a nonzero element into products of generalized atoms contain the same number of
a-atoms for a fixed ordinal «, provided no B-atom with B <a precedes an a-atom in
these factorizations (Theorem 1). Sharper results are obtained in case R is a weak Bezout
domain or even a local weak Bezout domain.

Let R be an integral domain with right ACC,. We write R* for the multiplicative
semigroup of nonzero elements of R. We define for every ordinal « a subsemigroup S, of
R* as follows:

S, is the group of units of R.

Sa=US,, B<a, for a a limit ordinal.

If B=a—1 exists we say an element a in R* with a not in Sg is an & —atom if aR is
maximal among the principal right ideals bR with b not in Sg. S, is then defined as the
subsemigroup of R* generated by S; and the set of a-atoms.

Under the above assumption there exists an ordinal a, minimal with the property

that R¥=S, . We refer to a-atoms for any a as generalized atoms. The next result
follows immediately.

LemMMA 1. Let R be an integral domain with right ACC,. Then every nonzero non-unit
a in R can be written as a product of generalized atoms.

Let R be an integral domain with modular factor lattice and right ACC,. It then
follows that the intersection of any two principal right ideals aR, bR of R is again a
principal right ideal: aR N bR = vR. Further, any two elements a, b in R with aRNbR#0
have a greatest common left divisor d with aRUbR =dR. We write [a, b]=v=ab’ if
aRNbR=vR#0, a '[a, b] for b’ and (a, b)=d if aRLIbR = dR. We write [aR, bR] for
the sublattice {cR; aR < cR < bR} of V(a) if aR = bR. We need the following definition.

DEerFINITION. An element a' is related to an element a through d if there exists an
element b with (a, b)=d and b~ [a, b]=a’.
In case aR+bR=aRLIbR=dR holds, it is clear that a’ related to a through d
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implies that a’ is similar to a, with a =da,. We recall that two elements r,r' in R are
called similar if R/rR and R/r'R are isomorphic as R-modules (see [4] for details).

LeEmMMA 2. Let b, a = a,a, be nonzero elements in an integral domain R with right
ACC, and modular factor lattice. Then b™'[b, a,a,]= a}a} where a} is related to a, through
d, and a} is related to a, through d, with d, a left factor of d = (b, a) and d, related to d
through d; with d;R =a,RUIdR.

Proof. We have [b, a,a,]=[b, a;]r for some r in R; [a7'[b, a,], a)=a7'[b, a,]r
follows. This leads to r=c"'[c, a,] with c="a7'[b, a,] and the desired equation with
a',=b7[b, a,] and a%=c"[c, a,). We see that (b, a,) =d, is a left factor of d. It remains
to consider cRLIa,R = d,R. This leads to a,d,R =(bRNa,R)LIaR =a,RN(aRLIbIR) =
a,RNdR, the claimed relation.

We observe that the lattices V(d,), V(d,) are isomorphic to lattices V(t,), V(t,)
respectively where t, and ¢, are factors of d. The statement is obvious for V(d,), since we

can take t, = d,. To see the second part assume d = d;d, for some element d,. It follows
that the lattices

V(d,)=[d4R, R]=[dR, d;R]=[a,d,R, a,R]=[d,R, R]= V(d,)
are isomorphic, since V(a,d,) is modular and d;R =a,RLIdR, a,d,R = a;R N dR holds.

CoROLLARY 1. Letr=a,...a,=b,...b, be two factorizations of an element r. Then
either a, is a left factor of b, or there exists an index j(2<j=n) and an element c in R
such that

— ’
r= alb'l “ e bi_lcbi+1 o bm

and ajc=b;, The element a/ is related to a, through d, and b} is related to b; through d; for
i=1,...,j—1. The lattice V(d,) is isomorphic to V() fori=0, ..., j—1 where {; is a factor
of d defined as d=(a,, b, ... b,_;) with dR>a,R.

For a proof it is only necessary to choose j such that a, is not a left factor of
b, ...b;_y, but aleft factor of b, ... b; which then will equal to [a,, b, ... b;_,]c for some ¢
in R, defining the ¢ above. The rest follows from Lemma 2.

LemMA 3. Let R be an integral domain with right ACC, and modular factor lattice.
Assume R =S, and that B is an ordinal with 0< B <a,, y=8+1. Then
(i) ab is in Sg if and only if a,b are in Sy for elements a, b in R.
(i) If x is a y-atom, x=dy for d in Sg, y in R then y is a y-atom.
(i) If a=nyxnyx,. .. iXeMeyy = My myy, ... myr is an element in S, with x;, y;
y-atoms and n;,, m; elements in Sy for all i, j, and r is in R then t<k.

Proof. We prove these statements simultaneously by transfinite induction on 8. Let
B =0. Then (i) is obvious, (ii) is true since d will be a unit and y =d™"x is a 1-atom if and
only if x is. Finally, (iii) follows from the Jordan-Hélder Theorem for modular lattices.

We now assume that the statements are true for all @ <, B a non-limit ordinal. (The
arguments in case B is a limit ordinal are only slightly different and will be omitted).
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To prove (i) let r be an element in R, not contained in S;. Given any natural number
g, there exist B —atoms x,,...,x, with r=x,...x.r, for some element r, in R. This
together with (iii) applied to Sz proves (i).

(ii) Let x be a y-atom, d in Sg, x =dy. The element y is not contained in Sg, y = zr
for some y-atom z with some r in R and x = dzr follows. Using (i) we know that dz is not
in Sg, and since x is a y-atom, we conclude that r must be a unitin R and y is a y-atom.

(iii) We observe that x’ is a y-atom if x' is related to a y-atom x through d with
dR > xR. This is obvious if wé apply (ii) with x = dy to obtain that y is a y-atom and recall
that V(x') and V(y) are isomorphic lattices. Similarly, if a’ is related to a through d with
a in Sg it follows that a’ is in S,

If we apply Corollary 1 to the two factorizations

A=NX4 Ny XMy =My Yy ... MYT
we see that we can assume that n; = 1. A second application of this Corollary shows that
either x, is a left factor of m, or, in case m, equals 1, of y,, or

A= XNy  MX My =X MUY MICM Yy .. T

for some j=t, or a=x,m}y} ... miyic,. The elements m{ are still in S, the y; are still
y-atoms, xic, =y; implies ¢, is a unit in R and x{c,=r holds in the second case for some
element ¢, in R,

The statement (iii) follows by induction on k after cancelling x,.

COROLLARY 2. Let x be an a-atom, y a B-atom with a < in a ring R satisfying the
assumptions of Lemma 3. Then xy=y' or xy=y'x’ for a B-atom y' and an a-atom x'.

Proof. We have xy = yr for some B-atom y and an element r in R. If § = xy, for some
element y, in R we obtain that y, is a B-atom, y = y,r and r must be a unit; xy=jr=y’
with y’ a B-atom. If § is not contained in xR we have xRNyJR =xy,R=7yx,R for
elements y, and x; in R. This leads to xy,c = yx,c = xy = yr for some element ¢ in R.

Since y, is a B-atom, ¢ must be a unit in R. The element x, is an a-atom and xy = y'x’
follows with y'=y, x’' = x;c.

THEOREM 1. Let R be an integral domain with modular factor lattice and right ACC,.
Then every nonzero non-unit a in R can be written as

a=x@0 L x@OxPd x| x L X )
where the x{*” are a;-atoms in R with a;>a,>...>a. If
= ) ®) ®)
a=yP) .. y8oyEd Ly 8y yE

is another such factorization with B;,-atoms y{#’ and B,>B,>...> B, then we have t=k,
n=m, a;=p; fori=1,..., k and there exist units (i=0,..., k) with e,=¢,=1 and

ey .y =x{ .. xl®

fori=1,... k.
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Proof. 1t follows from Lemima 1 and Corollary 2 that a factorization (*) exists for
every nonzero non-unit a in R. The ordinal a, is determined by a as the ordinal «
minimal with the property that a is contained in S,. We obtain a, =8, and n, = m, using
(iii) in Lemma 3. That x{*7 ... x@)=y¥) y& )81 for some unit &, in R follows from a
repeated application of Corollary 1. We have to observe that a B-atom cannot have a
factor which is related to an a-atom through d for d in §, and y<a, B <a. An easy
induction finishes the proof of the theorem.

The above results can be applied to weak Bezout domains with right ACC,. We recall
that an integral domain -in which the sum and the intersection of any two principal right
ideals is principal whenever the intersection is nonzero is called a weak Bezout domain.
We make the following definition. Let R be a weak Bezout domain with right ACC,. Two
B-atoms x and y are called linked if there exist B-atoms x=zy, z4,2,,...,2,=y in R
such that either z; is similar to z,., or that z; = d;z;., or that d;z; = z;, for d; in S, with
a<p for i=0,...,n—1. With this notation we formulate the following addition to
Theorem 1. '

CoroLLARY. Let R be a weak Bezout domain with right ACC,. Let a=x;...Xx, =
Y1--- Y. be two factorizations of an element a in R into B-atoms x;, y; respectively. Then
there exists a permutation o of {1, ..., n} such that x; and y,;, are linked fori=1,...,n.

The best possible result is obtained for local weak Bezout domains. Here we say a
ring R is local if the non-units form an ideal in R.

THEOREM 2. Let R be a local weak Bezout domain with right ACC,.

(i) Let a=x{x$? .. x*)=y$)  y®) be two factorizations of an element a in R
into a;-atoms x{*) and B;-atoms y\?’, respectively, with a;=a,=...Za, and B, =B, =
...=B,.. Then n=m, a;=B; and there exist units £(i=0,...,n) with 1=¢,=¢, and
x(a )= =g y(ot)

=1Yi l'

(ii) Let x be an a-atom, y a B-atom in R with a <. Then xy is a B-atom y’ in R.

Proof. (i) We know that n=m and «, = 8; from Theorem 1. Assume x and y are «-
atoms with xR NyR#0. It follows that xR+ yR =dR for some d in R, and x,R+y;R=
R where x,, y; are defined through x =dx,, y =dy,. If dR# xR and dR# yR we see that
x; and y, are still a-atoms and a contradiction would be reached This leaves us with
xR = yR = dR. This comment applied to x{** and y{** leads to x{*” = y{*?¢, for some unit
g, in R. Cancellation of x{*” and induction after n ends the proof of (i). To prove (ii) let x
be an a-atom, y a B-atom with a <B. We have xy=7yr for some B-atom y in R
(Corollary 2) and as in the argument above xR + yR = xR must follow since R is a local
weak Bezout domain. This implies that only the first case of the two cases treated in the
proof of Corollary 2 can happen and proves the result.

We conclude with a few examples.

(1) The first example shows that there exist integral domains R with right ACC, such
that V(a)={bR; bR =aR} is a lattice for every a# 0 in R, but R does not have modular
factor lattice. Let K be any commutative field, K[t],,=A the localization of the
polynomial ring K[t] on the prime ideal (¢). There exists a monomorphism o from A into
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A which maps t to t* and fixes the elements in K. Finally let R, = A[[x, ]] be the skew

power series ring in one variable x with the elements ), a;x, a; in A, and xa = o(a) . x. We
o

know from [3] that R, is an integral domain with right and left ACC,, the intersection of
any two principal right ideals is again a principal right ideal and the numbers of
irreducible factors in a factorization of a is bounded by some constant dependent on a.
This implies that V(a) is a lattice, but this lattice is not modular in general as can be seen
for a = xt for example.

(2) One can choose the field K in the first example so that there exists a
monomorphism 7 from A into K. Let R, be the free power series ring R,= A{X, 7}} in a
set on non-commuting variables X ={x;}, i € I, such that A is not in the center, but that
a . x; = x;7(a) determines the multiplication. R, is a local Bezout domain with right ACC,
and R¥=S§,.

(3) The last example shows that the uniqueness statement in Theorem 1 can be
correct for elements in S, in an integral domain R with right ACC,, but wrong for
elements in S with B>a. We use the local ring A with its monomorphism r from
Example 2. Let T be the skew power series ring A[[x, 7]] in one variable over A with

elements ), x'a, a;€ A and ax = xr(a). Let R, be the subring of T consisting of all those
i=0

elements for which the coefficient a, of x is zero. The 1-atoms are of the form te for £ a

unit in R, and every element in S; can be factored uniquely up to units. But x? and x> are

both 2-atoms and x®=(x%)*>=(x%)2
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