
UNIQUE FACTORIZATION IN RINGS WITH RIGHT ACC,

by H. H. BRUNGS

(Received 2 May, 1977)

If R is an integral domain with maximum condition for principal right ideals—right
!—every nonzero non-unit in R has irreducible factors, but is not necessarily a

product of such factors. Using additional basic factors—called infinite primes in [1]—
results about unique factorization in principal right ideal domains have been obtained in
[1], [2], and [5].

In this paper we will define generalized atoms, more exactly a - atoms, a an ordinal,
for any integral domain R with right ACQ. The 1-atoms are just the irreducible
elements. Every nonzero non-unit in R can be written as a finite product of generalized
atoms. If R is a domain with modular factor lattice, i.e. V(a) = {bR : a e bR} is a modular
lattice with respect to inclusion for every nonzero element a in R, any two factorizations
of a nonzero element into products of generalized atoms contain the same number of
a-atoms for a fixed ordinal a, provided no j3-atom with /3<a precedes an a-atom in
these factorizations (Theorem 1). Sharper results are obtained in case R is a weak Bezout
domain or even a local weak Bezout domain.

Let R be an integral domain with right ACQ. We write R* for the multiplicative
semigroup of nonzero elements of R. We define for every ordinal a a subsemigroup Sa of
R* as follows:

So is the group of units of R.
Sa = U Se, /3 < a, for a a limit ordinal.
If /3 = a - 1 exists we say an element a in R* with a not in Sp is an a - atom if aR is

maximal among the principal right ideals bR with b not in Sp. Sa is then defined as the
subsemigroup of R* generated by S0 and the set of a-atoms.

Under the above assumption there exists an ordinal a0 minimal with the property
that R* = Sao. We refer to a-atoms for any a as generalized atoms. The next result
follows immediately.

LEMMA 1. Let R be an integral domain with right ACQ. Then every nonzero non-unit
a in R can be written as a product of generalized atoms.

Let R be an integral domain with modular factor lattice and right ACQ. It then
follows that the intersection of any two principal right ideals aR, bR of R is again a
principal right ideal: aRC\bR = vR. Further, any two elements a, b in R with aR f~l bR^ 0
have a greatest common left divisor d with aRUbR = dR. We write [a, b] = v = ab' if
aR n bR = vR # 0, a~\a, b] for b' and (a, b) = d if aR U bR = dR. We write [aR, bR] for
the sublattice {cR ;aR^cR< bR} of V(a) if aR £ bR. We need the following definition.

DEFINITION. An element a' is related to an element a through d if there exists an
element b with (a, b) = d and fe-1[a, b] - a'.

In case aR + bR = aR LJ bR = dR holds, it is clear that a' related to a through d
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implies that a' is similar to ax with a = dat. We recall that two elements r, r' in R are
called similar if R/rR and R/r'R are isomorphic as JR-modules (see [4] for details).

LEMMA 2. Let b, a = ala2 be nonzero elements in an integral domain R with right
ACCi and modular factor lattice. Then b'^lb, a1a2] = a\a'2 where a[ is related to ax through
dx and a'2 is related to a2 through d2 with d1 a left factor of d = (b, a) and d2 related to d
through d3 with d3R = atRUdR.

Proof. We have [b, a1a2] = [fe, at]r for some r in R; [^il[b, a^, a2]= ail[b, a^r
follows. This leads to r = c~1[c,a2] with c = a\~\b, ax~\ and the desired equation with
a', = b~\b, a j and a'2 = c~1[c, a2]. We see that (b, a,) = dx is a left factor of d. It remains
to consider cRUa2R = d2R. This leads to axd2R - (bR n a^UaR = alRn(aRUbR) =
a1RC\ dR, the claimed relation.

We observe that the lattices VidJ, V(d2) are isomorphic to lattices V(fj), V(t2)
respectively where tx and t2 are factors of d. The statement is obvious for V(d1), since we
can take tt = dt. To see the second part assume d = d3d4 for some element d4. It follows
that the lattices

V(d4) = [d4R, R] = [dR, d3R]a[axd2R, a,R]s[d2R, R] = V(d2)

are isomorphic, since V(axd2) is modular and d3R=a1RL\dR, a^d2R = a,/? f)dR holds.

COROLLARY 1. Let r = a , . . . an = ft,... bm be two factorizations of an element r. Then
either a, is a left factor of 6, or there exists an index j(2^j^n) and an element c in R
such that

r=alb\... b'j^cbj+r... bm

and a\c = fc;. The element a\ is related to a1 through d0 and b\ is related to bt through d, for
i = 1 , . . . , } - 1 . The lattice V(dt) is isomorphic to V(tt) for i = 0 , . . . , / - 1 where t, is a factor
of d defined as d = (au bt... b^x) with dR ^ axR.

For a proof it is only necessary to choose /' such that ax is not a left factor of
bx... bj_u but a left factor of b , . . . fy which then will equal to [a,, b a . . . fy-Jc for some c
in R, defining the c above. The rest follows from Lemma 2.

LEMMA 3. Let R be an integral domain with right ACQ and modular factor lattice.
Assume R = Sao and that j3 is an ordinal with 0^|3<ao, Y = /3 + 1. Then

(i) ab is in Sp if and only if a,b are in Sp for elements a, b in R.
(ii) If x is a y-atom, x = dy for d in Sp, y in R then y is a y-atom.
(Hi) If a = nxXxn2x2... nkxknk+1 = m1yim2y2 . . . m,y,r is an element in Sy with xb y,

y-atoms and nh m, elements in Sp for all i, j, and r is in R then t s k.

Proof. We prove these statements simultaneously by transfinite induction on /3. Let
j3 = 0. Then (i) is obvious, (ii) is true since d will be a unit and y = d~lx is a 1-atom if and
only if x is. Finally, (Hi) follows from the Jordan-Holder Theorem for modular lattices.

We now assume that the statements are true for all a < |3, |3 a non-limit ordinal. (The
arguments in case /3 is a limit ordinal are only slightly different and will be omitted).
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To prove (i) let r be an element in R, not contained in Sp. Given any natural number
q, there exist / 3 - atoms xu..., xq with r = x1...xqrq for some element rq in R. This
together with (Hi) applied to Sp proves (i).

(ii) Let x be a 7-atom, d in Sp, x = dy. The element y is not contained in Sp, y = zr
for some 7-atom z with some r in R and x = dzr follows. Using (i) we know that dz is not
in Sp, and since x is a 7-atom, we conclude that r must be a unit in J? and y is a 7-atom.

(Hi) We observe that x' is a 7-atom if x' is related to a 7-atom x through d with
dR => x.R. This is obvious if we apply (ii) with x = dy to obtain that y is a 7-atom and recall
that V(x') and V(y) are isomorphic lattices. Similarly, if a' is related to a through d with
a in Sp it follows that a' is in Sp.

If we apply Corollary 1 to the two factorizations

a = n1xln2 ... nkxknk+1 = m t y i . . . m,y,r

we see that we can assume that n1 - 1. A second application of this Corollary shows that
either X! is a left factor of m, or, in case m, equals 1, of y1; or

a = xxn2 ... nkxknk+1 = x ^ y ; ... m'^m^y^ ...r

for some / 's( , or a = x1m{y'1... m'ty',c2. The elements m\ are still in Sp, the yf are still
7-atoms, x\cx = y, implies cx is a unit in R and x'xc2 = r holds in the second case for some
element c2 in R.

The statement (Hi) follows by induction on k after cancelling xt.

COROLLARY 2. Let x be an a-atom, y a fi-atom with a<(j in a ring R satisfying the
assumptions of Lemma 3. Then xy = y' or xy = y'x' for a (S-atom y' and an a-atom x'.

Proof. We have xy = yr for some 0-atom y and an element r in R. If y = xyx for some
element y, in R we obtain that ya is a 0-atom, y = y,r and r must be a unit; xy = yr= y'
with y' a /3-atom. If y is not contained in xR we have xR HyR =xyxR = yx,i? for
elements y! and Xj in R. This leads to xyjC = yxjC = xy = yr for some element c in R.
Since y! is a /3-atom, c must be a unit in R. The element Xj is an a-atom and xy = y'x'
follows with y' = y, x' = xtc.

THEOREM 1. Let R be an integral domain with modular factor lattice and right ACQ.
Then every nonzero non-unit a in R can be written as

a = x W x^i'x^' x(<*^ x(,ak) x^*' (*)

where the xj"'' are a,-atoms in R with aJ>a2>.. ->ak. If

a O.) VW,)V(W v<3,) v(ft) VO,)u 71 • • • / m i 71 • • • 7m2 • • • 71 • • • 7m,

is another such factorization with pratoms yW and /^ > /32 > . . . > j3, f/ien we have t = k,
nf = m,, Oi = Pi for i = l,...,k and there exist units et(i = 0 , . . . , k) with e0 = ek = 1 and

( a i ) £ - = X(,a i ) X( a c >
""i fci * 1 • • • * n i

fori=l,...,k.
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Proof. It follows from Lemma 1 and Corollary 2 that a factorization (*) exists for
every nonzero non-unit a in R. The ordinal ax is determined by a as the ordinal a
minimal with the property that a is contained in Sa. We obtain a^ = 0, and nx = m1 using
(Hi) in Lemma 3. That x ^ . . . x^i) = yf • ' . . . yin')e1 for some unit ex in R follows from a
repeated application of Corollary 1. We have to observe that a |3-atom cannot have a
factor which is related to an a-atom through d for d in Sy and y<a, j3<a . An easy
induction finishes the proof of the theorem.

The above results can be applied to weak Bezout domains with right A C Q . We recall
that an integral domain in which the sum and the intersection of any two principal right
ideals is principal whenever the intersection is nonzero is called a weak Bezout domain.
We make the following definition. Let R be a weak Bezout domain with right A C Q . Two
/3-atoms x and y are called linked if there exist /3-atoms x = z0, zu z2,...,zn = y in R
such that either z( is similar to zi+1 or that z; = diZi+1 or that d{z{ = zi+1 for d, in Sa with
a<fi for j = 0, . . . , n - l . With this notation we formulate the following addition to
Theorem 1.

COROLLARY. Let R be a weak Bezout domain with right ACCj. Let a = xx . . . xn =
yi . . . . yn be two factorizations of an element a in R into /3-atoms xf, ŷ  respectively. Then
there exists a permutation a of { 1 , . . . , n] such that x{ and yo.(i) are linked for i = 1 , . . . , n.

The best possible result is obtained for local weak Bezout domains. Here we say a
ring R is local if the non-units form an ideal in R.

THEOREM 2. Let R be a local weak Bezout domain with right A C Q .
(i) Let a = x^ 'x^* 2 ' . . . x(

n"
n) = y i P l ) . . . yJJJm) be two factorizations of an element a in R

into aratoms x-"1' and fy-atoms yfi*, respectively, with a1^.a2^.. .^an and pl>^2 —
. . . > / 3 m . Then n = m, af = f}t and there exist units et(i = 0,...,n) with l = e o = e n and
r (a , )_ _ - l v(«,)_

(ii) Let x be an a-atom, y a f}-atom in R with a </3. Then xy is a fi-atom y' in R.

Proof. (0 We know that n = m and at = ft from Theorem 1. Assume x and y are di-
atoms with xR n yR* 0. It follows that xR + yR = dR for some d in R, and xai? + yti? =
R where xu yx are defined through x = dxu y = dyx. If dR?* xR and dR^ yR we see that
xx and y: are still a-atoms and a contradiction would be reached. This leaves us with
xR = yR = dR. This comment applied to x ^ and y ^ leads to 4Ol )= y^ '^i for some unit
ex in R. Cancellation of X]"1' and induction after n ends the proof of (i). To prove (ii) let x
be an a-atom, y a /3-atom with a<fi. We have xy = y> for some /3-atom y in R
(Corollary 2) and as in the argument above xR + yR = xR must follow since R is a local
weak Bezout domain. This implies that only the first case of the two cases treated in the
proof of Corollary 2 can happen and proves the result.

We conclude with a few examples.
(1) The first example shows that there exist integral domains R with right ACQ such

that V(a) = {bR; bR>aR} is a lattice for every a # 0 in R, but JR does not have modular
factor lattice. Let K be any commutative field, K[t\t) = A the localization of the
polynomial ring K[t] on the prime ideal (t). There exists a monomorphism a from A into
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A which maps t to f2 and fixes the elements in K. Finally let R, = A[[x, o-]] be the skew
oo

power series ring in one variable x with the elements £ fljX', a* in A, and xa = cr(a). x. We
o

know from [3] that Ri is an integral domain with right and left ACQ, the intersection of
any two principal right ideals is again a principal right ideal and the numbers of
irreducible factors in a factorization of a is bounded by some constant dependent on a.
This implies that V(a) is a lattice, but this lattice is not modular in general as can be seen
for a - xt for example.

(2) One can choose the field K in the first example so that there exists a
monomorphism T from A into K. Let R2 be the free power series ring R2 = A{{X, T}} in a
set on non-commuting variables X = {xj, i e I, such that A is not in the center, but that
a. xf = XjT(a) determines the multiplication. R2 is a local Bezout domain with right ACQ
and J?f = S2.

(3) The last example shows that the uniqueness statement in Theorem 1 can be
correct for elements in Sa in an integral domain R with right ACQ, but wrong for
elements in Sp with ($>a. We use the local ring A with its monomorphism T from
Example 2. Let T be the skew power series ring A[[x, T]] in one variable over A with
elements X x'ai, ^ e A and ax = xr(a). Let R3 be the subring of T consisting of all those

i = 0

elements for which the coefficient ax of x is zero. The 1-atoms are of the form te for e a
unit in R3 and every element in St can be factored uniquely up to units. But x2 and x3 are
both 2-atoms and x6 = (x2)3 = (x3)2.
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