UNIQUE FACTORIZATION IN RINGS WITH RIGHT ACC \boldsymbol{c}_{1}

by H. H. BRUNGS

(Received 2 May, 1977)
If R is an integral domain with maximum condition for principal right ideals-right ACC_{1}-every nonzero non-unit in R has irreducible factors, but is not necessarily a product of such factors. Using additional basic factors-called infinite primes in [1]results about unique factorization in principal right ideal domains have been obtained in [1], [2], and [5].

In this paper we will define generalized atoms, more exactly $\alpha-$ atoms, α an ordinal, for any integral domain R with right ACC_{1}. The 1 -atoms are just the irreducible elements. Every nonzero non-unit in R can be written as a finite product of generalized atoms. If R is a domain with modular factor lattice, i.e. $V(a)=\{b R: a \in b R\}$ is a modular lattice with respect to inclusion for every nonzero element a in R, any two factorizations of a nonzero element into products of generalized atoms contain the same number of α-atoms for a fixed ordinal α, provided no β-atom with $\beta<\alpha$ precedes an α-atom in these factorizations (Theorem 1). Sharper results are obtained in case R is a weak Bezout domain or even a local weak Bezout domain.

Let R be an integral domain with right ACC_{1}. We write R^{*} for the multiplicative semigroup of nonzero elements of R. We define for every ordinal α a subsemigroup S_{α} of R^{*} as follows:
S_{0} is the group of units of R.
$S_{\alpha}=\cup S_{\beta}, \beta<\alpha$, for α a limit ordinal.
If $\beta=\alpha-1$ exists we say an element a in R^{*} with a not in S_{β} is an α-atom if $a R$ is maximal among the principal right ideals $b R$ with b not in S_{β}. S_{α} is then defined as the subsemigroup of R^{*} generated by S_{β} and the set of α-atoms.

Under the above assumption there exists an ordinal α_{0} minimal with the property that $R^{*}=S_{\alpha_{0}}$. We refer to α-atoms for any α as generalized atoms. The next result follows immediately.

Lemma 1. Let R be an integral domain with right ACC_{1}. Then every nonzero non-unit a in R can be written as a product of generalized atoms.

Let R be an integral domain with modular factor lattice and right $A C C_{1}$. It then follows that the intersection of any two principal right ideals $a R, b R$ of R is again a principal right ideal: $a R \cap b R=v R$. Further, any two elements a, b in R with $a R \cap b R \neq 0$ have a greatest common left divisor d with $a R \sqcup b R=d R$. We write $[a, b]=v=a b^{\prime}$ if $a R \cap b R=v R \neq 0, a^{-1}[a, b]$ for b^{\prime} and $(a, b)=d$ if $a R \sqcup b R=d R$. We write $[a R, b R]$ for the sublattice $\{c R ; a R \leq c R \leq b R\}$ of $V(a)$ if $a R \leq b R$. We need the following definition.

Defintion. An element a^{\prime} is related to an element a through d if there exists an element b with $(a, b)=d$ and $b^{-1}[a, b]=a^{\prime}$.

In case $a R+b R=a R \sqcup b R=d R$ holds, it is clear that a^{\prime} related to a through d
implies that a^{\prime} is similar to a_{1} with $a=d a_{1}$. We recall that two elements r, r^{\prime} in R are called similar if $R / r R$ and $R / r^{\prime} R$ are isomorphic as R-modules (see [4] for details).

Lemma 2. Let $b, a=a_{1} a_{2}$ be nonzero elements in an integral domain R with right ACC_{1} and modular factor lattice. Then $b^{-1}\left[b, a_{1} a_{2}\right]=a_{1}^{\prime} a_{2}^{\prime}$ where a_{1}^{\prime} is related to a_{1} through d_{1} and a_{2}^{\prime} is related to a_{2} through d_{2} with d_{1} a left factor of $d=(b, a)$ and d_{2} related to d through d_{3} with $d_{3} R=a_{1} R \sqcup d R$.

Proof. We have $\left[b, a_{1} a_{2}\right]=\left[b, a_{1}\right] r$ for some r in R; $\left[a_{1}^{-1}\left[b, a_{1}\right], a_{2}\right]=a_{1}^{-1}\left[b, a_{1}\right] r$ follows. This leads to $r=c^{-1}\left[c, a_{2}\right]$ with $c=a_{1}^{-1}\left[b, a_{1}\right]$ and the desired equation with $a_{1}^{\prime}=b^{-1}\left[b, a_{1}\right]$ and $a_{2}^{\prime}=c^{-1}\left[c, a_{2}\right]$. We see that $\left(b, a_{1}\right)=d_{1}$ is a left factor of d. It remains to consider $c R \sqcup a_{2} R=d_{2} R$. This leads to $a_{1} d_{2} R=\left(b R \cap a_{1} R\right) \sqcup a R=a_{1} R \cap(a R \sqcup b R)=$ $a_{1} R \cap d R$, the claimed relation.

We observe that the lattices $V\left(d_{1}\right), V\left(d_{2}\right)$ are isomorphic to lattices $V\left(t_{1}\right), V\left(t_{2}\right)$ respectively where t_{1} and t_{2} are factors of d. The statement is obvious for $V\left(d_{1}\right)$, since we can take $t_{1}=d_{1}$. To see the second part assume $d=d_{3} d_{4}$ for some element d_{4}. It follows that the lattices

$$
V\left(d_{4}\right)=\left[d_{4} R, R\right] \cong\left[d R, d_{3} R\right] \cong\left[a_{1} d_{2} R, a_{1} R\right] \cong\left[d_{2} R, R\right]=V\left(d_{2}\right)
$$

are isomorphic, since $V\left(a_{1} d_{2}\right)$ is modular and $d_{3} R=a_{1} R \sqcup d R, a_{1} d_{2} R=a_{1} R \cap d R$ holds.
Corollary 1. Let $r=a_{1} \ldots a_{n}=b_{1} \ldots b_{m}$ be two factorizations of an element r. Then either a_{1} is a left factor of b_{1} or there exists an index $j(2 \leq j \leq n)$ and an element c in R such that

$$
r=a_{1} b_{1}^{\prime} \ldots b_{j-1}^{\prime} c b_{j+1} \ldots b_{m}
$$

and $a_{1}^{\prime} c=b_{j}$. The element a_{1}^{\prime} is related to a_{1} through d_{0} and b_{i}^{\prime} is related to b_{i} through d_{i} for $i=1, \ldots, j-1$. The lattice $V\left(d_{i}\right)$ is isomorphic to $V\left(t_{i}\right)$ for $i=0, \ldots, j-1$ where t_{i} is a factor of d defined as $d=\left(a_{1}, b_{1} \ldots b_{j-1}\right)$ with $d R \supset a_{1} R$.

For a proof it is only necessary to choose j such that a_{1} is not a left factor of $b_{1} \ldots b_{j-1}$, but a left factor of $b_{1} \ldots b_{j}$ which then will equal to $\left[a_{1}, b_{1} \ldots b_{j-1}\right] c$ for some c in R, defining the c above. The rest follows from Lemma 2.

Lemma 3. Let R be an integral domain with right ACC_{1} and modular factor lattice. Assume $R=S_{\alpha_{0}}$ and that β is an ordinal with $0 \leq \beta<\alpha_{0}, \gamma=\beta+1$. Then
(i) $a b$ is in S_{β} if and only if a, b are in S_{β} for elements a, b in R.
(ii) If x is a γ-atom, $x=d y$ for d in S_{β}, y in R then y is a γ-atom.
(iii) If $a=n_{1} x_{1} n_{2} x_{2} \ldots n_{k} x_{k} n_{k+1}=m_{1} y_{1} m_{2} y_{2} \ldots m_{t} y_{t} r$ is an element in S_{γ} with x_{i}, y_{j} γ-atoms and n_{i}, m_{j} elements in S_{β} for all i, j, and r is in R then $t \leq k$.
Proof. We prove these statements simultaneously by transfinite induction on β. Let $\beta=0$. Then (i) is obvious, (ii) is true since d will be a unit and $y=d^{-1} x$ is a 1 -atom if and only if x is. Finally, (iii) follows from the Jordan-Hölder Theorem for modular lattices.

We now assume that the statements are true for all $\alpha<\beta, \beta$ a non-limit ordinal. (The arguments in case β is a limit ordinal are only slightly different and will be omitted).

To prove (i) let r be an element in R, not contained in S_{β}. Given any natural number q, there exist β-atoms x_{1}, \ldots, x_{q} with $r=x_{1} \ldots x_{q} r_{q}$ for some element r_{q} in R. This together with (iii) applied to S_{β} proves (i).
(ii) Let x be a γ-atom, d in $S_{\beta}, x=d y$. The element y is not contained in $S_{\beta}, y=z r$ for some γ-atom z with some r in R and $x=d z r$ follows. Using (i) we know that $d z$ is not in S_{β}, and since x is a γ-atom, we conclude that r must be a unit in R and y is a γ-atom.
(iii) We observe that x^{\prime} is a γ-atom if x^{\prime} is related to a γ-atom x through d with $d R \supset x R$. This is obvious if we apply (ii) with $x=d y$ to obtain that y is a γ-atom and recall that $V\left(x^{\prime}\right)$ and $V(y)$ are isomorphic lattices. Similarly, if a^{\prime} is related to a through d with a in S_{β} it follows that a^{\prime} is in S_{β}.

If we apply Corollary 1 to the two factorizations

$$
a=n_{1} x_{1} n_{2} \ldots n_{k} x_{k} n_{k+1}=m_{1} y_{1} \ldots m_{l} y_{t} r
$$

we see that we can assume that $n_{1}=1$. A second application of this Corollary shows that either x_{1} is a left factor of m_{1} or, in case m_{1} equals 1 , of y_{1}, or

$$
a=x_{1} n_{2} \ldots n_{k} x_{k} n_{k+1}=x_{1} m_{1}^{\prime} y_{1}^{\prime} \ldots m_{j}^{\prime} c_{1} m_{j+1} y_{j+1} \ldots r
$$

for some $j \leq t$, or $a=x_{1} m_{1}^{\prime} y_{1}^{\prime} \ldots m_{i}^{\prime} y_{i}^{\prime} c_{2}$. The elements m_{i}^{\prime} are still in S_{β}, the y_{i}^{\prime} are still γ-atoms, $x_{1}^{\prime} c_{1}=y_{j}$ implies c_{1} is a unit in R and $x_{1}^{\prime} c_{2}=r$ holds in the second case for some element c_{2} in R.

The statement (iii) follows by induction on k after cancelling x_{1}.
Corollary 2. Let x be an α-atom, y a β-atom with $\alpha<\beta$ in a ring R satisfying the assumptions of Lemma 3. Then $x y=y^{\prime}$ or $x y=y^{\prime} x^{\prime}$ for a β-atom y^{\prime} and an α-atom x^{\prime}.

Proof. We have $x y=\bar{y} r$ for some β-atom \bar{y} and an element r in R. If $\bar{y}=x y_{1}$ for some element y_{1} in R we obtain that y_{1} is a β-atom, $y=y_{1} r$ and r must be a unit; $x y=\bar{y} r=y^{\prime}$ with y^{\prime} a β-atom. If \bar{y} is not contained in $x R$ we have $x R \cap \bar{y} R=x y_{1} R=\bar{y} x_{1} R$ for elements y_{1} and x_{1} in R. This leads to $x y_{1} c=\bar{y} x_{1} c=x y=\bar{y} r$ for some element c in R. Since y_{1} is a β-atom, c must be a unit in R. The element x_{1} is an α-atom and $x y=y^{\prime} x^{\prime}$ follows with $y^{\prime}=\bar{y}, x^{\prime}=x_{1} c$.

Theorem 1. Let R be an integral domain with modular factor lattice and right ACC_{1}. Then every nonzero non-unit a in R can be written as

$$
\begin{equation*}
a=x_{1}^{\left(\alpha_{1}\right)} \ldots x_{n_{1}}^{\left(\alpha_{1}\right)} x_{1}^{\left(\alpha_{2}\right)} \ldots x_{n_{2}}^{\left(\alpha_{2}\right)} \ldots x_{1}^{\left(\alpha_{k}\right)} \ldots x_{n_{k}}^{\left(\alpha_{k}\right)} \tag{*}
\end{equation*}
$$

where the $x_{i}^{\left(\alpha_{i}\right)}$ are α_{j}-atoms in R with $\alpha_{1}>\alpha_{2}>\ldots>\alpha_{k}$. If

$$
a=y_{1}^{\left(\beta_{1}\right)} \ldots y_{m_{1}}^{\left(\beta_{1}\right)} y_{1}^{\left(\beta_{2}\right)} \ldots y_{m_{2}}^{\left(\beta_{2}\right)} \ldots y_{1}^{\left(\beta_{1}\right)} \ldots y_{m_{1}}^{\left(\beta_{1}\right)}
$$

is another such factorization with β_{j}-atoms $y_{i}^{\left(\beta_{j}\right)}$ and $\beta_{1}>\beta_{2}>\ldots>\beta_{1}$ then we have $t=k$, $n_{i}=m_{i}, \alpha_{i}=\beta_{i}$ for $i=1, \ldots, k$ and there exist units $\varepsilon_{i}(i=0, \ldots, k)$ with $\varepsilon_{0}=\varepsilon_{k}=1$ and

$$
\varepsilon_{i-1}^{-1} y_{1}^{\left(\alpha_{i}\right)} \ldots y_{n_{1}}^{\left(\alpha_{i}\right)} \varepsilon_{i}=x_{1}^{\left(\alpha_{i}\right)} \ldots x_{m_{i}}^{\left(\alpha_{1}\right)}
$$

for $i=1, \ldots, k$.

Proof. It follows from Lemma 1 and Corollary 2 that a factorization (*) exists for every nonzero non-unit a in R. The ordinal α_{1} is determined by a as the ordinal α minimal with the property that a is contained in S_{α}. We obtain $\alpha_{1}=\beta_{1}$ and $n_{1}=m_{1}$ using (iii) in Lemma 3. That $x_{1}^{\left(\alpha_{1}\right)} \ldots x_{n}^{\left(\alpha_{1}\right)}=y_{1}^{\left(\beta_{1}\right)} \ldots y_{n}^{\left(\beta_{1}\right)} \varepsilon_{1}$ for some unit ε_{1} in R follows from a repeated application of Corollary 1 . We have to observe that a β-atom cannot have a factor which is related to an α-atom through d for d in S_{γ} and $\gamma<\alpha, \beta<\alpha$. An easy induction finishes the proof of the theorem.

The above results can be applied to weak Bezout domains with right ACC_{1}. We recall that an integral domain in which the sum and the intersection of any two principal right ideals is principal whenever the intersection is nonzero is called a weak Bezout domain. We make the following definition. Let R be a weak Bezout domain with right ACC_{1}. Two β-atoms x and y are called linked if there exist β-atoms $x=z_{0}, z_{1}, z_{2}, \ldots, z_{n}=y$ in R such that either z_{i} is similar to z_{i+1} or that $z_{i}=d_{i} z_{i+1}$ or that $d_{i} z_{i}=z_{i+1}$ for d_{i} in S_{α} with $\alpha<\beta$ for $i=0, \ldots, n-1$. With this notation we formulate the following addition to Theorem 1.

Corollary. Let R be a weak Bezout domain with right ACC_{1}. Let $a=x_{1} \ldots x_{n}=$ $y_{1} \ldots y_{n}$ be two factorizations of an element a in R into β-atoms x_{i}, y_{j} respectively. Then there exists a permutation σ of $\{1, \ldots, n\}$ such that x_{i} and $y_{\sigma(i)}$ are linked for $i=1, \ldots, n$.

The best possible result is obtained for local weak Bezout domains. Here we say a ring R is local if the non-units form an ideal in R.

Theorem 2. Let R be a local weak Bezout domain with right ACC_{1}.
(i) Let $a=x_{1}^{\left(\alpha_{1}\right)} x_{2}^{\left(\alpha_{2}\right)} \ldots x_{n}^{\left(\alpha_{n}\right)}=y_{1}^{\left(\beta_{1}\right)} \ldots y_{m}^{\left(\beta_{m}\right)}$ be two factorizations of an element a in R into α_{i}-atoms $x_{i}^{\left(\alpha_{i}\right)}$ and β_{j}-atoms $y_{j}^{\left(\beta_{i}\right)}$, respectively, with $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq$ $\ldots \geq \beta_{m}$. Then $n=m, \alpha_{i}=\beta_{i}$ and there exist units $\varepsilon_{i}(i=0, \ldots, n)$ with $1=\varepsilon_{0}=\varepsilon_{n}$ and $x_{i}^{\left(\alpha_{i}\right)}=\varepsilon_{i=1}^{-1} y_{i}^{\left(\alpha_{i}\right)} \varepsilon_{i}$.
(ii) Let x be an α-atom, y a β-atom in R with $\alpha<\beta$. Then $x y$ is a β-atom y^{\prime} in R.

Proof. (i) We know that $n=m$ and $\alpha_{i}=\beta_{i}$ from Theorem 1. Assume x and y are α atoms with $x R \cap y R \neq 0$. It follows that $x R+y R=d R$ for some d in R, and $x_{1} R+y_{1} R=$ R where x_{1}, y_{1} are defined through $x=d x_{1}, y=d y_{1}$. If $d R \neq x R$ and $d R \neq y R$ we see that x_{1} and y_{1} are still α-atoms and a contradiction would be reached. This leaves us with $x R=y R=d R$. This comment applied to $x_{1}^{\left(\alpha_{1}\right)}$ and $y_{1}^{\left(\alpha_{1}\right)}$ leads to $x_{1}^{\left(\alpha_{1}\right)}=y_{1}^{\left(\alpha_{1}\right)} \varepsilon_{1}$ for some unit ε_{1} in R. Cancellation of $x_{1}^{\left(\alpha_{1}\right)}$ and induction after n ends the proof of (i). To prove (ii) let x be an α-atom, y a β-atom with $\alpha<\beta$. We have $x y=\bar{y} r$ for some β-atom \bar{y} in R (Corollary 2) and as in the argument above $x R+\bar{y} R=x R$ must follow since R is a local weak Bezout domain. This implies that only the first case of the two cases treated in the proof of Corollary 2 can happen and proves the result.

We conclude with a few examples.
(1) The first example shows that there exist integral domains R with right ACC_{1} such that $V(a)=\{b R ; b R \geq a R\}$ is a lattice for every $a \neq 0$ in R, but R does not have modular factor lattice. Let K be any commutative field, $K[t]_{(t)}=A$ the localization of the polynomial ring $K[t]$ on the prime ideal (t). There exists a monomorphism σ from A into
A which maps t to t^{2} and fixes the elements in K. Finally let $R_{1}=A[[x, \sigma]]$ be the skew power series ring in one variable x with the elements $\sum_{0}^{\infty} a_{i} x^{i}, a_{i}$ in A, and $x a=\sigma(a) . x$. We know from [3] that R_{1} is an integral domain with right and left ACC_{1}, the intersection of any two principal right ideals is again a principal right ideal and the numbers of irreducible factors in a factorization of a is bounded by some constant dependent on a. This implies that $V(a)$ is a lattice, but this lattice is not modular in general as can be seen for $a=x t$ for example.
(2) One can choose the field K in the first example so that there exists a monomorphism τ from A into K. Let R_{2} be the free power series ring $R_{2}=A\{\{X, \tau\}$ in a set on non-commuting variables $X=\left\{x_{i}\right\}, i \in I$, such that A is not in the center, but that $a . x_{i}=x_{i} \tau(a)$ determines the multiplication. R_{2} is a local Bezout domain with right ACC $_{1}$ and $R_{2}^{*}=S_{2}$.
(3) The last example shows that the uniqueness statement in Theorem 1 can be correct for elements in S_{α} in an integral domain R with right ACC_{1}, but wrong for elements in S_{β} with $\beta>\alpha$. We use the local ring A with its monomorphism τ from Example 2. Let T be the skew power series ring $A[[x, \tau]]$ in one variable over A with elements $\sum_{i=0}^{\infty} x^{i} a_{i}, a_{i} \in A$ and $a x=x \tau(a)$. Let R_{3} be the subring of T consisting of all those elements for which the coefficient a_{1} of x is zero. The 1 -atoms are of the form $t \varepsilon$ for ε a unit in R_{3} and every element in S_{1} can be factored uniquely up to units. But x^{2} and x^{3} are both 2-atoms and $x^{6}=\left(x^{2}\right)^{3}=\left(x^{3}\right)^{2}$.

REFERENCES

1. R. A. Beauregard, Infinite primes and unique factorization in a principal right ideal domain, Trans. Amer. Math. Soc. 141 (1969), 245-253.
2. H. H. Brungs, Generalized discrete valuation rings, Canad. J. Math. 21 (1969), 1404-1408.
3. H. H. Brungs, Ringe mit eindeutiger Faktorzerlegung, J. Reine Angew. Math. 236 (1969), 45-66.
4. P. M. Cohn, Free rings and their relations (Academic Press, 1971).
5. A. Jategaonkar, Left principal ideal rings, Lecture Notes in Mathematics $\mathbf{1 2 3}$ (SpringerVerlag, 1970).

Department of Mathematics
University of Alberta
Edmonton
Alberta
Canada

