UNIQUE FACTORIZATION IN RINGS WITH RIGHT ACC₁

by H. H. BRUNGS

(Received 2 May, 1977)

If R is an integral domain with maximum condition for principal right ideals—right ACC₁—every nonzero non-unit in R has irreducible factors, but is not necessarily a product of such factors. Using additional basic factors—called infinite primes in [1]—results about unique factorization in principal right ideal domains have been obtained in [1], [2], and [5].

In this paper we will define generalized atoms, more exactly α -atoms, α an ordinal, for any integral domain R with right ACC₁. The 1-atoms are just the irreducible elements. Every nonzero non-unit in R can be written as a finite product of generalized atoms. If R is a domain with modular factor lattice, i.e. $V(a) = \{bR : a \in bR\}$ is a modular lattice with respect to inclusion for every nonzero element a in R, any two factorizations of a nonzero element into products of generalized atoms contain the same number of α -atoms for a fixed ordinal α , provided no β -atom with $\beta < \alpha$ precedes an α -atom in these factorizations (Theorem 1). Sharper results are obtained in case R is a weak Bezout domain or even a local weak Bezout domain.

Let R be an integral domain with right ACC₁. We write R^* for the multiplicative semigroup of nonzero elements of R. We define for every ordinal α a subsemigroup S_{α} of R^* as follows:

 S_0 is the group of units of R.

 $S_{\alpha} = \bigcup S_{\beta}, \ \beta < \alpha, \ \text{for } \alpha \text{ a limit ordinal.}$

If $\beta = \alpha - 1$ exists we say an element *a* in R^* with *a* not in S_{β} is an α -atom if *aR* is maximal among the principal right ideals *bR* with *b* not in S_{β} . S_{α} is then defined as the subsemigroup of R^* generated by S_{β} and the set of α -atoms.

Under the above assumption there exists an ordinal α_0 minimal with the property that $R^* = S_{\alpha_0}$. We refer to α -atoms for any α as generalized atoms. The next result follows immediately.

LEMMA 1. Let R be an integral domain with right ACC_1 . Then every nonzero non-unit a in R can be written as a product of generalized atoms.

Let R be an integral domain with modular factor lattice and right ACC₁. It then follows that the intersection of any two principal right ideals aR, bR of R is again a principal right ideal: $aR \cap bR = vR$. Further, any two elements a, b in R with $aR \cap bR \neq 0$ have a greatest common left divisor d with $aR \sqcup bR = dR$. We write [a, b] = v = ab' if $aR \cap bR = vR \neq 0$, $a^{-1}[a, b]$ for b' and (a, b) = d if $aR \sqcup bR = dR$. We write [aR, bR] for the sublattice $\{cR; aR \le cR \le bR\}$ of V(a) if $aR \le bR$. We need the following definition.

DEFINITION. An element a' is related to an element a through d if there exists an element b with (a, b) = d and $b^{-1}[a, b] = a'$.

In case $aR + bR = aR \sqcup bR = dR$ holds, it is clear that a' related to a through d

Glasgow Math. J. 19 (1978) 167-171

5

H. H. BRUNGS

implies that a' is similar to a_1 with $a = da_1$. We recall that two elements r, r' in R are called similar if R/rR and R/r'R are isomorphic as R-modules (see [4] for details).

LEMMA 2. Let b, $a = a_1a_2$ be nonzero elements in an integral domain R with right ACC₁ and modular factor lattice. Then $b^{-1}[b, a_1a_2] = a'_1a'_2$ where a'_1 is related to a_1 through d_1 and a'_2 is related to a_2 through d_2 with d_1 a left factor of d = (b, a) and d_2 related to d through d_3 with $d_3R = a_1R \sqcup dR$.

Proof. We have $[b, a_1a_2] = [b, a_1]r$ for some r in R; $[a_1^{-1}[b, a_1], a_2] = a_1^{-1}[b, a_1]r$ follows. This leads to $r = c^{-1}[c, a_2]$ with $c = a_1^{-1}[b, a_1]$ and the desired equation with $a_1' = b^{-1}[b, a_1]$ and $a_2' = c^{-1}[c, a_2]$. We see that $(b, a_1) = d_1$ is a left factor of d. It remains to consider $cR \sqcup a_2R = d_2R$. This leads to $a_1d_2R = (bR \cap a_1R) \sqcup aR = a_1R \cap (aR \sqcup bR) = a_1R \cap dR$, the claimed relation.

We observe that the lattices $V(d_1)$, $V(d_2)$ are isomorphic to lattices $V(t_1)$, $V(t_2)$ respectively where t_1 and t_2 are factors of d. The statement is obvious for $V(d_1)$, since we can take $t_1 = d_1$. To see the second part assume $d = d_3d_4$ for some element d_4 . It follows that the lattices

$$V(d_4) = [d_4R, R] \cong [dR, d_3R] \cong [a_1d_2R, a_1R] \cong [d_2R, R] = V(d_2)$$

are isomorphic, since $V(a_1d_2)$ is modular and $d_3R = a_1R \sqcup dR$, $a_1d_2R = a_1R \cap dR$ holds.

COROLLARY 1. Let $r = a_1 \dots a_n = b_1 \dots b_m$ be two factorizations of an element r. Then either a_1 is a left factor of b_1 or there exists an index $j(2 \le j \le n)$ and an element c in R such that

$$r = a_1 b'_1 \dots b'_{j-1} c b_{j+1} \dots b_m$$

and $a'_1c = b_j$. The element a'_1 is related to a_1 through d_0 and b'_i is related to b_i through d_i for i = 1, ..., j-1. The lattice $V(d_i)$ is isomorphic to $V(t_i)$ for i = 0, ..., j-1 where t_i is a factor of d defined as $d = (a_1, b_1 ... b_{j-1})$ with $dR \supset a_1R$.

For a proof it is only necessary to choose j such that a_1 is not a left factor of $b_1 \ldots b_{j-1}$, but a left factor of $b_1 \ldots b_j$ which then will equal to $[a_1, b_1 \ldots b_{j-1}]c$ for some c in R, defining the c above. The rest follows from Lemma 2.

LEMMA 3. Let R be an integral domain with right ACC₁ and modular factor lattice. Assume $R = S_{\alpha\alpha}$ and that β is an ordinal with $0 \le \beta < \alpha_0$, $\gamma = \beta + 1$. Then

- (i) ab is in S_{β} if and only if a,b are in S_{β} for elements a, b in R.
- (ii) If x is a γ -atom, x = dy for d in S_{β} , y in R then y is a γ -atom.
- (iii) If $a = n_1 x_1 n_2 x_2 ... n_k x_k n_{k+1} = m_1 y_1 m_2 y_2 ... m_i y_i r$ is an element in S_{γ} with $x_i, y_j \gamma$ -atoms and n_i, m_i elements in S_{β} for all i, j, and r is in R then $t \le k$.

Proof. We prove these statements simultaneously by transfinite induction on β . Let $\beta = 0$. Then (i) is obvious, (ii) is true since d will be a unit and $y = d^{-1}x$ is a 1-atom if and only if x is. Finally, (iii) follows from the Jordan-Hölder Theorem for modular lattices.

We now assume that the statements are true for all $\alpha < \beta$, β a non-limit ordinal. (The arguments in case β is a limit ordinal are only slightly different and will be omitted).

To prove (i) let r be an element in R, not contained in S_{β} . Given any natural number q, there exist β -atoms x_1, \ldots, x_q with $r = x_1 \ldots x_q r_q$ for some element r_q in R. This together with (iii) applied to S_{β} proves (i).

(ii) Let x be a γ -atom, d in S_{β} , x = dy. The element y is not contained in S_{β} , y = zr for some γ -atom z with some r in R and x = dzr follows. Using (i) we know that dz is not in S_{β} , and since x is a γ -atom, we conclude that r must be a unit in R and y is a γ -atom.

(iii) We observe that x' is a γ -atom if x' is related to a γ -atom x through d with $dR \supset xR$. This is obvious if we apply (ii) with x = dy to obtain that y is a γ -atom and recall that V(x') and V(y) are isomorphic lattices. Similarly, if a' is related to a through d with a in S_{β} it follows that a' is in S_{β} .

If we apply Corollary 1 to the two factorizations

$$a = n_1 x_1 n_2 \ldots n_k x_k n_{k+1} = m_1 y_1 \ldots m_i y_i r$$

we see that we can assume that $n_1 = 1$. A second application of this Corollary shows that either x_1 is a left factor of m_1 or, in case m_1 equals 1, of y_1 , or

$$a = x_1 n_2 \dots n_k x_k n_{k+1} = x_1 m'_1 y'_1 \dots m'_i c_1 m_{i+1} y_{i+1} \dots r$$

for some $j \le t$, or $a = x_1 m'_1 y'_1 \dots m'_i y'_i c_2$. The elements m'_i are still in S_β , the y'_i are still γ -atoms, $x'_1 c_1 = y_j$ implies c_1 is a unit in R and $x'_1 c_2 = r$ holds in the second case for some element c_2 in R.

The statement (iii) follows by induction on k after cancelling x_1 .

COROLLARY 2. Let x be an α -atom, y a β -atom with $\alpha < \beta$ in a ring R satisfying the assumptions of Lemma 3. Then xy = y' or xy = y'x' for a β -atom y' and an α -atom x'.

Proof. We have $xy = \bar{y}r$ for some β -atom \bar{y} and an element r in R. If $\bar{y} = xy_1$ for some element y_1 in R we obtain that y_1 is a β -atom, $y = y_1r$ and r must be a unit; $xy = \bar{y}r = y'$ with y' a β -atom. If \bar{y} is not contained in xR we have $xR \cap \bar{y}R = xy_1R = \bar{y}x_1R$ for elements y_1 and x_1 in R. This leads to $xy_1c = \bar{y}x_1c = xy = \bar{y}r$ for some element c in R. Since y_1 is a β -atom, c must be a unit in R. The element x_1 is an α -atom and xy = y'x' follows with $y' = \bar{y}, x' = x_1c$.

THEOREM 1. Let R be an integral domain with modular factor lattice and right ACC_1 . Then every nonzero non-unit a in R can be written as

$$a = x_1^{(\alpha_1)} \dots x_{n_1}^{(\alpha_1)} x_1^{(\alpha_2)} \dots x_{n_2}^{(\alpha_2)} \dots x_1^{(\alpha_k)} \dots x_{n_k}^{(\alpha_k)}$$
(*)

where the $x_i^{(\alpha_i)}$ are α_i -atoms in R with $\alpha_1 > \alpha_2 > \ldots > \alpha_k$. If

$$a = y_1^{(\beta_1)} \dots y_{m_1}^{(\beta_1)} y_1^{(\beta_2)} \dots y_{m_2}^{(\beta_2)} \dots y_1^{(\beta_i)} \dots y_{m_t}^{(\beta_i)}$$

is another such factorization with β_i -atoms $y_i^{(\beta_i)}$ and $\beta_1 > \beta_2 > \ldots > \beta_i$ then we have t = k, $n_i = m_i$, $\alpha_i = \beta_i$ for $i = 1, \ldots, k$ and there exist units $\varepsilon_i (i = 0, \ldots, k)$ with $\varepsilon_0 = \varepsilon_k = 1$ and

$$\varepsilon_{i-1}^{-1}y_1^{(\alpha_i)}\ldots y_{n_i}^{(\alpha_i)}\varepsilon_i=x_1^{(\alpha_i)}\ldots x_{n_i}^{(\alpha_i)}$$

for i = 1, ..., k.

H. H. BRUNGS

Proof. It follows from Lemma 1 and Corollary 2 that a factorization (*) exists for every nonzero non-unit a in R. The ordinal α_1 is determined by a as the ordinal α minimal with the property that a is contained in S_{α} . We obtain $\alpha_1 = \beta_1$ and $n_1 = m_1$ using (*iii*) in Lemma 3. That $x_1^{(\alpha_1)} \dots x_n^{(\alpha_1)} = y_1^{(\beta_1)} \dots y_n^{(\beta_1)} \varepsilon_1$ for some unit ε_1 in R follows from a repeated application of Corollary 1. We have to observe that a β -atom cannot have a factor which is related to an α -atom through d for d in S_{γ} and $\gamma < \alpha, \beta < \alpha$. An easy induction finishes the proof of the theorem.

The above results can be applied to weak Bezout domains with right ACC₁. We recall that an integral domain in which the sum and the intersection of any two principal right ideals is principal whenever the intersection is nonzero is called a *weak Bezout domain*. We make the following definition. Let R be a weak Bezout domain with right ACC₁. Two β -atoms x and y are called *linked* if there exist β -atoms $x = z_0, z_1, z_2, \ldots, z_n = y$ in R such that either z_i is similar to z_{i+1} or that $z_i = d_i z_{i+1}$ or that $d_i z_i = z_{i+1}$ for d_i in S_{α} with $\alpha < \beta$ for $i = 0, \ldots, n-1$. With this notation we formulate the following addition to Theorem 1.

COROLLARY. Let R be a weak Bezout domain with right ACC₁. Let $a = x_1 \dots x_n = y_1 \dots y_n$ be two factorizations of an element a in R into β -atoms x_i , y_j respectively. Then there exists a permutation σ of $\{1, \dots, n\}$ such that x_i and $y_{\sigma(i)}$ are linked for $i = 1, \dots, n$.

The best possible result is obtained for local weak Bezout domains. Here we say a ring R is local if the non-units form an ideal in R.

THEOREM 2. Let R be a local weak Bezout domain with right ACC_1 .

(i) Let $a = x_1^{(\alpha_1)} x_2^{(\alpha_2)} \dots x_n^{(\alpha_n)} = y_1^{(\beta_1)} \dots y_m^{(\beta_m)}$ be two factorizations of an element a in R into α_i -atoms $x_i^{(\alpha_i)}$ and β_j -atoms $y_j^{(\beta_j)}$, respectively, with $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_n$ and $\beta_1 \ge \beta_2 \ge \dots \ge \beta_m$. Then n = m, $\alpha_i = \beta_i$ and there exist units $\varepsilon_i (i = 0, \dots, n)$ with $1 = \varepsilon_0 = \varepsilon_n$ and $x_i^{(\alpha_i)} = \varepsilon_{i-1}^{-1} y_i^{(\alpha_i)} \varepsilon_i$.

(ii) Let x be an α -atom, y a β -atom in R with $\alpha < \beta$. Then xy is a β -atom y' in R.

Proof. (i) We know that n = m and $\alpha_i = \beta_i$ from Theorem 1. Assume x and y are α atoms with $xR \cap yR \neq 0$. It follows that xR + yR = dR for some d in R, and $x_1R + y_1R =$ R where x_1 , y_1 are defined through $x = dx_1$, $y = dy_1$. If $dR \neq xR$ and $dR \neq yR$ we see that x_1 and y_1 are still α -atoms and a contradiction would be reached. This leaves us with xR = yR = dR. This comment applied to $x_1^{(\alpha_1)}$ and $y_1^{(\alpha_1)}$ leads to $x_1^{(\alpha_1)} = y_1^{(\alpha_1)}\varepsilon_1$ for some unit ε_1 in R. Cancellation of $x_1^{(\alpha_1)}$ and induction after n ends the proof of (i). To prove (ii) let x be an α -atom, y a β -atom with $\alpha < \beta$. We have $xy = \bar{y}r$ for some β -atom \bar{y} in R (Corollary 2) and as in the argument above $xR + \bar{y}R = xR$ must follow since R is a local weak Bezout domain. This implies that only the first case of the two cases treated in the proof of Corollary 2 can happen and proves the result.

We conclude with a few examples.

(1) The first example shows that there exist integral domains R with right ACC₁ such that $V(a) = \{bR; bR \ge aR\}$ is a lattice for every $a \ne 0$ in R, but R does not have modular factor lattice. Let K be any commutative field, $K[t]_{(t)} = A$ the localization of the polynomial ring K[t] on the prime ideal (t). There exists a monomorphism σ from A into

170

A which maps t to t^2 and fixes the elements in K. Finally let $R_1 = A[[x, \sigma]]$ be the skew power series ring in one variable x with the elements $\sum_{i=0}^{\infty} a_i x^i$, a_i in A, and $xa = \sigma(a)$. x. We

know from [3] that R_1 is an integral domain with right and left ACC₁, the intersection of any two principal right ideals is again a principal right ideal and the numbers of irreducible factors in a factorization of a is bounded by some constant dependent on a. This implies that V(a) is a lattice, but this lattice is not modular in general as can be seen for a = xt for example.

(2) One can choose the field K in the first example so that there exists a monomorphism τ from A into K. Let R_2 be the free power series ring $R_2 = A\{\{X, \tau\}\}$ in a set on non-commuting variables $X = \{x_i\}, i \in I$, such that A is not in the center, but that $a \cdot x_i = x_i \tau(a)$ determines the multiplication. R_2 is a local Bezout domain with right ACC₁ and $R_2^* = S_2$.

(3) The last example shows that the uniqueness statement in Theorem 1 can be correct for elements in S_{α} in an integral domain R with right ACC₁, but wrong for elements in S_{β} with $\beta > \alpha$. We use the local ring A with its monomorphism τ from Example 2. Let T be the skew power series ring $A[[x, \tau]]$ in one variable over A with elements $\sum_{i=0}^{\infty} x^{i}a_{i}$, $a_{i} \in A$ and $ax = x\tau(a)$. Let R_{3} be the subring of T consisting of all those elements for which the coefficient a_{1} of x is zero. The 1-atoms are of the form $t\varepsilon$ for ε a unit in R_{3} and every element in S_{1} can be factored uniquely up to units. But x^{2} and x^{3} are both 2-atoms and $x^{6} = (x^{2})^{3} = (x^{3})^{2}$.

REFERENCES

1. R. A. Beauregard, Infinite primes and unique factorization in a principal right ideal domain, *Trans. Amer. Math. Soc.* 141 (1969), 245-253.

2. H. H. Brungs, Generalized discrete valuation rings, Canad. J. Math. 21 (1969), 1404-1408.

3. H. H. Brungs, Ringe mit eindeutiger Faktorzerlegung, J. Reine Angew. Math. 236 (1969), 45-66.

4. P. M. Cohn, Free rings and their relations (Academic Press, 1971).

5. A. Jategaonkar, Left principal ideal rings, Lecture Notes in Mathematics 123 (Springer-Verlag, 1970).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ALBERTA EDMONTON ALBERTA CANADA