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SUMMARY

Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-
temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use
environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities
and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia
(1991–2014). Hurdle and linear models were used to predict outbreak probabilities and incidence
respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model
fit and cross-validation. Residual RRV notification data were also examined against mitigation
expenditure for one site, Mandurah 2007–2014. Models were predictive of RRV activity, except
at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and
incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater
incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided
positively with increased RRV incidence (r2 = 0·21). Our research demonstrates capacity to
accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions.
We apply our findings, developing a user-friendly tool enabling managers to easily adopt this
research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of
value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne
diseases.
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INTRODUCTION

Arboviral diseases cause a significant impact upon
human health worldwide, with multiple climatic zones
(including tropical, semi-arid, and Mediterranean
regions) experiencing increased burdens from a plethora
of emerging and re-surging forms [1, 2]. Owing to

dependence on environmental features, their dynamics
(particularly mosquito-borne pathogens) are often
uniquely suited for forecasting using readily available
environmental data. Because of this, the timing of dis-
ease control can be matched effectively with vectorial
and disease risk. However, for many mosquito-borne
diseases forecast modelling of risk is often at a coarse
temporal resolution, such as monthly scales [3–5].
While this helps to understand disease dynamics, fore-
casts made on coarse temporal resolutions are often lim-
ited in their applicability to ‘on the ground’ disease
management, such as though vector reduction and well-
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timed public awareness campaigns. To enhance the
impact of disease control strategies, models that forecast
disease at temporal scales relevant to management (e.g.
weekly) and are also easily accessible to managers are
highly valuable.

Epidemiologically Ross River virus (RRV), family
Togaviridae genus Alphavirus, is Australia’s most
important vector-borne disease with 1451–9551 clin-
ical notifications per year (per capita rate >40/100
000) at an estimated annual health care and lost prod-
uctivity cost of $15 million [6–8]. The epidemiology of
RRV, like many mosquito-borne diseases, is fraught
with complexity. The drivers involved in transmission
span environmental conditions, vector and reservoir
host dynamics, and existing human mitigation, all
which vary across geographic and climatic regions
[9, 10]. RRV epidemic areas of Australia occur across
tropical, semi-arid, Mediterranean, and temperate cli-
mates. Thus, the processes underpinning RRV epi-
demics and their severity are complex [11–13].
Despite this complexity, studies have shown that dis-
ease forecasts can be achieved moderately well using
environmental drivers in many instances, as this can
be representative of many aspects of the biological
mechanisms determining transmission.

A multitude of studies incorporating various designs
have been used over the past three decades to define
environmental determinants of RRV notifications
[e.g. 5, 14, 15], and indeed many important mosquito-
borne diseases. A common theme among these studies
is the importance of precipitation, temperature, tidal
or flood variation, and humidity. These environmental
determinants directly or indirectly shape mechanisms
underscoring disease dynamics, including vector mos-
quito activity, reservoir hosts movement, breeding
interactions, and viral activity [16]. For instance, the
inundation of wetlands from precipitation and high
tides (where vectors are halotolerant) may cause the
movement of reservoir hosts from these areas closer
to the boundaries of urban areas while also providing
an ideal breeding site for the mosquitos [10, 16, 17].
The outcome of these environmental drivers can
enhance vector–host interactions, viral transmission
and spillover to humans [11, 18, 19]. Vectors in par-
ticular are highly responsive to changes in environ-
mental conditions, having the greatest potential for
rapid translation into increased abundance and infec-
tions [15, 20, 21].

While environmental factors can predict RRV
notifications, it should be acknowledged that predict-
ing RRV disease is best achieved using detailed

knowledge of vector abundance [13] and, where avail-
able, host information [5]. However, collection of such
detailed vector–host information is for many areas
infeasible, particularly over long durations. In con-
trast, environmental information is often much more
readily available and modelling approaches that can
best exploit widely available data sources to predict
and understand diseases are of significant value.
However, not all environmental determinants are
equal in all climates, and thus an appreciation of
their relative importance for predicting RRV across
geographic and climatic gradients is of value.
Further, while previous forecast modelling has aided
in the epidemiological understanding of RRV, very
few provide an accessible format by which health
departments may easily adopt modelling approaches
to public health and disease reduction.

Here we tackle the essential challenge of predicting
RRV at fine-temporal scales across multiple epidemic
centres using environmental determinants of disease;
and we produce a user friendly early warning system
based on these findings. We use RRV notification
data and environmental data over 23 years in five epi-
demiologically important centres in Western Australia,
spanning tropical, semi-arid, and Mediterranean
climates. We construct predictive models for RRV
outbreaks and their severity/incidence (the probability
of notifications above long-term averages and the
number of disease notifications, respectively), and
for one site, where data are available we determine
how well timing of expenditure on mitigation coin-
cides with RRV incidence. At a broad scale, this
research fills the long-standing void in improving our
understanding of environmental drivers on a fine-
temporal scale to forecast RRV transmission.
Building from previous literature, we provide insight
into the distinct differences between Mediterranean,
semi-arid and tropical areas for RRV transmission.
Knowledge of the fundamental differences in RRV
predictors between these climatic regions is critical
for environmental and public health managers
when considering region-specific approaches to vec-
tor mitigation and public education programmes.
Furthermore, we provide a means to improve pre-
dictive capabilities for RRV outbreaks where
mosquito surveillance is not currently being con-
ducted. We apply this research to create a user-
friendly predictive tool meant to assist public health
managers with timing of vector control, decision
making, and public health disease risk awareness
campaigns.
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METHODS

Study sites

Five sites in Western Australia were selected due to
their high mosquito-borne disease attack rates and
being epidemiologically important outbreak areas
(Fig. 1) [6, 22–24]. The northern sites of Derby and
Broome are situated in the Kimberly region and
experience tropical monsoonal rainfall. Port
Hedland, south of these two sites is in the Pilbara
region which experiences a semi-arid climate. These
northern sites commonly have Culex annulirostris (a
freshwater breeding mosquito) and Aedes vigilax (a
saltmarsh breeding mosquito) implicated in RRV
transmission [10]. All northern sites have salt marshes
neighbouring their town or shire. The southern sites of
Mandurah and Capel are in the Peel and southwest
geographic regions, respectively, a Mediterranean cli-
matic area. At these sites two saltmarsh breeding mos-
quitoes, Aedes camptorhynchus and Ae. vigilax, are
the primary vectors for RRV transmission [25].
Mandurah also plays host to one of the biggest estuar-
ine systems in Southern Western Australia, with a
multitude of canals and river systems stretching
inland. All sites have mosquito vector dynamics
locally driven by both tides and precipitation, except

one site, the Shire of Capel, which is non-tidal and
was selected to contrast the difference in drivers in
RRV transmission for non-tidal and tidal sites of the
Southern Mediterranean region.

Data sources

Data of RRV notifications was provided by the
Western Australian Department of Health and the
Western Australian Notifiable Infectious Diseases
Database for the period of January 1991–December
2014 containing the number of notifications and the
week of notification. Region-specific annual popula-
tion data were collected from current and historical
records from the Australian Bureau of Statistics [26].
RRV incidence for each region was then calculated
using the respective annual population size with the
number of RRV notifications per week to create inci-
dence (per 1000 individuals) per week. A fixed inci-
dence threshold was used as the definition of an
outbreak, where RRV incidence above the long term
average of the mean for each individual site resulted
in an outbreak, excluding weeks where incidence
were equal to zero [27]. Environmental data were col-
lected for the entire study period and gaps in missing
data recorded (Supplementary Table S1).

Fig. 1 Study sites. Map location of study sites. Showing Derby and Broome from a tropical region, Port Hedland from a
semi-arid region, and Mandurah and Capel from a Mediterranean region.
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Daily tidal data were collected from the Western
Australian Department of Transport and the
Australia Bureau of Meteorology for all sites exclud-
ing Capel (which does not have a locally occurring tid-
ally driven saltmarsh). Tide data were then
summarised into the recorded observed maximum
and minimum weekly tide heights. Derby experiences
very high tides, presenting some gauging problems,
where the minimum tide measurement could only be
recorded down to 375 cm (above sea level) where the
tide gauge is placed. As tidal measure below 375 cm
were not recorded in Derby, weekly minimum tide
was omitted from the Derby analysis. Furthermore,
it was rare for tidal data to be continuous for the com-
plete period (1991–2014) for any site. Where this
occurred, data from additional sites that were spatially
close to our primary study areas were compared using
cross-correlations to account for any time lags and
then linear regression models used for interpolating
missing values. Spatially matched sites included:
Derby matched with Broome (from 1991 to 1995),
and Port Hedland matched with Cape Lambert
(years 1995, 1997, and 2013–2014). All tidal data
were standardised to account for any alterations in
instrument measurements. In Eqn. (1), Pi is the
adjusted environmental observation where values
were missing, μ represents the observed environmental
variable in the comparative data set, β1 is the regres-
sion slope, and β0 is the regression intercept.

Pi = μ× β1 + β0. (1)

Precipitation data were collected from the Bureau
of Meteorology containing the amount of precipita-
tion on a daily scale. The daily precipitation was sum-
marised into weekly total precipitation. For sites
which did not have complete continuous data, a rela-
tively close comparative site was chosen, cross correla-
tions and linear regressions were again used on to
make interpolations, using the same methodology as
described for tides. Comparative matched sites
included: Derby matched with Yeeda (from 1991 to
1994), Mandurah matched with Karnet (from 2001
to 2014), and Capel matched with Thirlmere (from
2003 to 2014). All precipitation measurements are
reported in millimetres.

Daily maximum and minimum temperatures (°C)
were also provided by the Australia Bureau of
Meteorology with temperature being on a daily
scale. Temperatures were summarised into weekly
maximum and minimum mean temperatures. For
non-continuous data, comparative sites were used, as

described above. Comparative matched sites included:
Derby matched with a station at the Royal Australian
Air Force Base ‘Curtin’ (from 1991 to 1995), and
Mandurah matched with Karnet (from 2001 to
2014). The Bureau of Meteorology has no tempera-
ture monitoring stations located in and around
Capel. Temperature data for Capel were instead col-
lected from the Shire of Donnybrook 24 km East.

Statistical analyses

Environmental predictors of RRV

We utilised a structured approach to link environmen-
tal predictors with RRV notifications. Firstly, we
determined the optimal time-lags between environ-
mental predictors and RRV incidence. To determine
time lags between environmental variables and weekly
RRV incidence we utilised cross-correlation analysis,
a lagged effect was introduced for each environmental
variable at each site [28, 29]. Temporal lags account
for effects of environmental predictors on the lifecycle
of the virus and mosquitoes, human incubation prior
to disease notification, and host dynamics [5, 16, 30].
Cut-off points for maximum lag periods included bio-
logical considerations, visual observation of relative
peaks in RRV incidence in relation to the environ-
mental variable, and relative comparisons with other
lags presented in the literature [5, 29, 31]. This
meant that the cut-off periods for each environmental
variable were equal across all the sites. The given cut-
off time periods included 5 weeks for tidal heights, 10
weeks for precipitation, and 15 weeks for temperature
measurements. Before modelling, environmental vari-
ables were checked for multi-collinearity to ensure
they were not correlated with one another (>0·85
Pearson’s correlation; Supplementary Tables S2–S6).

Secondly, we applied two modelling approaches to
link time-lagged environmental factors with weekly
RRV: hurdle models (with a binomial logit function)
for the probability of an outbreak and linear models
for the severity (RRV incidence) of an outbreak. All
predictor variable combinations were undertaken for
each modelling approach and Akaike’s Information
Criterion correction corrected for sample sizes
(AICc) were determined [32]. Rank of models was
assessed by delta AICc [32].

Model-averaged coefficients of the model combina-
tions were constructed, averaged variable estimates
were derived from each model were the variable was
included (see the ‘Results’ section). The estimates
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from the hurdle models were then back-transformed,
exponentiating the model coefficients and used as pre-
dictors in forecasting the probability of a RRV out-
break (Eqn. (2)), where the severity of an outbreak
(in incidence) was calculated based on the
model-averaged coefficients from the linear regression
models (Eqn. (3)). Where Yi represents your predicted
outcome odd ratio and incidence (Eqns (2) and (3),
respectively), β0 represents the regression intercept,
and β1,2,px1,2,pi represents the beta coefficients from
the regression models.

Yi( ) = exp+(β0 + (β1x1i + β2x2i + · · · + βpxpi ))
1+ exp+(β0 + (β1x1i + β2x2i + · · · + βpxpi ))

( )
,

(2)
(Yi) = β0 + (β1x1i + β2x2i + · · · + βpxpi ). (3)

In all cases, variable importance weights were also
calculated representing the sum of the Akaike weights
over all the models in which the variable appears [32].

The fit of models to the data were assessed using a
variety of techniques. For outbreak probability, we
calculated sensitivity, specificity, and negative and
positive predicted values based on the model-averaged
coefficients. Cross-validation was also conducted using
a K-fold validation technique with the data being split
into ten equal folds and the model being tested giving
both a prediction error for the leave-one-out cross-
validation and an adjusted design to compensate for
the leave-one-out cross-validation [33, 34]. The K-fold
cross-validation prediction error is used to determine
the amount of variation in the hurdle model predictions
where we are testing predictions against the entire data
available [35]. K-fold cross-validations were run ten
times to obtain a standardised error to correct for pos-
sible errors produced in the data petitioning process.
For outbreak severity we assessed model fit via K-fold
cross-validations, again based on model-averaged coeffi-
cient effects.

Relationship between RRV incidence and expenditure

Following modelling of RRV incidence based on
environmental factors, we examined the relationship
between timing of expenditure on RRV control and
RRV incidence. This was undertaken for Mandurah,
where monthly expenditure data were available from
2007 to 2012. Data were aggregated on a monthly
basis. Monthly opposed to weekly data were utilised
to account for infrequent mosquito control activity
throughout each year. The model-averaged

coefficients of RRV incidence in Mandurah were
used to predict RRV incidence using a linear regres-
sion model (Supplementary Table S7). The residuals
of the predicted incidence to predict true incidence
were then used as the outcome variable predicted by
monthly expenditure. To examine model robustness,
a cross-validation of the linear regression was con-
ducted. A 4-fold cross-validation was used due to
the limited size of the data. Data partitioning were
repeated ten times, allowing for equal amounts of
observation in each partition for each model construc-
tion and comparison.

All statistical analyses described were performed in
R (Version 3.2.5, www.r.project.org) using the
packages ‘pscl’, ‘MuMln’, ‘pROC’, and ‘boot’ in
RStudio (Version 0.99.489).

Using the modelled average coefficients from pre-
dicting RRV outbreaks (Eqn. (2)) and incidence
(Eqn. (3)), we constructing a user friendly Microsoft
Excel-based tool capable of predicting a minimum
of 1 week into the future for each site studied
(Supplementary Table S8). All supplementary materi-
als are available on the Cambridge Core website.

RESULTS

There were 3567 notified cases of RRV across all sites
for the study period; these included Derby with 134,
Broome with 635, Port Hedland with 349, Mandurah
with 2167, and Capel with 282 notified cases. The
various numbers of cases across the sites predomin-
antly reflect the population differences between the
sites.

The weekly probability of an outbreak

An outbreak was defined by the mean weekly inci-
dence (weeks of zero incidence were omitted), whereby
values above the mean were classified as an outbreak
for each site. The incidence (per/1000 individuals)
which characterised an outbreak were 0·165 in
Derby, 0·169 in Broome, 0·128 in Port Hedland,
0·055 in Mandurah, and 0·244 in Capel and repre-
sented as a threshold in Figure 2. The occurrence of
outbreaks differed between the northern and southern
sites (Supplementary Fig. S1).

RRV outbreaks in semi-arid and tropical northern
sites were positively predicted by weekly precipitation
and minimum temperatures (Table 1). Weekly max-
imum tide heights were further positive predictors
for outbreak probabilities in tropical Derby and
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Broome, with weekly maximum temperature also
becoming an important predictor in Derby (Table 1).
For the Southern Mediterranean climate site of
Mandurah, in comparison, RRV outbreaks were pre-
dicted by weekly minimum and maximum tempera-
tures and maximum tide heights (Table 1). With the
exception of the semi-arid Port Hedland, maximum
tide heights had similar importance in model selection
between the northern and southern sites. The weekly
lag between precipitation and RRV activity was
greater in the southern sites, relative to the northern
sites (Table 1). Variable importance suggested that
weekly minimum temperatures in the northern sites
had a greater relative influence on the probability of
an outbreak than in the southern sites. Furthermore,
weekly maximum temperature had a greater variable
importance weight in the southern site of Mandurah
than that of the northern sites (Table 1).

Outbreak predictions of observed RRV outbreaks
made from the modelled averaged coefficients had
high sensitivity (Fig. 2, Table 2). Specificity on the
other hand was lower (Table 2). Models for the sites
Broome and Port Hedland both had the greatest bal-
ance between high model sensitivity and specificity
(Table 2). This was reflected when visually plotted,
where weekly outbreak probabilities and predicted
incidence increase when observed incidence rose
(Fig. 2). The error from the K-fold cross-validation

suggests that the models were consistently predicting
outcomes of similar accuracy across the entire study
period for all sites (Table 2). The exception to this
was Capel, where outbreaks were not well predicted
for.

The weekly severity of an outbreak

Similar to predicting outbreaks, weekly RRV inci-
dence across the northern sites were driven by weekly
minimum temperatures and precipitation (Table 3).
There were some differences in predictors of RRV
for the northern sites. For instance, weekly maximum
temperatures and tidal heights were associated with
RRV incidence in Derby, and maximum tide heights
in Broome (Table 3). Weekly RRV incidence in the
southern site of Mandurah was predicted by weekly
minimum temperatures and maximum tide heights
(Table 3). For Capel minimum temperatures exhibited
a trending relationship to RRV incidence, and inci-
dence was negatively associated with maximum
temperatures.

While predicted incidence were generally conserva-
tive, prediction trends matched that of weekly
observed incidence (Fig. 2). K-fold cross-validation
of the linear regression models, with the exception of
Capel, found very little variation in cross-validation
error suggesting the model accuracy and agreement

Fig. 2 Outbreak probabilities and incidence across all sites. Observed incidence (left axis) plotted against the threshold,
which defines and outbreak (left axis), predicted outbreak probabilities (right axis), and predicted incidence (per/1000
individuals, left axis) for a 7-year timespan from 2007 to 2014 for five sites in Western Australia: a, Derby; b, Broome; c,
Port Hedland; d, Mandurah; e, Capel.
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in predictability when validated against the entire data
set in their repeated predictability (Table 3).

Timing of mitigation expenditure to RRV incidence

To examine the relationship between RRV incidence
and expenditure on mitigation in Mandurah from
2007 to 2014 (while taking into account the environ-
mental determinates of incidence) we undertook a lin-
ear regression analysis on residual RRV incidence
from the model-averaged full model. Residual RRV
incidence was positively related to expenditure
(β(cost) = 7·60 × 10−06, F = 19·7, df = 70, P = < 0·001),

suggesting proportionality between the two (Fig. 3).
Model accuracy assessed using a K-fold cross-
validation with 4-folds repeated ten times, showed
model agreement indicated consistency in this rela-
tionship (overall cross-validation error = 0·014).

Forecasting tool

We utilised our weekly modelling of outbreaks and
incidence to create a user-friendly forecasting tool
for each site (Supplementary Table S8). Utilising the
environmental lags, predictions into the future could
be made. Across the sites, future predictions could
be made for: 2 weeks into the future for Derby, 1
week into the future for Broome, 5 weeks into the
future for Port Hedland, and 1 week into the future
for Mandurah, Capel was omitted from the forecast-
ing tool due to poor model performance.

DISCUSSION

Transmission of mosquito-borne disease is controlled
by a combination of environmental, and vector and
reservoir host dynamics, which vary across geograph-
ical and climatic regions. In forecasting the transmis-
sion of RRV, previous studies have used monthly
environmental data and have highlighted the import-
ance of having mosquito trapping data to supplement
environmental predictors [13, 30, 36]. While these
studies have been vital in developing our understanding
of RRV epidemics, their course temporal resolution and
recruitment for labour intensive surveillance [13, 24,
29, 37–42] limit practical application for timely fore-
casts to inform mitigation activities and public aware-
ness campaigns.

Our weekly temporal scale forecast models suggest
that in Western Australia, the environmental determi-
nants of RRV activity differs among climatic regions.
Southern Mediterranean regions are less dependent on
precipitation compared with tropical and semi-arid
environments in the northern areas of the state.
Precipitation did not significantly predict RRV out-
breaks or incidence in theMediterranean sites compared
to the semi-arid and tropical sites. The fine-temporal dri-
vers of RRV across climatic regions (Mediterranean,
semi-arid, and tropical) are poorly studied and critical
in creating effective region-specific mosquito-borne
disease management.

Differences in environmental drivers of RRV in this
study may be reflective of geographical differences in
landscape between these regions. The semi-arid and

Table 1 Environmental hurdle model characteristics of
Ross River virus across all sites.

Site &
variable

Lag
(weeks)

Hurdle Model

OR
SE
(logit)

Variable
importance P-value

Derby
Tmin* 10 1·640 0·151 0·99 0·001
Tmax* 18 1·296 0·110 0·47 0·018
THmax* 2 1·017 0·003 0·84 <0·001
Ptot* 6 1·004 0·003 0·49 0·215

Broome
Tmin* 13 1·447 0·070 >0·99 <0·001
Tmax 18 1·067 0·075 0·22 >0·999
THmin 16 0·999 0·002 0·09 0·527
THmax* 0 1·012 0·004 >0·99 <0·001
Ptot* 8 1·011 0·002 >0·99 <0·001

Port Hedland
Tmin* 10 1·384 0·056 >0·99 <0·001
Tmax 12 1·057 0·062 0·16 0·372
THmin 8 1·002 0·003 0·15 0·440
THmax 5 1·002 0·004 0·12 0·617
Ptot* 5 1·012 0·003 0·98 <0·001

Mandurah
Tmin* 0 1·166 0·062 0·64 0·014
Tmax* 0 1·115 0·043 0·64 0·011
THmin 6 1·007 0·010 0·17 0·470
THmax* 0 1·020 0·007 0·90 0·003
Ptot 10 1·004 0·007 0·13 0·525

Capel
Tmin* 18 0·853 0·080 0·47 0·488
Tmax* 18 0·699 0·129 0·90 0·006
Ptot 11 1·009 0·009 0·18 0·297

Environmental variables predicting RRV outbreaks: OR,
odds ratio; SE, standard error. Where the values: Ptot, is
for weekly precipitation; Tmin, minimum temperature;
Tmax, maximum temperature; THmin, minimum tide height;
and THmax, maximum tide height.
* Represents environmental variables included in the best-fit
model.
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tropical sites have extensive mangrove and saltmarsh
areas surrounding them, becoming inundated by pre-
cipitation leading to mosquito breeding. While the
Mediterranean site of Mandurah has an extensive
waterway system resulting in a lower impact of precipi-
tation on RRV transmission. Similar to previous studies
in the south-western parts of Western Australia [13, 43]

we found that in the Mediterranean site of Mandurah,
weekly maximum and minimum temperatures and
maximum tide heights were important contributors to
RRV epidemics. In the semi-arid and tropical sites the
weekly environmental factors minimum temperature,
maximum tide height, and precipitation generally
predicted RRV notifications and transmission with

Table 2 Sensitivity, specificity, and cross-validation of model performance and predictions

Sensitivity Specificity PPV NPV K-fold cross-validation error (range)

Derby 1 0·304 0·034 1 0·0224 (0·0221–0·0225)
Broome 0·798 0·831 0·263 0·982 0·0545 (0·0542–0·0549)
Port Hedland 0·914 0·656 0·123 0·993 0·0454 (0·0450–0·0465)
Mandurah 0·975 0·179 0·192 0·973 0·1814 (0·1801–0·1824)
Capel 0 1 NA 0·973 0·0463 (0·0459–0·0466)

Sensitivity and specificity of the predictions produced from the hurdle models using a standard 0·5 cut-off point and the cross-
validation error. PPV and NPV represent positive and negative predictive values, respectively.

Table 3 Environmental linear regression model characteristics of Ross River virus across all sites

β SE
Variable
importance P-value

K-fold cross-validation
error (range)

Derby
Tmin 9·302 × 10−04 3·355 × 10−04 0·95 0·006 0·002 (0·001–0·006)
Tmax 1·603 × 10−03 4·666 × 10−04 0·99 <0·001
THmax 1·153 × 10−04 3·311 × 10−05 0·99 <0·001
Ptot 2·291 × 10−04 3·904 × 10−05 >0·99 <0·001

Broome
Tmin 4·159 × 10−03 6·535 × 10−04 >0·99 <0·001 0·010 (0·004–0·018)
Tmax 1·904 × 10−03 1·343 × 10−03 0·50 0·157
THmin 5·495 × 10−05 3·699 × 10−05 0·52 0·138
THmax 2·160 × 10−04 5·034 × 10−05 >0·99 <0·001
Ptot 7·036 × 10−04 7·850 × 10−05 >0·99 <0·001

Port Hedland
Tmin 2·873 × 10−3 4·567 × 10−4 >0·99 <0·001 0·004 (0·002–0·007)
Tmax −2·255 × 10−4 7·272 × 10−4 0·28 0·757
THmin 4·063 × 10−5 3·911 × 10−5 0·38 0·309
THmax 5·553 × 10−5 4·890 × 10−5 0·41 0·257
Ptot 6·136 × 10−4 8·485 × 10−8 >0·99 <0·001

Mandurah
Tmin 4·027 × 10−3 1·459 × 10−3 0·89 0·006 0·004 (0·001–0·004)
Tmax 1·800 × 10−3 1·204 × 10−3 0·55 0·135
THmin 1·043 × 10−4 2·419 × 10−4 0·30 0·667
THmax 5·676 × 10−4 1·793 × 10−4 0·98 0·002
Ptot 2·044 × 10−4 1·689 × 10−4 0·43 0·227

Capel
Tmin −5·292 × 10−3 3·149 × 10−3 0·60 0·093 0·033 (0·003–0·047)
Tmax −1·193 × 10−2 3·925 × 10−3 0·97 0·002
Ptot 4·166 × 10−4 3·553 × 10−4 0·42 0·242

Environmental variables predicting RRV incidence: β, beta coefficient; SE, standard error; and the K-fold cross-validation
error. Where the values: Ptot, is for weekly precipitation; Tmin, minimum temperature; Tmax, maximum temperature;
THmin, minimum tide height; and THmax, maximum tide height.
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minor differences between these regions. This may
demonstrate the role geographical and environmental
characteristics have among Mediterranean, semi-arid,
and tropical regions. The models constructed for
Mandurah were the only ones to consistently have
predicted incidence exceeding the threshold that we
classified as an outbreak of RRV. The remaining
sites’ predictions may be conservative due to the rela-
tive small human populations and low cases of RRV
being reported. While incidence prediction may be
conservative for Derby, Broome, and Port Hedland,
periods of sustained RRV activity and peaks still
provide useful information during decision-making
processes when undertaking mitigation activities.

This research also supports previous studies on
mosquito–host interactions, their role in RRV trans-
mission and outbreaks, owing to maximum tidal
heights in estuarine, flood plans, and wetland areas
[42]. The tropical regions of Derby and Broome
experience some of the highest tidal variation in
Australia, and in the southern hemisphere [44, 45].
In both Derby and Broome the weekly maximum
tidal height was an important driver in the probability
of an outbreak and also incidence, with the inunda-
tion of mangroves being known to force animal reser-
voirs closer to urban areas [16]. The Southern
Mediterranean site of Mandurah has an extensive
tidal estuarine salt marsh area coupled with inflowing
rivers creating ideal conditions for mosquito breeding
[46, 47]. In Mandurah, weekly maximum tide height
had similar odds of increasing the probability of an
outbreak as the tropical sites. However in Port
Hedland, RRV outbreaks were not significantly pre-
dicted by maximum tide height. Instead, precipitation

in Port Hedland had a greater influence on the odds of
a RRV outbreak than that of any other study site.
Port Hedland, in contrast to our other coastal sites,
is industrialised and frequently used as a major ship-
ping transport hub, has three surrounding suburbs,
which are further inland, and has a deeper port within
the estuary.

Following a precipitation event in coastal areas,
the northern tropical regions of Western Australia
experienced RRV activity sooner than that of
Mediterranean southern regions. However, the south-
ern site of Mandurah experienced much shorter envir-
onmental lags in RRV activity from changes in
temperature than that of the northern sites. Both
these findings may reflect the environmental differences
among Mediterranean, semi-arid, and tropical regions
and are of importance when tackling mosquito-borne
diseases at a regional level. These lagged effects of
RRV activity occurring after an environmental event
vary greatly between regions across Australia, reflecting
the biotic and abiotic processes involved in the trans-
mission [5, 10, 16, 24, 48]. Our findings help to illustrate
the latitudinal responses in RRV activity in relation to
environmental factors among climates [49].

While the economic impact of RRV infections have
been investigated [50, 51], there is often little knowledge
of the role mitigation expenditure has in association
with RRV activity [50, 51]. Our findings indicate that
while variable, expenditure increases proportional to
that of residual RRV notifications (after having con-
trolled for the effect of environmental predictors).
This finding helps to support and justify current miti-
gation practices already in place, and variability in the
association illustrates the complex nature of managing

Fig. 3 Mitigation expenditure on residual Ross River virus (RRV) incidence. Mitigation expenditure influence on RRV
incidence for Mandurah. The best-fit model combination residuals of a linear model being predicted by the cost of
mitigation on a monthly basis (95% confidence intervals in blue).
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this mosquito-borne disease. It could be argued that
the relationship between mitigation expenditure and
RRV incidence should be negative. However, it is
important to recognise that mosquito mitigation is
only carried out during times when mosquito control
officers suspect mosquito breeding is most likely,
and potential for disease outbreak is greater. Thus,
when RRV incidence is likely to be at its greatest, so
too should mitigation expenditure. As a consequence,
the strength of the positive association becomes a
proxy for the correct timing for mitigation activities
and expenditure.

A considerable strength to this study is the extensive
history of RRV notifications and environmental data
in both constructing forecasts and validating the mod-
els. This is the first study, to our knowledge, to employ
hurdle models to predict longitudinal RRV outbreak
dynamics [52]. While our approach does not necessar-
ily imply our models are superior to previous meth-
ods, our models do allow for alternative approaches
when modelling mosquito-borne disease data at
fine-temporal resolutions. Previous studies forecasting
RRV outbreaks and their associated predictors have
used logistic and negative binomial regression, and
seasonal autoregressive integrated moving average
(SARIMA) modelling techniques [5, 13, 14, 24, 49].
Hurdle models offer some distinct attributes that
may make them well suited to predicting outbreaks.
From our models, we found strong agreement among
our model validation analyse. Model sensitivity and
specificity in predicting outbreaks were generally greater
than other studies, and these sensitivities rivalled those
that explicitly include mosquito surveillance in model-
ling [13].

Resulting from our findings was the construction of
early warning forecasting tools for RRV outbreaks
and incidence among our study sites. Previous epi-
demiological studies of RRV often suggest that early
warning forecasting systems can be developed and
would be of benefit for public health and mosquito
control programmes [13, 31, 48]. Yet, to our knowl-
edge, very few studies take the much needed step of
translating their findings into a user friendly tool.
Here we have applied our findings into a practical
user friendly forecasting tool, which has been deliv-
ered to the Western Australian department of health
and local councils, and is available in the supplemen-
tary material to this article.

It is notable that for our study site of Capel, the
models predicting outbreaks and incidence were
poor fits to the RRV notifications comparative to

that of the other sites. One reason for this could be
the source of temperature data, which were unavail-
able for Capel and had to be gathered from a neigh-
bouring town. Furthermore, the dynamics of RRV
notifications at Capel were quite sporadic, and the
low population size of the town meant that high spor-
adic numbers of RRV notifications had large
influences of levels of incidence. These limitations
are unfortunately difficult to overcome at this loca-
tion, and accordingly we are tentative in our interpre-
tations of results from this site. Moreover, the
variation of mosquito-control programmes and its
relative effect to RRV notifications was not assessed
here and would provide valuable insight into the
role it plays in relation to environmental conditions
and RRV outbreaks.

CONCLUSION

We present models capable of filling the void in fore-
casting RRV outbreaks and disease incidence on a
weekly temporal scale and across multiple climates.
The use of these models is particularly valuable for
forecasting RRV without the need for mosquito sur-
veillance. We also demonstrate the complex nature
of RRV transmission between climatically difference
regions, and the necessity to understand these differ-
ences when creating effective forecasting tools.
Forecasting weekly RRV outbreaks and incidence
may help with timing of mitigation activities and pub-
lic health notifications at critical times when disease
risk is greatest. The early warning predictive tool
developed here helps translate epidemiological model-
ling studies into easy to use tools that can be adopted
by regional and local health bodies, which may inform
local decision maker’s processes. The coupling of the
predictive modelling with mitigation expenditure is
also informative of the extent to which mitigation
activities are well timed with RRV incidence. While
this study bridges previous knowledge gaps in
fine-temporal transmission dynamics of RRV, and
the role mitigation has during outbreaks, we highlight
the need for further research extending these analyses
across multiple sites in similar climatic regions, so that
broader generalisations may be made to assist the
public health and vector management community.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be
found at https://doi.org/10.1017/S095026881700190X
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