
J. Austral. Math. Soc. 22 (Series B) (1980), 2-11

ON THE IMPLEMENTATION OF A SUBSET SELECTION
ALGORITHM FOR THE RESTRICTED LEAST SQUARES PROBLEM

D. I. CLARK and M. R. OSBORNE

(Received 14 September 1979)

(Revised 26 November 1979)

Abstract

By noting that it is possible to interchange the roles of the solution vector x and the
vector of Lagrange multipliers i. in the restricted least squares problem we are able to
give a very efficient implementation of Clark's subset selection algorithm Numerical
results are presented for several selection heuristics.

1. Introduction

Two main approaches have proved popular for the solution of the restricted least
squares problem :

minKb-/lx)T(b-,4x), (1)

where A is an m x n matrix with m > n, and (rank A) = n. The first approach
identifies (1) as a quadratic programming problem of a rather simple kind and uses
techniques familiar from linear programming to obtain a solution [2]. The second
considers (1) as a subset selection problem and uses a branch and bound procedure
to search for the optimum set of the x; [1]. This latter approach has been advocated
as it solves a standard regression problem at each step and so can make use of readily
available computer software. Recently Clark has considered the subset selection
approach carefully with a view to developing pruning rules to minimize the
searching involved, and in [3] suggests an algorithm which appears to be efficient in
terms of the number of different subproblems which have to be solved (the number of

© Copyright Australian Mathematical Society 1980
Copyright. Apart from any fair dealing for scholarly purposes as permitted under the Copyright Act, no part of this
JOURNAL may be reproduced by any process without written permission from the Treasurer of the Australian
Mathematical Society.

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

[2] Restricted least squares problem 3

nodes of the search tree which have to be considered). In this paper we consider the
implementation of Clark's algorithm. In particular we want to provide methods
which avoid solving each of the unconstrained least squares problems ab initio when
only one of the variables is changed at each step. The key to our approach is
suggested by the Kuhn-Tucker conditions which characterize the unique minimum
of (1), with uniqueness following from the strict convexity of the objective function
and the linearity of the constraints. These conditions are

-AT(b-Ax) = k, (2a)

k > 0, x =s 0, (2b)

and

l.Xi = 0, i = 1,2,...,«, (2c)

so that the subset selection problem can be restated as that of seeking among all
solutions satisfying the system of equations (2a) and the complementarity condition
(2c) the unique pair satisfying X ^ 0, x > 0.

From our point of view the striking feature of this formulation is the symmetry
between the roles of x and k. In particular it is possible to interchange the roles ofx
and k in Clark's algorithm. This has the advantage that a certain amount of initial
processing is avoided. For example, Clark started with x as the unconstrained
minimizer of (1), and this is equivalent to rewriting (2a) in-the form

(/lT/l)"1>.-x = -(/lT/4)-1/4Tb (3)

and satisfying (2c) by setting k = 0.
By the complementarity condition (2c), fixing a particular component ofx at z^ro

is equivalent to freeing the corresponding component of k. Thus we consider at each
stage a partition of x,

with x2 = 0, (4a)
: J

and a corresponding partition of k,

> . = r H wi* >.,=<), (4b)>-£;]
which ensure automatically that (2c) is satisfied. If (2a) is now solved for the variables
permitted to be nonzero at the current stage then it can be written

= - q , (5)

where

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

4 D. I. Clark and M. R. Osborne [3]

Each step of the algorithm involves interchanging a component of x with the
corresponding component of X. This results in a transformation of (5) which can be
represented by multiplication by an elementary Jordan matrix followed by
appropriate permutations to partition the new variables into the form (6). We define
the Jordan matrix J, by

J, K,{M) = (I - j , ej) Kt{tvi) = - e(, (7)

where i is the index of the element of a, to be exchanged, and K,{.) indicates that the
/th column is taken. Using a bar to denote transformed quantities we have

q = q-«iji.
so

and j . <h_
q

k ^ { }, k*i. (8b)
1V1 j ;

When k = i, the ith column of M comes as a result of the interchange A, <-> x;. This
gives

(8c)

This shows that the computations involved in Clark's algorithm can be carried out
in a manner familiar from stepwise regression [4]. However, the problem set-up still
involves the calculation of the normal matrix which is a significant initial
computation.

An alternative to forming the normal matrix is to apply orthogonal transform-
ations to the data matrix. This is known to have superior numerical properties [7],
but it is interesting that in the stepwise regression case it is known to be more
efficient for an important range of values of m and n [9]. This approach is considered
in the next section. It turns out that set-up time can be considerably reduced by
working with the multiplier vector X, and there is an unexpected bonus for).2 turns
out to be a numerically better determined quantity than x,. Numerical results,

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

[4] Restricted least squares problem 5

including a comparison with the quadratic programming approach, are presented in
Section 3.

2. Use of orthogonal transformations

To derive the equations satisfied by xt and X2 we assume that the orthogonal
transformation of the data matrix is given by

and Qrb = fc] (9)
where Q is orthogonal and U upper triangular. Substituting in (2a) gives

X-UrU\ = -UTcl

or

U~rX-Ux = -cl. (10)

We partition U and C! to conform with (4) by setting

(ID

so that (10) reduces to the pair of equations

[/ l X l = c u and X2=-UT
2cl2. (12)

The interchange of a pair 2.i,xi destroys the form of U unless the last element of Xj
becomes the first element of k2 or vice versa. Thus the upper triangular form of U
must be restored following an interchange, and this can be done using the now
standard techniques treated in detail in [5]. For example, to drop the kth element of
X; which we assume to be of length p > k, we perform the interchanges k+ 1 -> k,
k + 2-*k + l,..., k->p on the columns of U{ and then sweep out the elements
introduced in the sub-diagonal positions using plane rotations W{ j , j+l,(j+l,j)},
j = k,k + l,...,p-l where W{i,j,(p,q)} is the plane rotation mixing rows /and j and
making zero the element in the {p, q) position. Similarly, to add an element to x, the
corresponding column (say k) of U2 is moved to column 1 by the sequence of
interchanges 1 -• 2,2 -> 3,..., k -* 1, and the upper triangular form is restored by the
sequence of plane rotations W{ j , j + l,(j+l, l)},j = k — 1,..., 1. These operations
are shown schematically in Fig. 1. The interchanges are indicated by arrows,
elements eliminated are circled, and elements introduced are labelled by the rotation
number.

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

D. I. Clark and M. R. Osborne [5]

X X

X X

1 X

X

deletion of variable

from Xj

(matrix shown is £/,)

addition of variable
to \ l

(matrix shown is U2)

Fig. 1. Transformations for addition and deletion of variables.

The algorithm can now proceed as before. However, although it appears from the
above description that the initial set up time includes the factorization (9), the
observation that it is possible to work with X instead of x makes it possible to start
the algorithm without any pre-processing of the data matrix A. The key point is that
X2 can be determined once the transformation necessary for the calculation of the
complementary set X! has been carried out, although \ t need not be computed
unless A.2 ^ 0. The modification to the algorithm is explained by considering the first
step which is typical. Note that initially x = x(

2
l) = 0 so that (2a) gives

X2 = — U c, = — A b, (13)

where the superscript indicates step number. Using a Householder transformation
(say) to sweep out the first column of A gives

u
l2X

0

Now, from (12), we have

and Hl b =

X

t/ll

u12

t /<2) T

= — c ,

uln

(14)

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

[6] Restricted least squares problem 7

showing that the Lagrange multipliers can be updated and decisions made on the
order in which the remaining columns of A are swept out as the factorization of A
proceeds. Essentially no set-up computations are required for this form of the
algorithm.

This relation can be given a general form. We partition Q so that (9) is written

and Q]b = c1. (15)

Partitioning A and Q[in conformity with x we obtain

Q\ilAlA2-\ = \UlUll-\ and Q\2[AX A2~\ = [0 l/2], (16)

so that

-X2 = UT
2c12=AT

2Ql2Q
T

l2b

and, using (16),

- [£] = ATQ12Qj2b
= /lT[/-G,1QTi]b, (17)

as

QnQili^t-QiiQii-QiQl and ATQ2=0.

In particular, the general form for (14) is

-X2=Ajb-UT
l2ell, (18)

and this confirms that the multiplier vector is available when only the transform-
ation of A necessary to compute xl has been completed.

Equation (18) is useful also as it permits an error analysis for this method of
computing k2 to be given. Indicating computed quantities by bars we have

= {U]2-AlQll}c11+AT
2Qll{cll-cll}+z, (19)

where E is the evaluation error. This equation can be further expanded to give

S\ = {U]2-A
T

2Q'll}l11+Al{Q\1-Qll}Z11

T (20)

where the prime indicates the exact orthogonal factorization defined by the actual
numeric data at each stage. The quantities on the right-hand side of (20) can now be
estimated using known inequalities. The most important terms are those involving
Q\i — Qii, and in [8] it is shown that this can be bounded by an expression of the

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

8 D. I. Clark and M. R. Osborne [7]

form k i eps %(A,) where k x is a constant, eps is the machine precision, and y^A x) is the
spectral condition number of/],. This is a result which is more favourable than the
corresponding result for x, which shows a dependence also on

-12 [7]-

However, the bounds quoted in the error estimate are for the usual form of
orthogonal factorization which takes no account of the possibility of the back-
tracking which can and does occur in Clark's algorithm. If we assume the analysis is
valid also in the case of back-tracking, then presumably we have to use the largest
condition number encountered to the present stage rather than the condition
number of the current partition Av

One further point in favour of this form of the algorithm is that it appears rarely to
be necessary to compute the complete factorization (9) in the determination of the
optimum subset Xj. It is conceivable that the full system could be badly conditioned
while the subproblems leading to the optimal subset could be well conditioned.

3. Numerical results

A subset selection algorithm for (1) proceeds essentially in two stages : an initial
search for a feasible x, (or >.2) using a heuristic to determine at each stage the
component to be set to zero, and subsequent back-tracking to explore other
branches of the search tree if the first feasible solution is not optimal. It is in this
second phase of the computation that the major improvements reported in [3] are
achieved. In the first phase the heuristic commonly used is to fix at zero level the
most negative of the current solution components. This procedure suffers from the
disadvantage that it is not scale independent. For example, if the data matrix A is
multiplied by a diagonal matrix D to rescale the column norms so that

A*-AD~\ (21a)

then it follows from (2a) that the solution vectors are transformed by

x<-Dx and \+-D~ll. (21b)

Our numerical experiments have shown that the choice of the first phase heuristic is
important because it can affect the amount of work that has to be done in the second
phase of the computation. It seems reasonable that a good heuristic should not be
affected by changes in scale, and for this reason we compare the choice of most
negative component with a choice which corresponds to the test used in stepwize
regression to determine the variable to enter the regression at each step and which

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

[8] Restricted least squares problem 9

has the property of invariance with respect to column scaling. If we consider the data
matrix factorized so that at the ith step of the first phase of the computation we have

and *0 = [Cd l] (22)

then the stepwise regression test selects the variable to be introduced as that which
maximizes

as this leads to the biggest reduction in the sum of squares of the residuals [6]. Here
is the euclidean length of the 7th column of B. Now, from (18),

-X<2
i» = / l l b - l / 1 2 c 1 1 =BTd, (23)

so that we can use the stepwise test in the form

•El s maximizes

for all j such that y(j) > 0.
However, our implementation actually considers y(j)2 as ||K,(B)||2 is readily

updated from step to step.
We report numerical results for two sets each of ten problems with m = 50,

n = 40. The data are obtained by sampling from a normal distribution for the first
set and from a uniform distribution for the second set, except that in all cases
Ki(A)j = 1, j = 1,2, ...,/n. For each set we give results for each of the selection
strategies already discussed and for the case in which the most negative strategy is
used after the columns of A are scaled initially to have unit length. Also, for the data
drawn from the uniform distribution, we consider scaling the columns of A to have
unit L, norm as the most negative strategy proved particularly favourable in this
case, and definitely superior to the corresponding scaling using the euclidean norm.
Also, for comparison, we give results obtained using a quadratic programming
subroutine QUA DPR, based on the Cottle-Danzig principal pivoting algorithm,
which was supplied by the Madison Academic Computing Center at the University
of Wisconsin.

The results for the two data sets are given in Tables 1.1 and 1.2, respectively. We
report the average time per problem as (cumulative time)/10 (recorded most
unreliably on the computer used, a Univac 1100/42)f, and the total number of nodes
visited. It will be seen that the variants of Clark's algorithm are superior to the

t Timings in a multiprogramming environment tend to be unreliable because compromises are made
between keeping exhaustive records and efficiency. Part of the explanation in this case would appear to
stem from the system executive's practice of continuing the internal timing of an interrupted program
unless it is actually swapped out of core.

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

10 D. I. Clark and M R. Osborne [9]

TABLE 1.1

Results for data from normal distribution

Method

Quadratic programming
Most negative X,
Stepwise

Ih<i)ll2 = i
Most negative x,

Average time
(ms)

1187
322
249
437
547

Number of nodes

404
210
204*
204*
202

* First feasible solution is optimal for each problem.

TABLE 1.2

Results for data from uniform distribution

Method

Quadratic programming
Most negative A,
Stepwise

\ \ h

Average time
(ms)

1340
434
390
385
307
518

Number of nodes

416
196-
262
262
168
240*Most negative x,

* First feasible solution is optimal for each problem.

quadratic programming algorithm. Also, the most negative heuristic is never too
bad, while the stepwise heuristic is favoured for the data drawn from the normal
distribution. There is some evidence that the statistical origin of the data is not
irrelevant to the choice of a good heuristic. Starting with k rather than x is clearly the
superior strategy in terms of elapsed time despite the unreliability of the timings (for
example, the stepwise and column scaling strategies should have returned ap-
proximately the same times in Table 1.1).

References

[1] R. D. Armstrong and E. L. Frome, "A branch-and-bound solution of a restricted least squares
problem", Technometrics 18 (1976), 447^150.

[2] R. H. Bartels, G. H. Golub and M. A. Saunders, Nonlinear programming (Academic Press, 1970), pp.
123-176.

[3] David Clark, "An algorithm for solving the restricted least squares problem", J. Austral. Math. Soc.
B 21 (1980), 345-356.

[4] M. A. Effroymson, Numerical methods for digital computers (Wiley, 1960), pp. 191-203

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

[10] Restricted least squares problem 11

[5] P E. Gill, G. H. Golub, W. Murray and M. A. Saunders, "Methods for modifying matrix
factorizations", Math. Comp. 28 (1974), 505-535.

[6] G. H. Golub, "Numerical methods for solving linear least squares problems", Num. Math. 7 (1965),
206-216.

[7] G. H. Golub and J. H. Wilkinson, "Note on the iterative refinement of least squares solutions",
Num. Math. 9 (1966), 139-148.

[8] L. S. Jennings and M. R. Osborne, "A direct error analysis for least squares", Num. Math. 22 (1974),
325-332.

[9] M. R. Osborne, "On the computation of stepwise regressions", A ustral. Computer J. 8 (1976), 61-68.

Department of Statistics
Research School of Social Sciences
Australian National University
Canberra
A.C.T. 2600

https://doi.org/10.1017/S0334270000002496 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002496

