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1. Introduction

The resolution of many problems in probability depends on being able to provide
sufficiently good upper or lower bounds to certain moments of distributions. A
striking example from the literature of a result that can offer such bounds was given
by P61ya over sixty years ago as the following theorem (see [7, Vol. II, p. 144] and
[7, Vol. I, p. 94]).

THEOREM A (Pdlya 's inequalities)

(a) Let f : [0, 1] -> K be a nonnegative and increasing function. If a and b are
nonnegative real numbers, then

(b) Let f : [0, oo) —> K be a nonnegative and decreasing function. If a and b are
nonnegative real numbers, then

if all the integrals exist.

The existence of the integrals in either part of Theorem A implies that / is in-
tegrable, so that it can be scaled to give f f(x)dx = 1. Relations (1) and (2) are
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homogeneous in / , so that without loss of generality (1) or (2) can be assumed to
hold with / f(x)dx = 1. Since / is nonnegative, we can thus interpret it as being
a probability density. A remarkable feature of P61ya's result is that in the two most
natural settings, / defined on [0,1] and (0, oo), the directions of the inequality are
opposite.

The following generalization of this result, involving a discrete distribution (/>,)",
was given by the authors in [5].

THEOREM 1. Letf :[a,b]—> K be a nonnegative and nondecreasing function, and let
x,: : [a, b] —> K, i = 1 , . . . , « , be nonnegative increasing functions with a continuous
first derivative. If pt, i = I,... ,n, are positive real numbers such that £ " = 1 Pi = 1
then

(fl*/*<')) f{t)dt *• t \ (jT^'
IfXi (a) = Ofor alii = 1 , . . . , n, and iff is a nonincreasing function, then the reverse
inequality to (3) holds.

The aim of this paper is to present a result similar to (3) for higher-order derivatives.
This has applications to moments, which are considered in Section 3.

2. Main results

THEOREM 2. Let / , . * , : [a, &]—> K, i = 1 , . . . , m, be nonnegative functions with a
continuous derivative of the n-th order, n > 2, which satisfy conditions:

1° ( - l ) n / ( n ) ( 0 > 0 and xfn) (t)> Ofor all t e[a,b], i = l,...,m,
2° (-l)kf{k)(b) > Ofor k = 0,1 n - 1,
3° xf\a) = 0andx\k\b) >Ofork = 0, 1 , . . . , n - 1 and i = 1 , . . . ,m.

If Pi, i = 1, • • •, m, are positive numbers such that ][™=i Pi = 1> tnen

/

b / m \ (n) ™ / fb \Pi

n *" w /wrff - n (/ ; c ' ( n ) MW ) + A - w
\l' = l / 1 = 1 N-'a /
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PROOF. Using integration by parts and Holder's inequality for integrals we obtain

rblm

/

Dim

\i=l

(n)

(0 f(t)dt

n-\ („-*-!)

*=0

n-1

t=0 11=1

l=b

i=b

b m

1=1

n-1

k=0

m / »b

. (5)

Now applying Holder's inequality for the discrete case we have that the last expression
in (5) is less than or equal to

m ln-\

A+n

= A +

k=0

j"

f

"I"
\ Pi

) .

-irf(n\odt

xj"\t)f(t)dt

REMARK 1. If we deal with the condition "f(k)(a) = 0 for all k = 0 , . . . , n - 1"
instead of "xjk\a) = 0" then the same result holds.

In the remainder of this paper we assume that p,, i = 1 , . . . , m, are positive real
numbers such that Yl?=i P<' = 1» m a t ^s> positive probabilities.

COROLLARY 1. Under the assumptions of Theorem 2 and if

xf\b) = xf\b) foralli,je{l m} and k e (0, 1,..., n - 2}, (6)

then

t>b I m \\n) m / pb \ Pi

/
(7)

PROOF. We only need to show that A = 0. Write Bk = x\k) (b) for k = 0, 1 , . . . , n - 1 .
It is easily seen that Y\?=l i.xf\b))Pi = Bk. So, it is enough to prove that

= B t for it = 0, 1 « — 1. (8)
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Let G and C be defined by

x»(t) and

It is obvious that G{b) = Bo, C{b) = Bx/B0 and G'(t) = G(t) • C(t). We first
compute the higher order derivative of C(t). If yt(t) = x';(t)/Xj(t), then using the
Leibniz rule we get

and so

m k-l

for any k € N.
The proof of (5) is by induction on k. For t = lwe have G'(b) = G(b) • C{b) =

Bo • Bt/B0 = Bx. Suppose that GU)(b) = Bj for j < k. Then using the Leibniz rule
and (9) we get

G«\b) = E (* ~ l)cu\b) • C^-HV) = E C ~ l)BJ • Cik-J~l\b)
j=o \ J / J=o \ J /

1=1 \ J

and the corollary follows.

REMARK 2. In the corollary we deal with n > 2. In the case when n = 1 we don't
need the assumptions (6). In fact, that case is discussed in Theorem 1.

THEOREM 3. Let f, x, : [a, b] -> K, i = 1, . . . , m, be nonnegative functions with a
continuous derivative of the n-th order, n > 2, which satisfy conditions
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1° ( - l ) " / ( n ) ( 0 < 0 , xj"\t) > 0 , fib) > 0 for all t e [a,b], i = l,...,m,
2° (—l)kf(k)ib) < Ofor every k = 1, ... ,n - 1,
3° *,W(fc) > 0 and x\k\a) = Ofor i = 1 , . . . , m and k = 0, 1 , . . . , n - 1.

Then the inequality (4) is reversed.

This follows by the same method as in the proof of Theorem 2. The only difference
is in using Popoviciu's inequality instead of Holder's inequality for the discrete case.

We recall that Popoviciu's inequality states that

m n / m \ "

.•=1 ;=i \ . = i ' )

where wx > 0, w2, • •., wm < 0, at)< > 0 for i = 1 , . . . , m, j = 1 , . . . , n, pt > 0
such that £"= 1 /?, = 1 and £™=1 W/fly Pj > 0 for y = 1 , . . . , n. For detail on this
inequality see [3, p. 118].

COROLLARY 2. Under the assumptions of Theorem 3 and the condition

x\k\b) = xf\b) for all i, j € { 1 , . . . ,m) andk e [0, 1 , . . . ,n - 1},

we have that

him \ (n )

(rK'oi /
REMARK 3. For n = 2 we have

Using the well-known inequality between arithmetic and geometric means we con-
clude that A is a nonnegative number. So under the assumptions of Theorem 3 we
have

b I m \ " m / nb \Pi

( ) j j
b I m(n

where / is a nondecreasing concave function, that is, we have inequality (10) but
without equality of xt, x\ ont = b.
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THEOREM 4. Let f, x,> : [a, b] -> K, i = 1 , . . . , m, be nonnegative functions with
a continuous derivative of the n-th order such that (—l)n~1/(n)> (fl/li xf")w and
xjn\ i = \, ... ,m, are nonnegative continuous functions. Then

I
b I m

(

where

n —1

A, =
i = l

PROOF. Using the arithmetic-geometric mean inequality we get

1=1

=E ((- i r

- E (-

b( m

Yl(x,(t)) f(n)(odt
ki=i

« ' rb / m ( n )

/(n f(t)dt.

COROLLARY 3. Under the assumptions of Theorem 4 and the conditions

xf\a)=xf\a) and xf\b)=xf\b)

for all i, j € {1, 2 , . . . , m) and k € {0, 1 , . . . , n - 1}, inequality (10) holds.
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3. Applications

Let Q : [0, a] —>• [0, 1] be a nondecreasing function such that (2(0) = 0 and
Q(a) = 1. Then the r-th moment of Q is defined by

Jo
dQ(x).

We can apply results of the previous section to derive some inequalities for vr. In
the remainder of this section we assume Q and vr to be defined as above.

THEOREM 5. If Q has a continuous derivative of the (n + l)-th order, n > 2, such
that

1° (-l)"G<"+1>(f) < 0 for any t € (0, a),
2° (-l)*0(*+1)(a) < Ofor every k = 1 , . . . , n - 1 and Q'(a) > 0, then

where

*=0 ^V^l / .=1

and a[k] = a(a - 1) • . . . • (a - jfc + 1) and a[0] = 1.

PROOF. Inequality (11) is a consequence of Theorem 3 when we set xt (x) = xa'IPi+n,

atlPi > - 1 , for i = 1 , . . . , m.

THEOREM 6. If a = 1 and Q has a continuous derivative of the (n + \)-th order such
that (-1)""1 g(n+1> is nonnegative, then

where

A, = •

0, /orn = l ,2

forn > 3.

If(-l)n-k-lQ<n-k\l) > Ofor k = 2 , . . . , n - 1, n > 3, ?/KTI
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PROOF. Inequality (12) is a consequence of Theorem 4 when *,(•*) =xai/Pl+", at/pt >
— l.fori = \,...,m. If we prove that A3 > 0, the validity of inequality (13) follows.
For this we have

m m m k k m

+ n)[k] = £ p,(£ Nj(a,/Pl)
J) -

where Nj, j = 1 , . . . , k, are positive numbers and gjipu . •., pm) = ] [Xi al /Pi' ~
( X X i a - ) J - I r i s e a s y t 0 s e e t h a t gi = 0 a n d 8j(Pi. • • • - Pm) > 0 for j = 1 , . . . , £, so
A3 > 0 .

REMARK 4. The result for n = 2 was discussed in [8].

REMARK 5. Let /„ be a function defined by

where 2 from the definition of vr satisfies all the assumptions of Theorem 6, that is,
inequality (13) applies. Then /„ is a concave function and the following corollary
holds.

COROLLARY 4. (a) Ifp>q>r, then

(b) If p > q, r > s i p > r, q > s, then

lew
(c) Ifr>0, ru...,rm > 0, then

r+n\ \m~l/n+...+rm+r + n
) {n

(d) Ifq > s > r > p, p < t <q, then
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(e) If p > q > 0 then

n Y') (
PROOF, (a) This is a consequence of inequality

H(p) H(q) H(r)

333

P
1

q
l l

< 0 for p > q > r

for a concave function H (see [3, p. 1]).
(b) For any concave function H the inequality

H{p) - H{r) ^ H(q) - H(s)

p-r q-s

holds for p > q and r > s (see [3, p. 2]). Therefore (14) is a simple consequence of
the previous inequality if we set H = fx.

(c) Setting r = s, p = rx + • • • + rm + r, q = rl•,+ r in (14) we obtain

n/(n+~+rm)

On multiplying together all these inequalities for i = 1 , . . . , m we obtain (15).
(d) This is a consequence of Narumi's inequality

q- p q- p s — r s — r

(see [4]), where H is a concave function and q > s > r > p, p < t < q.
(e) Set r = s = 0 in (14) and use the fact that v0 = 1.

A simple consequence of Theorem 2 is the following result.

THEOREM l.IfQ has a derivative of the (n + \)-th order such that

1° (-l)ne(n+1)(f) > Ofort € (0,a),
2° (-1)* £>(*+1)(a) > Ofor every k = 1 , . . . , n - 1 and Q'(a) > 0, then
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REMARK 6. For j = 0 , . . . , k — 1, we have

+ (i. - y) =
<i P> , i

Multiplying these inequalities together for j = 0 , . . . , k — 1 we get

m m

(E«. + n)w - Y\((ai/pi + nf]r > 0
/=i i=i

for k = 0 , . . . , n — 2. So, if Q satisfies the assumptions of Theorem 7, A2 is
nonnegative.

REMARK 7. In probability theory the r-th absolute moment is defined by

vr= f xrdQ(x),
Jo

where the distribution function Q : [0, oo) —*• [0, 1] is a nondecreasing function such
that (2(0) = 0 and l im , -^ Q(x) = 1. In that case, if (-l)*~'G(t ) is a positive,
continuous and decreasing function for k = 1,2,... ,n, use of a similar method to
the proof of Theorem 2 and the relation

(r + 1 ) / xrQ\x)dx = - [ xr+ldQ'(x)
Jo Jo

enables the inequality

to be proved, where vr = /0°°xrdQ(x). For more on this result see [1, 2 and 6].
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